1	Journal of Comparative Psychology (2002) Volume 116(3): 247-252
2	Publisher: American Psychological Association
3	doi: 10.1037/0735-7036.116.3.247
4	Final Revision – NOT EDITED by the journal
5 6 7	'This article may not exactly replicate the final version published in the APA journal. It is not the copy of record.'
8	
9	
10	Recognition of conspecific odours by laboratory rats (Rattus norvegicus)
11	does not show context specificity.
12	
13	
14	OLIVER BURMAN & MICHAEL MENDL
15	
16	Dept. Clinical Veterinary Science, University of Bristol, Bristol, BS40 5DU, U.K.
17	
18	This research was supported by a University of Bristol Postgraduate Scholarship to Oliver Burman.
19	
20	
21	Corresponding Author: Oliver Burman.

Abstract

23	This experiment investigated the effect of contextual cues on the recognition of
24	conspecific odours by laboratory rats. Subjects received five encounters with the same
25	odour stimulus in the same context. For the sixth 'test' encounter all rats received a
26	simultaneous presentation of the original and a novel odour. We tested one group of
27	rats, 'context-same', in the same context as before. For the remaining two groups the
28	test encounter was in a different context which one group 'context-different' had
29	experienced, whilst the other group 'context-novel' had not. We observed successful
30	recognition – based on a significant preference for investigating the novel over the
31	original odour - for 'context-same' and 'context-different' rats, but not for 'context-
32	novel' rats. These results suggest that odour recognition can occur following transfer
33	to a different, but familiar, test context, indicating a lack of context specificity.

34	Contextual cues, both external (e.g. Rodriguez et al. 1993) and internal (e.g.
35	Holloway & Wansley 1973), appear to play an important role in animal learning and
36	memory (e.g. Spear 1973; Bouton & Peck 1989; Bouton & Swartzentruber 1989). For
37	example, social memory, the ability to encode, retain and refer to information related
38	to a conspecific over time, can appear to be influenced by contextual cues such as
39	location. Peeke and Veno (1973) demonstrated in stickleback fish that following
40	habituation of aggressive behaviour to a conspecific, dishabituation was observed
41	when a novel conspecific was introduced. However, the aggressive response was
42	significantly higher when the intruder was presented in a novel location than when
43	presented in the same location as the original conspecific. Such a result suggests that
44	aspects of the environmental context can affect the social recognition of conspecifics.
45	
46	Wild rats live in large colonies consisting of numerous small social units
47	(Barnett 1963) centred on areas of reliable food availability, i.e. rubbish dumps (e.g.
48	Lore & Flannelly 1977). Recognition of conspecifics, particularly those of an
49	immediate social group, may remove the need for continued reassessment of
50	repeatedly encountered individuals (e.g. Pagel & Dawkins 1997). However, for other,
51	less frequently encountered members of a colony, unnecessary memories for
52	individuals may prove costly (e.g. Dukas 1998). For such individuals, identification
53	may instead be reinforced by the incorporation of contextual 'aides memoires' - with
54	identity closely linked with contextual cues such as location and surroundings.
55	Indeed, it may be difficult to determine whether a subject is recognising an individual
56	conspecific independently of the context in which that individual has been introduced
57	(e.g. birds: Falls & Brooks 1975, Langmore 1998; mammals: Snowdon & Cleveland
58	1979; fish: Waas & Colgan 1994).

60	In our previous experiment looking at the effect of contextual change on social
61	recognition in laboratory rats (Burman & Mendl 1999), we found that following a
62	switch to a different, but familiar, test context, subject rats appeared to successfully
63	recognise a familiar juvenile conspecific. Recognition was inferred from a continued
64	habituation of investigative responses to the juvenile, despite the change in context.
65	However, the omission of animals that behaved aggressively in this previous study
66	resulted in a decreased sample size, so we decided to evaluate this result in the current
67	study. In order to avoid aggression, we extended the previous study by using
68	conspecific odours as stimuli, rather than the conspecifics themselves.
69	
70	Olfactory cues play a major role in the social behaviour of rodents (Brown &
71	MacDonald 1985). Odours are used both to discriminate between individual
72	conspecifics (e.g. hamsters: Petrulis et al. 1999; rats: Gheusi et al., 1997; guinea pigs:
73	Beauchamp & Wellington 1984; ground squirrels: Mateo & Johnston 2000) and to
74	communicate information about social relationships (e.g. dominance) to fellow
75	conspecifics (e.g. mice: Hurst et al., 1994; Humphries et al., 1999). Evidence that
76	such olfactory cues represent the identity of individual animals is demonstrated by the
77	substitutability of urine or soiled bedding for live animals as social stimuli in
78	recognition tests (e.g. Sawyer et al. 1984). Olfactory secretions have also been used to
79	demonstrate apparent multi-factor representations of individual identity (Johnston &
80	Jernigan 1994, Johnston & Bullock 2001).

