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ABSTRACT 18 

 19 

The Lotena Formation from two localities, Picún Leufú and Portada Covunco, in the 20 

Neuquén Basin of west-central Argentina was studied palynologically. The material 21 

examined produced moderately diverse Late Callovian dinoflagellate cyst assemblages. 22 

This age assignment is consistent with ammonite evidence. The dinoflagellate cyst 23 

floras are reminiscent of the Middle Jurassic associations of northwest Europe and 24 

surrounding areas. Marine palynomorphs typical of Australasia and the Arctic are 25 
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 2 

absent. The similarity with Europe is strongly suggestive of an open marine connection 26 

between western Tethys and the Neuquén Basin during the Late Callovian. This is 27 

interpreted as being via the Hispanic Corridor, with the palynofloras being passively 28 

dispersed to the southwest by the circum-Tropical Marine Current. Earlier studies 29 

indicate that this trans-Pangean equatorial seaway first began to allow biotic interchange 30 

during the Mid Jurassic and this study proves that this open marine connection was 31 

established by the Late Callovian. The similarities between the dinoflagellate cyst 32 

assemblages of Europe and the Neuquén Basin are consistent with the distribution of 33 

other marine fossils and the existence of geographically-continuous marine facies belts. 34 

 35 
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1. Introduction 39 

 40 

 The palynofloras of the Lotena Formation of the Lotena Group from the 41 

Neuquén Basin, Argentina have previously been studied by Volkheimer and 42 

Quattrocchio, (1981), Quattrocchio and Sarjeant (1992), Martínez and Quattrocchio 43 

(2003; 2004) and Zavala et al. (2003). The Lotena Formation is of Mid-Late Jurassic 44 

age; more specifically Callovian-Oxfordian (Howell et al., 2005, fig. 3; Fig. 1). This 45 

contribution represents a restudy of some of the material of Quattrocchio and Sarjeant 46 

(1992) and Martínez and Quattrocchio (2004) (Fig. 2), and an interpretation of the 47 

dinoflagellate cyst assemblages in terms of their detailed biostratigraphy and 48 

palaeogeographical significance. Quattrocchio and Sarjeant (1992) is largely on 49 

systematics and Martínez and Quattrocchio (2004) is mainly focused on palynofacies. 50 
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Global palaeogeographical aspects were not considered in detail by either Quattrocchio 51 

and Sarjeant (1992) or Martínez and Quattrocchio (2004). The aims of this study are to 52 

refine the biostratigraphy, and to compare the dinoflagellate cysts of the Lotena 53 

Formation with coeval associations from other regions. Specifically, the latter goal 54 

seeks to determine whether these marine palynofloras have closer affinities with the 55 

western Tethys including the Subboreal Realm or with eastern Tethys/Australasia. 56 

 57 

 58 

2. Geological Background 59 

 60 

 The geological evolution of the Neuquén Basin was largely controlled by 61 

tectonic events on the western margin of Gondwana. Following initial extensional 62 

rifting during the Late Triassic, back-arc subsidence was initiated during the Early 63 

Jurassic due to the development of a subduction zone (and an associated magmatic arc) 64 

in western Gondwana. Thus, in western South America, subduction of Pacific oceanic 65 

crust along the north-south trending continental margin of Chile and Argentina 66 

accelerated significantly during the breakup of West and East Gondwana during the 67 

Early Cretaceous. Andean subduction therefore took place under extensional conditions, 68 

and was probably associated with negative trench roll-back. This lead to the formation 69 

of a magmatic arc along the Coast Ranges from southern Peru to central Chile and, to 70 

the east, the Arequipa, Tarapacá and Neuquén extensional back arc basins (Mpodozis 71 

and Ramos, 2008). 72 

 The Neuquén Basin is located immediately to the east of the Andes Mountains in 73 

central western Argentina and eastern Chile between 31°S and 41°S (Figs. 1-3). It lies 74 

within the Argentine provinces of La Pampa, Mendoza, Neuquén (from which it takes 75 
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its name) and Río Negro. The depocentre represents the southern end of the more 76 

extensive Chilean Basin, is broadly triangular in outline, up to 700 km in a north-south 77 

direction and covers over 150,000 km2. The tectonic history of the Neuquén Basin 78 

consists of synrift (Late Triassic-Early Jurassic), postrift/back-arc (Early Jurassic-Early 79 

Cretaceous) and foreland stages (Howell et al., 2005, fig. 3). The basin fill is of Late 80 

Triassic to Palaeocene age, and is between 4,000 and 7,000 m of heterolithic marine and 81 

continental strata (Ramos, 1998; Howell et al., 2005). The majority of the Neuquén 82 

Basin fill was deposited during the postrift phase; this comprises the Cuyo, Lotena and 83 