82 The results of our previous study (Burman & Mendl, 1999) also suggested that 83 recognition persisted in a completely novel context, as demonstrated by a continued

habituation of stimulus investigation. However, this apparent habituation might
actually have been due to increased investigation of the novel context, because an
increase in environmental investigation would result in less time available for
investigating the stimulus, thereby giving an impression of continued habituation to
the stimulus. We addressed this latter issue here by using a different test of
recognition memory.

90

We used a variation of the habituation-discrimination technique (e.g. Halpin 91 1986; Johnston 1993; Johnston & Jernigan 1994). Following habituation (in terms of 92 93 a reduction in investigation) to the repeated introduction of the same conspecific-94 derived odour stimulus (see later), we then presented that stimulus, and one from a 95 novel individual, simultaneously in a test encounter. A significant preference to investigate the odour of the novel individual rather than that of the familiar 96 97 (habituated) conspecific was taken as an indication of successful recognition of the familiar odour, whereas no such preference suggested recognition failure. In this test, 98 99 therefore, even if there is a general change, for whatever reason, in overall levels of 100 investigation, we still expect differences in the relative investigation of novel and 101 familiar odours to reveal whether recognition has occurred. This was not possible in the test used in a previous study (Burman & Mendl 1999) and by others (e.g. Thor & 102 103 Holloway 1982) where only one stimulus was presented.

104

This study also contributes to research on the effects of contextual cues on
habituation. Previous studies (e.g. Marlin & Miller 1981; Hall & Channell 1985; Hall
& Honey 1989; Honey et al. 1992) have concluded that, unlike phenomena such as
latent inhibition (e.g. Kaye et al. 1987) and possibly even conditioning itself (Hall &

109	Honey 1989), habituation does appear to transfer successfully to a different test
110	context (i.e. it is not context specific) – provided that the test context is familiar to the
111	subject animal.
112	
113	Method
114	
115	Subjects
116	
117	We used 24 female (3 months old at start of study) Lister hooded rats (Harlan
118	UK Ltd, Bicester, U.K.). These animals were selected because, at this age, female rats
119	are able to remember the identity of a juvenile conspecific for at least two hours after
120	an initial 5-min encounter (e.g. Bluthé & Dantzer 1990), and have yet to show the
121	reduction in social recognition abilities apparent in older rats (e.g. Taylor et al.,
122	1999). The rats were housed individually during the experiment in standard laboratory
123	cages (33 x 50 cm and 23 cm high), with sawdust litter and an enrichment toy (a
124	plastic tunnel that was used both as a shelter and a perch). Food (Harlan Teklad
125	Laboratory Diet) and water were freely available. The rats were housed in the same
126	room in which they were tested, in a controlled environment ($20 \pm 1^{\circ}$ C), on a reversed
127	lighting schedule (lights off 08:30-20:30) with dim light (10 W) allowing visibility for
128	the researcher.
129	
130	Apparatus
131	
132	Two different environmental contexts, A and B, (33cm x 50 x 23, lit by 10W
133	bulbs) were created with contrasting characteristics. They differed in orientation

134	(context A: east/west; context B: north/south), floor type (context A: plastic; context
135	B: wire mesh), and floor/wall colour (context A: white; context B: black). In order to
136	ensure that the subjects were able to move equally freely and see cues equally clearly
137	in both contexts, we kept cage size and lighting the same.
138	
139	Treatments
140	
141	Rats were allocated at random to the three different treatment groups
142	('context-same', 'context-different', 'context-novel') (see Figure 1), with N=8
143	animals in each group. We tested three rats each day, one from each treatment, with
144	treatment order determined randomly. Half of the rats in each treatment began the
145	experiment in context A, the other half began the experiment in context B. This
146	design allowed for differences between the two contexts to be detected.
147	
148	Prior experience
149	
150	Rats in the 'context-different' treatment were given experience of both
151	contexts prior to testing, whilst rats in the 'context-same' and 'context-novel'
152	treatments were given no experience of either context A or context B before testing
153	began. This prior experience was achieved by introducing the subject rats into the two
154	different contexts for 20-minute periods, once a day for four days, with the last day of
155	context familiarisation taking place 24 hours before each particular subject rat was to
156	be tested. This difference in experience was intended to ensure that when 'context-
157	different' rats were switched to a new context, the new context would be different, but

familiar, whereas when 'context-novel' rats were switched to a new context, it wouldbe completely novel.

160

161 *Figure 1*

162

- 163 *Procedure*
- 164

The experimental procedure consisted of introducing a subject rat to one of the 165 contexts, either A or B, which contained an odour sample (see below) from a novel 166 167 rat, for a five-minute period. During this encounter, total investigation (s) of the odour sample by the subject rat was recorded. Following this initial encounter, the subject 168 rat was returned to its home cage for a 15-minute interval before being reintroduced 169 to the same context and the same odour sample for a second encounter. Again, 170 171 investigation of the odour sample was recorded for five minutes. This procedure was repeated for five consecutive encounters. 172 173 Fifteen minutes after the fifth encounter, a sixth 'test' encounter took place in 174 which the subject was exposed, for five minutes, to both the odour sample of the 175 original conspecific and that of a completely novel individual. For 'context-same' rats 176 177 this sixth 'test' encounter took place in the same context as for the previous five encounters, whereas rats in the 'context-different' and 'context-novel' treatments 178 were switched to a new context for the sixth 'test' encounter. For 'context-different' 179 180 rats this new context was familiar, but for 'context-novel' rats it was completely novel

181 (see 'previous experience').

182

183	The 'context-novel' rats then received an additional seventh five-minute
184	encounter with the same odour cues in the same context as for the sixth encounter,
185	having spent 15 minutes, with no odour cues present, in that same context. We
186	included this additional 'test' encounter because, if discrimination was not occurring
187	in the sixth encounter due to the time spent investigating the novel environment, then,
188	by allowing the rats extra time to explore that environment (between the sixth and
189	seventh encounters), it was hoped that the novelty of the environment would be
190	reduced - and subsequent discrimination become possible.
191	

192 Behavioural observations and odour samples

193

Investigation of the two odour samples by the subjects was recorded directly 194 using an event recorder (Psion Organiser II) with Noldus Observer software (Noldus 195 196 Information Technology 1993). Investigation included sniffing, licking, and/or the 197 subject's nose being held within one cm of an odour container, with the majority of non-stimulus investigation directed towards exploration of the environmental context. 198 Each subject rat was used once as a subject, and twice as an odour donor. Odour cues 199 200 consisted of 10cm³ of four-day old soiled bedding from the home cage of donor rats presented in spherical wire mesh containers (total volume 20 cm³) secured to the cage 201 202 wall. These containers allowed the rats to investigate the odour stimulus without disturbing it. 203

204

All odour cues were collected at the same time immediately prior to testing, with the result that both the familiar odour stimulus and that of the novel individual were the same 'age' when introduced for the sixth 'test' encounter. The containers

208	containing the odour cues were changed and disinfected (Virkon, Antec International)
209	between each encounter to prevent odour deposition by the subject rats. During the
210	first five encounters, the odour cue was placed centrally at one end of the home cage
211	(16.5cm from either side). For the test encounter, one of the odour cues was placed
212	centrally on the left of the home cage, the other on the right (both 25cm from either
213	end), and this was balanced across treatments to control for possible side preference.
214	
215	Data analysis
216	
217	The different treatments were analysed (Minitab) to examine whether: (1)
218	prior experience of the context affected investigation time during the five exposures
219	to a novel odour stimulus; (2) the two contexts differed in their influence on subject
220	behaviour; (3) rats habituated after five presentations to the same odour stimulus; (4)
221	rats successfully discriminated between the familiar and a novel odour when tested in
222	either the same, a different (familiar), or novel test context; (5) exposure to a novel
223	context resulted in decreased investigation; (6) after 15-mins in the formerly novel
224	context, investigation increased.
225	
226	Results
227	
228	The total amount of investigation (seconds) directed towards the odour stimuli for
229	each treatment over the six/seven 5-min encounters is presented in Fig. 2 (a - c).
230	Overall investigation of odour stimuli (mean investigation in encounter one: 30.8s)
231	was lower than that observed for live juvenile conspecifics in previous studies (e.g.
232	70.5s: Burman & Mendl 2000). However, previous research has indicated that both