Mendoza groups of Pliensbachian to Barremian age (Vergani et al., 1995; Howell et al., 84 

2005, fig. 3). 85 

 The strata of the Neuquén Basin are mostly shallow marine, related to a 86 

prolonged connection with the palaeo-Pacific. However, marine influence was 87 

periodically interrupted due to falls in sea-level (Mutti et al., 1994). These short-lived 88 

periods of terrestrial deposition are normally indicated by regional-scale angular 89 

unconformities which are indicative of tectonic overprints on eustatic changes. 90 

Transgressive successions were deposited above these unconformities, indicating 91 

progressive increases of accommodation space. The Lotena Group (Fig. 1) represents 92 

the second oceanic incursion into the Neuquén Basin. The basal hiatus significantly 93 

affected the overlying units (Zavala, 2002). This group largely comprises Middle 94 

Callovian and Oxfordian siliciclastic units with subordinate carbonates and evaporites 95 

(Fig. 3). The thickness of the Lotena Group is highly variable, ranging from as little as 96 

several metres to 650 m in the Sierra de la Vaca Muerta (Zavala, 2005). It 97 

unconformably overlies the continental and marine deposits of the Cuyo Group, and is 98 

in turn overlain by the Mendoza Group (Fig. 1). 99 
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 The Lotena Group in the Sierra de la Vaca Muerta and Covunco areas in the 100 

southwest of the Neuquén Basin consists of six unconformity-bounded sequences. The 101 

oldest of these, Sequence 1, comprises the red beds and evaporites of the Tábanos 102 

Formation, and unconformably overlies the Cuyo Group with transgressive onlap. The 103 

Lotena Formation is dominated by mudstone with subordinate evaporites, limestones 104 

and sandstones: it comprises sequences 2 to 5. These are broadly similar and exhibit a 105 

basal unit of confined shelfal sandstone lobes, which grade upwards into unconfined 106 

shelfal sandstone lobes and carbonates. The basal confined shelfal sandstone lobes are 107 

restricted to areas where the successions are thickest. The youngest Sequence (6) is 108 

equivalent to the La Manga Formation and exhibits an irregular facies architecture 109 

which truncates the underlying deposits. It is almost entirely composed of massive 110 

carbonates that were deposited by turbidity currents. Facies analysis and mapping 111 

indicate the reworking of older units. The Lotena Group in the Sierra de la Vaca Muerta 112 

and adjacent areas probably accumulated in a tectonically unstable region. Sequences 4-113 

6 show a northward shift of their depocentres and widespread truncation along the 114 

southern margins. The truncation may be related to intermittent uplift associated with 115 

the synsedimentary development of the Covunco anticline (Zavala, 2005). 116 

 117 

3. Material studied 118 

 119 

 The three samples from the Lotena Formation analysed in this study are from the 120 

southern part of the Neuquén Basin (Fig. 2). The slides are housed in the Laboratory of 121 

Palynology, Universidad Nacional del Sur, Bahía Blanca, Argentina. 122 

 123 
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3.1. Samples 2971 and 2970 from Puente del Arroyo Picún Leufú of Quattrocchio 124 

and Sarjeant (1992) 125 

 126 

 Samples 2971 and 2970 were collected by Dr. Wolfgang Volkheimer from a 127 

prominent outcrop at the Puente del Arroyo Picún Leufú, where Nacional Route N40 128 

crosses the Arroyo Picún Leufú, around 40 km south of Zapala (Fig. 2). At this locality, 129 

the lower part of the Lotena Formation comprises 59 m of dark green mudstones with a 130 

basal conglomerate (Quattrocchio and Sarjeant, 1992, fig. 4). The samples 2971 and 131 

2970 are from 12 m and 34 m from the base of the lower conglomerate unit respectively 132 

(Quattrocchio and Sarjeant, 1992, fig. 4). This mudstone-dominated unit has yielded the 133 

ammonite Rehmannia (Loczyceras) patagoniensis, foraminifera and ostracods (Dellapé 134 

et al., 1979). Rehmannia (L.) patagoniensis is present at the base of the succession and 135 

is considered to be Mid to Late Callovian in age (Groeber et al., 1953, Stipanicic, 1969; 136 

Riccardi et al., 1990). Riccardi (2008) stated that R. (L.) patagoniensis is indicative of 137 

the Mid Callovian Jason and Coronatum chronozones. 138 

 139 

3.2. Sample 1525 from Portada Covunco of Martínez and Quattrocchio (2004) 140 

 141 

 Sample 1525 of Martínez and Quattrocchio (2004) is by far the most 142 

palynologically productive of the three horizons studied by Martínez and Quattrocchio 143 

(2004) from the Lotena Formation of the Portada Covunco section, around 20 km from 144 

Zapala (Fig. 2). Here the formation is approximately 220 m thick and corresponds to 145 

units 2 and 3 of Zavala et al. (2002). The sample is a massive dark grey mudstone from 146 

Unit 2. No ammonites have been recorded from the Lotena Formation of the Portada 147 

Covunco section. However, the underlying Lajas Formation of the Cuyo Group has 148 
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yielded the ammonite Eurycephalites cf. vergarensis, which is characteristic of the 149 

Vergarensis Chronozone, which is of Early Callovian age (Riccardi et al., 1989; 1990; 150 

Riccardi, 2008). 151 

 152 

4. Description of the palynomorph assemblages 153 

 154 

 The three samples restudied here yielded moderately abundant palynomorph 155 

associations. The species recorded, and others discussed herein, are listed in Appendix 156 

1; their distribution and abundances are recorded in Table 1. A selection of 157 

dinoflagellate cysts are illustrated in Plate I. The assemblages are dominated by pollen 158 

grains with lesser proportions of dinoflagellate cysts. The pollen genus Classopollis is 159 

prominent; other pollen taxa recorded include the saccate forms Alisporites spp., 160 

Araucariacites spp. and Callialasporites spp. (Table 1). The dominance of Classopollis 161 

is indicative of arid conditions. This is especially the case for samples 2971 and 2970 162 

from Puente del Arroyo Picún Leufú, which is more proximal than Portada Covunco 163 

(Martinez and Quattrocchio, 2004; Table 1). Classopollis was produced by 164 

representatives of the Cheirolepidaceae, and the parent plants were thermophylic and 165 

xerophytic. They preferred dry coastal regions (Pocock and Jansonius, 1961; Srivastava, 166 

1976), which is consistent with the palaeolatitudinal position of the Neuquén Basin 167 

during the Jurassic (Smith et al., 1994). Miscellaneous microplankton, including 168 

acritarchs and prasinophytes, and pteridophyte spores are also present in relatively 169 

minor proportions. This palynomorph spectrum is indicative of an offshore shelfal 170 

depositional setting. 171 

 172 

5. Biostratigraphy 173 
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 174 

5.1. Samples 2971 and 2970 from Puente del Arroyo Picún Leufú of Quattrocchio and 175 

Sarjeant (1992) 176 

 177 

 The dinoflagellate cyst assemblages in samples 2971 and 2970 (see Table 1) are 178 

entirely consistent with a Callovian age when compared to European assemblages. The 179 

prominence of Nannoceratopsis pellucida in 2971, together with the presence of forms 180 

such as Chytroeisphaeridia chytroeides, Ellipsoidictyum gochtii, Gonyaulacysta 181 

jurassica subsp. adecta, Meiourogonyaulax sp., Mendicodinium groenlandicum, 182 

Pareodinia ceratophora, Sentusidinium spp. and Tubotuberella dangeardii is typical of 183 

the Callovian of northwest Europe and adjacent areas (e.g. Riding, 1982; 1987a; 2005; 184 

Berger, 1986; Smelror, 1988a;b; Prauss, 1989; Feist-Burkhardt and Wille, 1992; 185 

Smelror and Below, 1992; Poulsen, 1996; Riding and Thomas, 1997). The presence of 186 

Limbodinium absidatum and Wanaea acollaris in sample 2971 refines this assessment 187 

to the Late Callovian. Limbodinium absidatum is confined to the Late Callovian-Early 188 

Oxfordian interval (Athleta to Coronatum chronozones) (Riding 1987b; Riding and 189 

Thomas, 1992). The range top of Wanaea acollaris is within the Late Callovian 190 

(Riding, 1984); the few, sporadic reports of this species in the Early Oxfordian are 191 

thought to represent contamination (Riding and Thomas, 1997). No exclusively 192 

Oxfordian markers such as Leptodinium spp. and Systematophora spp. were observed. 193 

The presence of Ambonosphaera? staffinensis in the Callovian is unusual; the range of 194 

this species is Mid Oxfordian to Early Cretaceous (Poulsen and Riding, 1992, fig. 2). 195 

 A single specimen of Protobatioladinium cf. P. lindiensis Schrank 2005 was 196 

recorded in sample 2971. Protobatioladinium lindiensis was originally described from 197 

the Tithonian of Tanzania, and similar forms are present in the Bathonian-Ryazanian 198 
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interval of Europe and Israel (Schrank, 2005). Dissiliodinium volkheimeri is confined to 199 

the Southern Hemisphere. It was recorded from the Bathonian and Callovian of offshore 200 

northwestern Australia by Mantle (2009a). Quattrocchio and Sarjeant (1992, p. 70) 201 

stated that Dissiliodinium volkheimeri is conspecific with Dissiliodinium sp. (no 202 

antapical node) of Helby et al. (1987), from the Bajocian-Bathonian of Australia. 203 