- urine and soiled bedding can be used successfully to replace live conspecifics as
 stimuli in social recognition tests (Sawyer et al., 1984).
- 235

236 Encounters 1-5

237

A repeated measures General Linear Model (GLM) with previous experience 238 (yes/no), context (A/B), and encounter (1-5) as factors, was carried out on the 239 investigation data which were both normal and with similar variances. For the first 240 five encounters analysed here 'context-same' and 'context-novel' rats, both without 241 prior experience of either context, were combined because, at this point in the 242 experiment, there was no difference in treatment between these two groups of rats, 243 nor did they differ significantly in levels of investigation ($F_{1,14}$ =0.98, NS). This test 244 revealed that those rats with previous experience of both contexts ('context-different') 245 246 investigated the odour stimuli significantly more than those without experience ('context-same' & 'context-novel') ($F_{1,20}=7.9$, P<0.05). No difference in total 247 248 investigation was observed between contexts A and B. There was a highly significant effect of encounter (1-5) on investigation ($F_{4,80}=23.97$, P<0.001), and a significant 249 interaction between experience and encounter ($F_{4,80}=2.7, P<0.05$). 250 251

Post-hoc analysis, in which context data were pooled and data for experienced and inexperienced groups analysed separately, revealed that for those rats without experience there was a significant drop (Tukey's Pairwise Comparison, P<0.05) in investigation (means ± SE: 25.8±2.9, 17.1±2.1, 17±1.9, 11.3±2.1, 6.3±1.3, respectively) between encounters 1 & 2, 1 & 3, 1 & 4, 1 & 5, 2 & 5, and 3 & 5. For experienced rats ('context-different') (means ± SE: 40.8±5.1, 25.5±4.1, 15.4±2.9,

20.3±4.3, 12.3±2.9, respectively) significant reductions in investigation were
observed between encounters 1 & 2, 1 & 3, 1 & 4, and 1 & 5.

261 *Figure 2 (a-c)*

262

```
263 Encounter 6
```

264

A repeated measures GLM was used to investigate data from the sixth 'test' 265 encounter with treatment ('context-same'/'context-novel'/'context-different'), context 266 267 (A/B) and odour (novel/same) as factors. We found a significant difference between treatments ($F_{2,36}$ =6.86, P<0.01), and no difference between contexts. Subject rats 268 investigated the novel odour stimulus significantly more than the familiar (original) 269 270 stimulus ($F_{1,18}$ =32.16, P<0.001). Post-hoc analysis of the treatment effect, revealed that both 'context same' and 'context different' rats investigated the odour cues 271 272 significantly more than 'context novel' animals (Tukey's Pairwise Comparison, P < 0.05) (means \pm SE: 36.5 \pm 4.25 ('context same'), 30.1 \pm 3.55 ('context different'), 273 16.9±3.18 ('context novel'). 274

275

There were no significant interaction effects in the model, although the interaction between treatment and odour approached significance ($F_{2,36}=2.97$, P=0.077). This seemed to be due to less clear discrimination between the novel and familiar odours in the 'context novel' group (see Fig. 2), and therefore necessitated further analysis - in order to avoid any misinterpretation of the apparent overall preference of the rats for investigating the novel odour stimulus. We used either paired t-tests or Wilcoxon signed-ranks test (both two-tailed), depending on whether

or not the data met requirements for normality and homogeneity of variance.

²⁸⁴ 'Context-same' ($t_8=5.19$, P=0.001) and 'context-different' ($t_8=4.15$, P<0.01) rats both ²⁸⁵ investigated the odour of a novel conspecific significantly more than that of a familiar ²⁸⁶ individual. In contrast, the 'context-novel' rats (T=30, N=8, P=0.107) showed no such ²⁸⁷ preference.

288

```
289 Encounter 7
```

290

A final analysis compared the investigation of the novel and familiar odour 291 cues between the sixth 'test' encounter and the subsequent seventh encounter for 292 'context-novel' rats. During the 15-min period between these tests the subjects 293 remained in the previously novel environmental context. A GLM with encounter (6/7) 294 and odour (novel/same) as repeated factors revealed that, whilst there was no 295 296 significant difference in the time spent investigating novel as compared to familiar odour stimuli ($F_{1,7}$ =1.86, NS), the rats investigated the stimuli at a significantly higher 297 level in the seventh encounter than in the sixth 'test' encounter ($F_{1,7}$ =6.31; P<0.05). 298 299 Discussion 300 301 302 Habituation, in terms of declining amounts of investigation, occurred over five separate encounters with an odour stimulus obtained from the same individual, with 303 304 all treatments showing a reduction of investigation between the first and the fifth 305 encounters. For the sixth 'test' encounter, 'context-same' and 'context-different' rats preferred to investigate the odour of a novel, rather than familiar, individual - which 306

307 suggests successful recognition of the familiar (habituated) odour (see introduction,

cf. Johnston 1993). The switch to a different, but familiar, environmental context did
 not therefore appear to disrupt social recognition.