However, this contention is not supported here because Dissiliodinium volkheimeri has 204 

a thin autophragm and has extremely low-relief ornamentation. By contrast, 205 

Dissiliodinium sp. (no antapical node) of Helby et al. (1987) has an irregular reticulate 206 

ornamentation and is smaller. Endoscrinium cf. E. galeritum 1967 subsp. reticulatum is 207 

apparently endemic to the Neuquén Basin. 208 

 The Late Callovian age of sample 2971, 12 m from the base of the succession, 209 

inferred from the presence of Limbodinium absidatum and Wanaea acollaris is 210 

consistent with the occurrence of the Mid to Late Callovian ammonite Rehmannia 211 

(Loczyceras) patagoniensis in the lowermost bed. This suggests that the majority of the 212 

succession at Puente del Arroyo, Picún Leufú is of Late Callovian age. 213 

 214 

5.2. Sample 1525 from Portada Covunco of Martínez and Quattrocchio (2004) 215 

 216 

 The relatively low diversity dinoflagellate cyst assemblage in sample 1525 is 217 

also consistent with the Callovian Stage. Gonyaulacysta jurassica subsp. adecta is 218 

prominent, and Chytroeisphaeridia chytroeides, ?Meiourogonyaulax sp., 219 

Mendicodinium groenlandicum and Rynchodiniopsis cladophora are also present. This 220 

association is typical of the Callovian of the Northern Hemisphere (e.g. Riding and 221 

Thomas, 1992; 1997; Riding et al., 1999; Riding, 2005). The presence of Scriniodinium 222 

crystallinum refines this assessment to no older than Late Callovian. The range of 223 
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Scriniodinium crystallinum in the Northern Hemisphere is Late Callovian to earliest 224 

Kimmeridgian (Riding, 1987a; Riding and Fensome, 2002). The questionable 225 

specimens of Liesbergia liesbergensis, Trichodinium scarburghensis and Wanaea sp. 226 

also support a Late Callovian age assessment. Liesbergia liesbergensis is indicative of 227 

the Mid Callovian to earliest Oxfordian interval of Europe (Berger, 1986; Riding, 228 

2005). Trichodinium scarburghensis is characteristic of the Late Callovian to Mid 229 

Oxfordian (Riding and Thomas 1992). ?Wanaea sp. has a spinose paracingular crest, 230 

hence is similar to forms such as the Late Callovian to Early Oxfordian marker Wanaea 231 

thysanota (see Riding and Helby, 2001a). No marker species with range bases within 232 

the Oxfordian such as Endoscrinium luridum, Glossodinium dimorphum, 233 

Gonyaulacysta jurassica subsp. jurassica and Wanaea fimbriata were recorded. 234 

 235 

6. The provincialism of Jurassic dinoflagellate cysts 236 

 237 

 Because dinoflagellates are planktonic, their cysts can potentially have wide 238 

biogeographical distributions. In the Jurassic several prominent Mid-Late Jurassic 239 

species, such as Gonyaulacysta jurassica, Nannoceratopisis pellucida and 240 

Scriniodinium crystallinum, are known to be distributed globally. However, many other 241 

taxa appear to be restricted to northwest Europe/western Tethys, eastern 242 

Tethys/Australasia and the Arctic region (Norris, 1975). The Australasian biotic 243 

province is especially well-differentiated, having many endemic taxa (Helby et al., 244 

1987; Riding and Ioannides, 1996). Typically in the Arctic/Boreal region, there is a 245 

mixture of widely-distributed Northern Hemisphere forms and endemic high latitude 246 

taxa (Brideaux and Fisher, 1976; Davies, 1983; Smelror and Below, 1992. Riding et al., 247 

1999). 248 
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 At certain times during the Jurassic, such as the Bathonian and the 249 

Kimmeridgian/Tithonian, it is possible to distinguish distinct Boreal (Arctic) and 250 

western Tethyan (Euro-Atlantic) provinces within the Northern Hemisphere (Riding et 251 

al., 1985; 1999; Riding and Ioannides, 1996). This marked provincialism was most 252 

likely due to a number of factors including lithofacies control, nutrient levels, ocean 253 

currents, salinity, seasonality (i.e. winter darkness) and temperature. One of the most 254 

important factors, however, was likely to have been the presence or absence of open 255 

marine connections. Organic cyst-producing dinoflagellates prefer shelfal environments 256 

(Wall et al., 1977). Therefore during periods of high sea levels, when extensive areas of 257 

continental shelf are flooded, dinoflagellates are passively dispersed over very wide 258 

areas. The Callovian and Oxfordian interval was a time of rising and relatively high sea 259 

levels (Ager, 1981; Haq et al., 1987). Consequently, dinoflagellate cyst associations are 260 

extremely similar in taxonomic spectrum and relative proportions in this interval 261 

throughout the equatorial, middle and high latitudes throughout the Americas, the Arctic 262 

and western Tethys (Johnson and Hills, 1973; Jain et al. 1986; Garg et al., 1987; 263 

Smelror, 1988a,b; Thusu et al., 1988; Conway, 1990; Poulsen, 1996; Riding et al., 1999; 264 

Ibrahim et al., 2002). This situation suggests significant levels of ocean current activity 265 

at this time. Such is the relative uniformity of Callovian-Oxfordian dinoflagellate cyst 266 

assemblages throughout much of the Northern Hemisphere, the Australasian 267 

phytoplankton province represents a major biotal contrast (Riding and Helby, 2001b; 268 

Mantle, 2005; 2009a,b). 269 

 270 

7. Palaeogeographical significance of the dinoflagellate cyst assemblages 271 

 272 



 12 

 The dinoflagellate cyst associations from samples 2971, 2970 and 1525 are of 273 

moderate to low diversity, and are strongly reminiscent of the Late Callovian floras of 274 

the Northern Hemisphere. For example, the previous reports of Ambonosphaera? 275 

staffinensis, Ellipsoidictyum gochti, Limbodinium absidatum, Rynchodiniopsis 276 

cladophora and Wanaea acollaris are all from Europe, North America and adjacent 277 

regions (e.g. Johnson and Hills, 1973; Feist-Burkhardt and Wille, 1992; Riding and 278 

Thomas, 1992; Riding et al., 1999). By contrast, Chytroeisphaeridia chytroeides, 279 

Mendicodinium groenlandicum, Nannoceratopsis pellucida, Pareodinia ceratophora, 280 

Scriniodinium crystallinum and Tubotuberella dangeardii are global in distribution 281 

(Davey, 1987; Helby et al., 1987, Mantle, 2009a,b). The only species apparently 282 

confined to the Southern Hemisphere is Dissiliodinium volkheimeri. This form has been 283 

recorded from the Neuquén Basin and offshore northwestern Australia (Quattrocchio 284 

and Sarjeant, 1992; Mantle, 2009a). Dissiliodinium is a relatively morphologically 285 

simple genus and the majority of the species were described from the Northern 286 

Hemisphere. This implies that Dissiliodinium volkheimeri may not be confined to the 287 

Southern Hemisphere. A single specimen of Protobatioladinium cf. P. lindiensis was 288 

recorded from sample 2971 (Plate I, fig. 8). Protobatioladinium lindiensis was 289 

described from the Tithonian of Tanzania, East Africa by Schrank (2005). This species 290 

apparently has a wide distribution; similar forms have been recorded from the 291 

Bathonian to Ryazanian of Europe (Schrank, 2005, p. 72). Endoscrinium cf. E. 292 

galeritum subsp. reticulatum (Plate I, fig. 14) is prominent in sample 2971 (Table 1); 293 

this morphotype appears to be confined to the Neuquén Basin. 294 

 Significantly, no taxa of exclusively Australasian affinity were observed in this 295 

study. In the Callovian of Australasia, several characteristic and endemic species are 296 

present including Endoscrinium kempiae, Meiourogonyaulax penitabulata, 297 
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Nannoceratopsis reticulata, Paragonyaulacysta helbyi, Ternia balmei, Voodooia 298 

tabulata, Wanaea digitata, Woodinia pedis and others (Davey, 1987; Helby et al., 1987; 299 

1988; Riding and Helby, 2001b; Mantle, 2005; 2009a,b). None of these taxa, and other 300 

endemic Austral forms, have been recorded from the Lotena Formation of the Neuquén 301 

Basin. Hence, due to the lack of Australasian elements, this assemblage is consistent 302 

with a strong marine connection with the Euro-Atlantic province to the north. This 303 

strongly implies that the Neuquén Basin was isolated from eastern Gondwana in terms 304 

of biotal exchange during the Callovian. Australasian dinoflagellate cysts could not 305 

have been passively dispersed westwards across the middle latitudes into the Neuquén 306 

Basin via trans-Pacific routes due to the wide geographical extent of this deep ocean 307 

basin, and the active subduction zone immediately to the west of the Americas (Fig. 4). 308 

Similarly, latitudinal and palaeotemperature barriers would probably have prevented 309 

dispersal from Australasia to South America around the southern margin of Gondwana 310 

(i.e. Australia and Antarctica) via the Southern Gondwanan Seaway (Hallam, 1983; Fig. 311 

4). 312 

 Similarly, characteristically Arctic/Boreal Callovian dinoflagellate cyst taxa 313 

such as Evansia dalei, Evansia perireticulata, Paragonyaulacysta calloviensis and 314 