310

311 In contrast, the apparent failure to discriminate between the novel and familiar 312 odours in the novel context during the sixth 'test' encounter indicates that a switch to a different, and entirely novel, context interfered with stimulus discrimination. In that 313 sixth encounter, the 'context-novel' rats investigated the odour stimuli significantly 314 less than those rats that were familiar with the test context. It therefore seems likely 315 that this reduction in investigation was caused, at least in part, by a redirection of 316 behaviour away from investigation and towards the exploration of the novel 317 environment (cf. Burman & Mendl 1999). 318

319

This explanation is supported by the observed increase in investigation of the 320 321 odour stimuli in the seventh encounter, following a further 15-min experience of the novel test context. After the rats had gained that additional experience of the novel 322 environment between the 6th and 7th encounters, they may have had more time 323 available to investigate the odour stimuli because they were spending less time 324 exploring the environment. Alternatively, exposure to the novel environment may 325 have caused an increase in excitability, resulting in sensitisation to the presence of the 326 odour stimuli (e.g. Thompson & Spencer 1966), and a subsequent increase in stimulus 327 investigation. 328

329

However, despite this increase in overall stimulus investigation in the seventh encounter, the rats still appeared unable to discriminate between the novel and familiar stimuli. This suggests a further effect of the novel context on subject

behaviour, in addition to the apparent redirection of behaviour away from the
stimulus and to the surrounding environment. A possible explanation could be that
any stress caused by switching the rats to an entirely novel context might be sufficient
to disrupt the discrimination process. This would reflect the results of a previous
study (Burman & Mendl 2000) in which a 5-min exposure to a novel environmental
context in between two introductions to the same juvenile conspecific, appeared to
interfere with the recognition of that familiar individual.

340

It should be noted that there are potential explanations for the observed results 341 based solely on the design of the environmental contexts. For example, each context 342 needs to be sufficiently distinguishable from the other, but without causing a 343 344 discrepancy in the subjects' perception of the stimuli. However, throughout this experiment no difference in investigative behaviour was recorded between the two 345 346 contexts, suggesting that it was unlikely that any of the observed changes in behavioural response upon a context switch were due solely to differing stimulus 347 348 perception between the two different contexts (e.g. Lovibond et al. 1984; Hall & 349 Honey 1989). The change in behaviour when rats were switched to a novel test 350 context also provides some post-hoc evidence that the two different environmental contexts were sufficiently distinguishable from each other in this study (e.g. Gordon 351 & Klein 1994). 352

353

The results of this study confirm the findings of our previous project (Burman & Mendl 1999), in which, because of the effect of aggression and reduced sample size, the conclusion that stimulus recognition had occurred following a switch to a different, but familiar test context, required further evaluation. This study also

suggests that the continued habituation of investigation observed after a switch to a 358 novel context in our previous study was at least partly due to competing responses 359 restricting the subjects' available time for stimulus investigation. In addition, this 360 361 study provides further evidence that if odour cues alone are used as social stimuli, 362 rather than conspecifics, then discrimination is still possible by subject rats (e.g. Carr 363 et al. 1976; Sawyer et al. 1984; Gheusi et al. 1997) whilst ensuring that any potential aggression between individuals is avoided. The use of odour cues in the 364 habituation/discrimination procedure (e.g. Johnston 1993; Johnston & Jernigan 1994), 365 is an important alternative to the use of live individuals because it also excludes the 366 possibility that the behaviour of the introduced animal could be influencing the 367 behaviour of the subject. 368

369

370 It therefore appears that – for this study at least - laboratory rats did not use 371 contextual cues to aid short-term social recognition. This contrasts with the results of research on other species (e.g. birds: Falls & Brooks 1975; marmosets: Snowdon & 372 373 Cleveland 1979; fish: Waas & Colgan 1994)) that do appear to use contextual cues as an aid for discriminating between individual conspecifics. It is possible that, although 374 375 individually distinguishable to the rats, the designs of the contexts in this study were 376 not conducive for developing contextual associations. Further manipulations of contextual cues should be the target of future investigations. 377

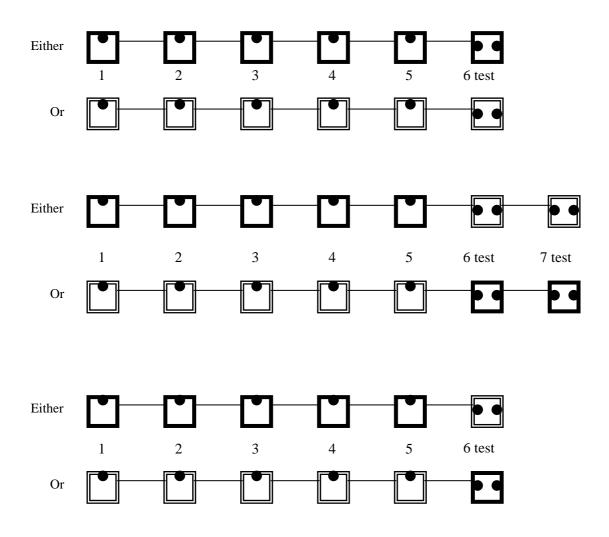
378

In conclusion, this study confirms previous research (e.g. Hall & Channell 1985; Hall & Honey 1989; Honey et al. 1992) in which habituation, unlike other types of learning, does not appear to show context specificity – provided that the test context is familiar to the subject - and extends this finding to the social recognition of

383	conspecific odours, as determined by observed levels of stimulus investigation. In
384	addition, this validation of odour use demonstrates an alternative methodology to the
385	use of live conspecifics as stimuli, thereby avoiding the potentially confounding
386	effects of behavioural interaction and aggression.
387	
388	References
389	
390	Barnett, S.A. (1963). A study in behaviour – principles of ethology and behavioural
391	physiology, displayed mainly in the rat. London and Southampton: The
392	Camelot Press Ltd.
393	Beauchamp, G.K. & Wellington, J.L. (1984). Habituation to individual odours occurs
394	following brief, widely-spaced presentations. Physiology & Behavior, 32, 511-
395	514.
396	Bluthé, R-M. & Dantzer, R. 1990. Social recognition does not involve
397	vasopressinergic neurotransmission in female rats. Brain Research, 535, 301-
398	304.
399	Bouton, M.E. & Peck, C.A. (1989). Context effects on conditioning, extinction, and
400	reinstatement in an appetitive conditioning preparation. Animal Learning &
401	Behaviour, 17(2), 188-198.
402	Bouton, M.E. & Swartzentruber, D. (1989). Slow reacquisition following extinction:
403	context, encoding, and retrieval mechanisms. Journal of Experimental
404	Psychology: Animal Behavior Processes, 15(1), 43-53.
405	Brown, R.E. & MacDonald, D.W. (1985). Social odours in mammals. Oxford:
406	Clarendon Press.

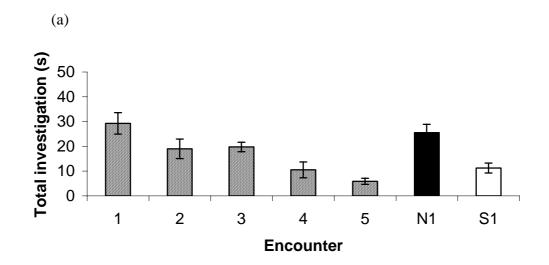
407	Burman, O.H.P. & Mendl, M. (1999). The effects of environmental context on
408	laboratory rat social recognition. Animal Behaviour, 58, 629-634.
409	Burman, O.H.P. & Mendl, M. (2000). Short-term social memory in the laboratory rat:
410	its susceptibility to disturbance. Applied Animal Behaviour Science, 67, 241-
411	254.
412	Carr, W.J., Yee, L., Gable, D. & Marasco, E. (1976). Olfactory recognition of
413	conspecifics by domestic Norway rats. Journal of Comparative and
414	Physiological Psychology, 90, 821-828.
415	Dukas, R. (1998). Constraints on information processing and their effects on
416	behaviour. In: Cognitive Ethology - the evolutionary ecology of information
417	processing and decision making (ED. by Dukas, R.). Chicago and London:
418	The University of Chicago Press.
419	Falls, J.B. & Brooks, R.J. (1975). Individual recognition by song in white-throated
420	sparrows. II. Effects of location. Canadian Journal of Zoology, 53, 1412-
421	1420.