Paragonyaulacysta retiphragmata have not been observed in the Neuquén Basin. These 315 

species were cold-adapted Arctic forms (e.g. Johnson and Hills 1973; Dörhöfer and 316 

Davies 1980; Smelror and Below, 1992). The absence of these forms indicates that 317 

potential southerly dispersal routes via the high northerly palaeolatitudes into the 318 

Hispanic Corridor were not viable for cyst-forming dinoflagellates. 319 

 In the western Tethys (i.e. eastern North America and North Africa) Jurassic 320 

biotas, including dinoflagellate cysts, were markedly different from their counterparts 321 

from southeastern Tethys (Australasia, eastern Asia and northeast India). Central 322 
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southern Tethys (i.e. East Africa, India and Madagascar) appears to have supported a 323 

mixed assemblage, with both European and Austral dinoflagellate cysts being present 324 

(e.g. Jiang et al. 1992, Garg et al. 2003, Msaky, 2007). During the Triassic and Jurassic, 325 

the Tethys circumglobal current (TCC) flowed westwards in the tropics and north-south 326 

currents during such greenhouse intervals tended to be relatively weak (Bush, 1997). 327 

Thus, the westward flow of the TCC would have potentially been responsible for the 328 

dispersal of planktonic organisms from eastern to western Tethys during the Mesozoic. 329 

Despite this, endemic Australasian dinoflagellate cyst taxa have not been observed west 330 

of East Africa. Interruptions in shelfal seas, water stratification and/or other constraints 331 

apparently prevented the westward dispersal of Austral dinoflagellate cysts during the 332 

Jurassic. Aberhan (2001) discussed bidirectional (seasonal) biotic exchange across the 333 

Hispanic Corridor during the Mid Jurassic driven by the establishment of a 334 

megamonsoonal ocean circulation. 335 

 The characteristically European affinity of the Callovian dinoflagellate cysts 336 

from the Lotena Formation of the Neuquén Basin is entirely consistent with the 337 

palaeogeography inferred from other fossil groups. The Hispanic Corridor or Caribbean 338 

Seaway represented a relatively narrow open marine connection from western Tethys 339 

southwestwards across Central America into western South America in the Mid and 340 

Late Jurassic (e.g. Hallam, 1983, fig. 1; Irurralde-Vinent, 2003, fig. 1; 2006, fig. 1; Fig. 341 

4). This seaway first opened during the Early Jurassic (Aberhan, 2001), and would have 342 

allowed the free interchange of marine biotas between the western Tethys and the 343 

Neuquén Basin from the Mid and Late Jurassic (Bathonian to Oxfordian). Contiguous 344 

shallow marine siliciclastic facies were present throughout the Hispanic Corridor during 345 

the Oxfordian (Irurralde-Vinent, 2003). This study strongly indicates that this open 346 

seaway was present during the Late Callovian (Fig. 4). Some studies have stated that 347 
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this connection was not fully established until the Late Jurassic (e.g. Irurralde-Vinent, 348 

2006, fig. 2). Previously, Pangea represented a major barrier to free movement of 349 

marine waters and biotas in the equatorial region. Van de Schootbruge et al. (2005) 350 

postulated that the possible opening of the Hispanic Corridor may have caused the 351 

radiation in cyst-forming dinoflagellates during the Early Jurassic (Late Sinemurian and 352 

Late Pliensbachian). The passive dispersal facilitated by the opening of this seaway 353 

were probably driven westwards through the Hispanic Corridor on the circum-Tropical 354 

Marine Current (Parrish, 1992; Irurralde-Vinent, 2006), and interchanged with the 355 

Neuquén Basin via the western margin of South America. However, it is also possible 356 

that some marine connections were present between South America and Africa via the 357 

Mozambique Corridor (Longshaw and Griffiths, 1983, fig. 4). 358 

 Musacchio (1979; 1981) reported diverse associations of benthonic foraminifera 359 

and ostracods from the Lotena Formation. The foraminifera are cosmopolitan, and are 360 

similar to coeval faunas from northern Europe. This is consistent with a marine 361 

connection via the Hispanic Corridor. Boomer and Ballent (1996) concluded that the 362 

similarities between Early to Mid Jurassic marine ostracod faunas from southwest 363 

Britain, North Africa and the Neuquén Basin indicate westward migration into the 364 

eastern part of the Tethys along the Hispanic Corridor as opposed to via the 365 

Tethyan/Pacific seaway. This biotic evidence for a marine connection between further 366 

north in the Chilean Basin and into North America, and the Neuquén Basin is consistent 367 

with the configuration of shallow marine facies belts. In the Neuquén Basin, the area of 368 