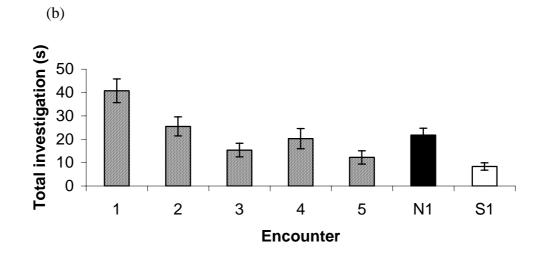
- Gheusi, G., Goodall, G. & Dantzer, R. (1997). Individually distinctive odours
 represent individual conspecifics in rats. *Animal Behaviour*, *53*, 935-944.
- Gordon, W.C. & Klein, R.L. (1994). Animal memory. The effects of context change
 on retention performance. In: *Animal Learning and Cognition (Handbook of Perception and Cognition)*, 2nd edn, (Ed. by N.J. Mackintosh), pp.255-279,
- 427 London: Academic Press. Series editors, Carterette, E.C. & Friedman, M.P.
- Hall, G. & Channell, S. (1985). Differential effects of contextual change on latent
 inhibition and on the habituation of an orienting response. *Journal of Experimental Psychology: Animal Behavior Processes, 11*, 470-481.


431	Hall, G. & Honey, R.C. (1989). Contextual effects in conditioning, latent inhibition,
432	and habituation: associative and retrieval functions of contextual cues. Journal
433	Experimental Psychology: Animal Behavior Processes, 15(3), 232-241.

- Halpin, Z.T. (1986). Individual odors among mammals: origins and functions.
- 435 *Advances in the Study of Behavior, 16, 39-70.*
- 436 Holloway, F.A. & Wansley, R. (1973). Multiphasic retention deficits at periodic
- 437 intervals after passive-avoidance learning. *Science*, *180*, 208-210.
- Honey, R.C., Pye, C., Lightbown, Y., Rey, V. & Hall, G. (1992). Contextual factors
 in neophobia and its habituation: the role of absolute and relative novelty. *The Quarterly Journal of Experimental Psychology*, *45B*(4), 327-347.
- 441 Humphries, R.E., Robertson, D.H.L., Beynon, R.J. & Hurst, J.L. (1999). Unravelling
- the chemical basis of competitive scent marking in house mice. *Animal Behaviour*, 58, 1177-1190.
- Hurst, J.L., Fang, J. & Barnard, C. (1994). The role of substrate odours in maintaining
 social tolerance between male house mice, *Mus musculus domesticus*:
 relatedness, incidental kinship effects and the establishment of social status. *Animal Behaviour*, 48, 157-167.
- Johnston, R.E. (1993). Memory for individual scent in hamsters (*Mesocricetus auratus*) as assessed by habituation methods. *Journal of Comparative Psychology*, 107, 201-207.
- Johnston, R.E. & Bullock, T.A. (2001). Individual recognition by use of odours in
 golden hamsters: the nature of individual representations. *Animal Behaviour*,
 61, 545-557.
- Johnston, R.E. & Jernigan, P. (1994). Golden hamsters recognize individuals, not just
 individual scents. *Animal Behaviour*, 48, 129-136.

456	Kaye, H., Preston, G.C., Szabo, L., Druiff, H. & Mackintosh, N.J. (1987). Context
457	specificity of conditioning and latent inhibition: evidence for a dissociation of
458	latent inhibition and associative interference. The Quarterly Journal of
459	Experimental Psychology, 39B, 127-145.


- 460 Langmore, N.E. (1998). Dunnocks discriminate between the songs of familiar
 461 individuals without directional cues. *Behaviour*, 135, 287-296.
- Lore, R. & Flannelly, K. (1977). Rat societies. Scientific American, 236, 106-116.
- Lovibond, P.F., Preston, G.C. & Mackintosh, N.J. (1984). Context specificity of
 conditioning and latent inhibition. *Journal of Experimental Psychology: Animal Behavior Processes*, 10, 360-375.
- Marlin, N.A. & Miller, R.R. (1981). Associations to contextual stimuli as a
 determinant of long-term habituation. *Journal of Experimental Psychology: Animal Behavior Processes*, 7(4), 313-333.
- 469 Mateo, J.M. & Johnston, R.E. (2000). Retention of social recognition after
- 470 hibernation in Beldings's ground squirrels. *Animal Behaviour*, 59, 491-499.
- 471 Minitab Inc. (1996). *Reference Manual, Version 11*. State College, Philadelphia:
 472 Minitab.
- 473 Noldus Information Technology (1993). *The Observer Base Package. Reference*474 *Manual, Version 3.0.* Wageningen, The Netherlands: Noldus Information
 475 Technology.
- 476 Pagel, M. & Dawkins, M.S. (1997). Peck orders and group size in laying hens:
- 477 'futures contracts' for non-aggression. *Behavioural Processes*, 40, 13-25.
- 478 Peeke, H.V.S. & Veno, A. (1973). Stimulus specificity of habituated aggression in the
 479 stickleback (*Gasterosteus aculeatus*). *Behavioral Biology*, 8, 427-432.