Callovian marine deposition is surrounded by coastal and continental deposits, with 369 

definite closure towards the south (Zavala, 2005, fig. 1; Fig. 3). 370 

 371 

8. Conclusions 372 
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 373 

 The Lotena Formation of the Neuquén Basin, Argentina yields low-moderate 374 

diversity dinoflagellate cyst assemblages indicative of a Late Callovian age by 375 

comparison with northwest Europe. No Australasian or Boreal forms were observed, 376 

and the floras of the Lotena Formation are extremely reminiscent of coeval Eurasian 377 

assemblages. This means that there must have been an open marine connection between 378 

Europe (and adjacent areas) and the Neuquén Basin via the circum-Tropical Marine 379 

Current through the Hispanic Corridor during the Late Callovian. Prior to the Mid 380 

Jurassic, there was no permanent ‘trans-Pangean’ equatorial seaway which allowed 381 

biotal interchange. This conclusion is consistent with evidence from shallow marine 382 

facies belts and other fossil groups including foraminifera and ostracods. 383 

 A more comprehensive study of the Lotena Formation at localities such as 384 

Puente del Arroyo Picún Leufú and Portada Covunco should be undertaken. This should 385 

allow a significant refinement of Callovian/Oxfordian biostratigraphy and 386 

palaeogeographical interpretations. 387 
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 631 

Appendix 1. 632 

 An alphabetical list of palynomorphs identified below generic level in the 633 

Lotena Formation of the Neuquén Basin, and discussed in the text and/or Table 1, with 634 

author citations arranged in three groups. The taxa not recorded in this study, but 635 

mentioned in the text are asterisked. References to the dinoflagellate cyst author 636 

citations can be found in Fensome and Williams (2004). 637 

 638 

Pollen 639 
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Araucariacites australis Cookson 1947 640 

Microcachryidites castellanosii Menendez 1968 641 

Vitreisporites pallidus (Reissinger 1938) Nilsson 1958 642 

 643 

Spore 644 

Retitriletes austroclavatidites (Cookson 1953) Döring et al. 1963 645 

 646 

Dinoflagellate cysts 647 

Ambonosphaera? staffinensis (Gitmez 1970) Poulsen & Riding 1992 648 

Chytroeisphaeridia chytroeides (Sarjeant 1962) Downie & Sarjeant 1965 649 

Dissiliodinium volkheimeri Quattrocchio & Sarjeant 1992 650 

Ellipsoidictyum gochtii Fensome 1979 651 

Endoscrinium cf. E. galeritum (Deflandre 1939) Vozzhennikova 1967 subsp. 652 

reticulatum (Klement 1960) Górka 1970 653 

*Endoscrinium kempiae (Stover & Helby 1987) Lentin & Williams 1989 654 

*Endoscrinium luridum (Deflandre 1939) Gocht 1970 655 

*Evansia dalei (Smelror & Århus 1989) Below 1990 656 

*Evansia perireticulata (Århus et al. 1989) Lentin & Williams 1993 657 

*Glossodinium dimorphum Ioannides et al. 1977 658 

Gonyaulacysta jurassica (Deflandre 1939) Norris & Sarjeant 1965 subsp. adecta 659 

Sarjeant 1982 660 

*Gonyaulacysta jurassica (Deflandre 1939) Norris & Sarjeant 1965 subsp. jurassica 661 

(autonym) 662 

Liesbergia liesbergensis Berger 1986 663 

Limbodinium absidatum (Drugg 1978) Riding 1987 664 
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*Meiourogonyaulax penitabulata Riding & Helby 2001 665 

Mendicodinium groenlandicum (Pocock & Sarjeant 1972) Davey 1979 666 

Nannoceratopsis pellucida Deflandre 1939 667 

*Nannoceratopsis reticulata Mantle 2005 668 

*Paragonyaulacysta calloviensis Johnson & Hills 1973 669 

*Paragonyaulacysta helbyi Mantle 2009 670 

*Paragonyaulacysta retiphragmata Dörhöfer & Davies 1980 671 

Pareodinia ceratophora Deflandre 1947 672 

Protobatioladinium cf. P. lindiensis Schrank 2005 673 

Rynchodiniopsis cladophora (Deflandre 1939) Below 1981 674 

Scriniodinium crystallinum (Deflandre 1939) Klement 1960 675 

*Ternia balmei Helby & Stover 1987 676 

Trichodinium scarburghensis (Sarjeant 1964) Williams et al. 1993 677 

Tubotuberella dangeardii (Sarjeant 1968) Stover & Evitt 1978 678 

*Voodooia tabulata Riding & Helby 2001 679 

Wanaea acollaris Dodekova 1975 680 

*Wanaea fimbriata Sarjeant 1961 681 

*Wanaea digitata Cookson & Eisenack 1958 682 

*Woodinia pedis Riding & Helby 2001 683 

 684 

Display material captions: 685 

 686 

Fig. 1. A generalised lithological log of the succession in the Neuquén Basin (right hand 687 

side), modified from Zavala (2005). The Lotena Group, which includes the Lotena 688 

Formation, is highlighted. The upper left inset map illustrates the location of the 689 
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Neuquén Basin. The lower left inset map illustrates the detailed extent of the Neuquén 690 

Basin. 691 

 692 

Fig. 2. The locations of the Portada Covunco and Picún Leufú sections from where the 693 

samples of the Lotena Formation studied herein were collected. 694 

 695 

Fig. 3. The location of the Neuquén Basin, in central western Argentina and eastern 696 

Chile with a palaeogeographical reconstruction of this depocentre during the Late 697 

Callovian and Early Oxfordian (modified from Legarreta and Uliana, 1999). 698 

 699 

Fig. 4. A palaeogeographical map of the world for the Oxfordian (161.2-155.7 Ma), 700 

immediately following the Callovian (164.7-161.2 Ma), modified after Iturralde-Vinent 701 

(2003). The continuously open nature of the Hispanic Corridor indicates the potential 702 

for biotal exchange between the western Tethys and the eastern Pacific oceans. 703 

Specifically, it is postulated that dinoflagellate cysts could have dispersed through the 704 

Hispanic Corridor during the Callovian. Note that shallow marine siliciclastic facies 705 

belts adjacent to continental areas extended from the western Tethys, through the 706 

Hispanic Corridor, to the Neuquén Basin. 707 

 708 

Table 1. The numbers of palynomorphs counted in the three samples studied. An ‘X’ 709 

denotes a form which was recorded outside of the main count. Biostratigraphically-710 

significant dinoflagellate cysts are in bold font. A question mark (?) indicates equivocal 711 

material. 712 

 713 

Plate I 714 
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A selection of dinoflagellate cysts from the Upper Callovian part of the Lotena 715 

Formation of Puente del Arroyo Picún Leufú and Portada Covunco, in the Neuquén 716 

Basin, west-central Argentina. The sample number, slide number and England Finder 717 

(EF) coordinate are given for each specimen. All samples, slides and figured specimens 718 

are housed in the collections of the Laboratory of Palynology, Universidad Nacional del 719 

Sur, Bahía Blanca, Argentina. The scale bars all represent 10 µm. UNSP = Universidad 720 

Nacional del Sur- Palynology. PC = Portada Covunco. PL = Picún Leufú. 721 

 722 

1, 5. Gonyaulacysta jurassica (Deflandre 1939) Norris & Sarjeant 1965 subsp. adecta 723 

Sarjeant 1982. 1 – sample/slide UNSP PC 1525/b, EF Y54/2. 5 – sample/slide UNSP 724 

PC 1525/b, EF T68/3. 725 

2. Scriniodinium crystallinum (Deflandre 1939) Klement 1960. Sample/slide UNSP PC 726 

1525/c, EF M9/2. 727 

3, 4. Nannoceratopsis pellucida Deflandre 1939. 3 – sample/slide UNSP PL 2971/7, EF 728 

N50. 4 – sample/slide UNSP PL 2971/3, EF R50/1. 729 

6. Pareodinia ceratophora Deflandre 1947. Sample/slide UNSP PL 2971/4, EF V32/4. 730 

7. Tubotuberella dangeardii (Sarjeant 1968) Stover & Evitt 1978. Sample/slide UNSP 731 

PL 2971/7, EF J39/1. 732 

8. Protobatioladinium cf. P. lindiensis Schrank 2005. Sample/slide UNSP PL 2971/3, 733 

EF Q47/3. 734 

9. Limbodinium absidatum (Drugg 1978) Riding 1987. Sample/slide UNSP PL 2971/7, 735 

EF B48/1. 736 

10, 11. Wanaea acollaris Dodekova 1975. 10 – sample/slide UNSP PL 2971/2, EF 737 

Q43/1. 11 – sample/slide UNSP PL 2971/7, EF S50/4. 738 
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12. Rynchodiniopsis cladophora (Deflandre 1939) Below 1981. Sample/slide UNSP PC 739 

1525/d, EF H18/2. 740 

13. Chytroeisphaeridia chytroeides (Sarjeant 1962) Downie & Sarjeant 1965. 741 

Sample/slide UNSP PC 1525/b, EF R66/2. 742 

14. Endoscrinium cf. E. galeritum (Deflandre 1939) Vozzhennikova 1967 subsp. 743 

reticulatum (Klement 1960) Górka 1970. Sample/slide UNSP PL 2971/7, EF T44/2. 744 

 745 