480	Petrulis, A., Peng, M. & Johnston, R.E. (1999). Effects of vomeronasal organ removal
481	on individual odor discrimination, sex-odor preference, and scent marking by
482	female hamsters. Physiology & Behavior, 66(1), 73-83.
483	Rodriguez, W.A., Borbely, L.S. & Garcia, R.S. (1993). Attenuation by contextual
484	cues of retroactive interference of a conditional discrimination in rats. Animal
485	Learning & Behaviour, 21(2), 101-105.
486	Sawyer, T.F., Hengehold, A.K. & Perez, W.A. (1984). Chemosensory and hormonal
487	mediation of social memory in male rats. Behavioral Neuroscience, 98, 908-
488	913.
489	Snowdon, C.T. & Cleveland, J. (1979). Individual recognition of contact calls by
490	pygmy marmosets. Animal Behaviour, 28, 717-727.
491	Spear, N.E. (1973). Retrieval of memory in animals. Psychological Review, 80(3),
492	163-194.
493	Taylor, G., Farr, S., Griffin, M., Humphrey, W. & Weiss, J. (1999). Adult ontogeny of
494	rat working memory of social interactions. Journal of Gerontology: Medical
495	Sciences, 54A (3), M145-M151.
496	Thompson, R.F. & Spencer, W.A. (1966). Habituation: a model phenomenon for the
497	study of neuronal substrates of behavior. Psychological Review, 73 (1), 16-43.
498	Thor, D.H. & Holloway, W.R. (1982). Social memory of the male laboratory rat.
499	Journal of Comparative and Physiological Psychology, 96, 1000-1006.
500	Waas, J.R. & Colgan, P.W. (1994). Male sticklebacks can distinguish between
501	familiar rivals on the basis of visual cues alone. Animal Behaviour, 47, 7-13.

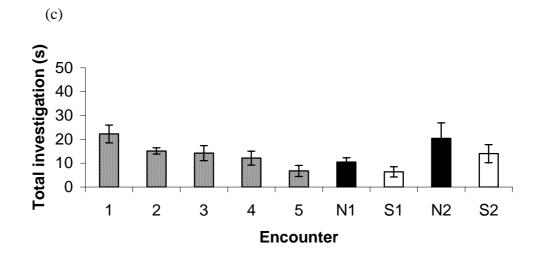


Figure 1. Description of treatments. Each box represents a 5-min encounter (white box: context A; black box: context B) with the odour stimulus, which is represented by one black circle for the first five encounters. In the test encounters 6 & 7, two odour stimuli (black circles) are presented. Each encounter is separated by a 15-min inter-exposure interval, represented by a line. The top two rows show the 'context same' treatment win which all six encounters were in one context (either A or B), with no previous experience of either context. The middle two rows show the 'context novel' treatment in which the first five encounters were in one context (either A or B), and the sixth and seventh in the other context, with no previous experience of either show the 'context different' treatment in which the first five encounters' treatment in which the first five encounters' were in one context, with the first five encounters' were in one context (either A or B), and the sixth and seventh in the other context, with no previous experience of either context (either A or B), the sixth in the other context, with previous experience of both contexts.

Figure 2 (a-c). The mean \pm SE investigation of the odour stimulus during each encounter for (a) 'context-same' (b) 'context-different' and (c) 'context-novel' treatments are presented. N1 = investigation of the novel odour in the first discrimination test; S1 = investigation of the same odour, as introduced for the initial 5 encounters, in the first discrimination test; N2 = investigation of the novel odour when reintroduced for a second discrimination test (context novel rats only); S2 = investigation of the same odour, as introduced for a second discrimination test (context novel rats only).

