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Abstract
A new three-band model was developed to estimate chlorophyll-a concentrations in turbid
inland waters. This model makes a number of important improvements with respect to the
three-band model commonly used, including lower restrictions on wavelength optimization and
the use of coefficients which represent specific inherent optical properties. Results showed that
the new model provides a significantly higher determination coefficient and lower root mean
squared error (RMSE) with respect to the original model for upwelling data from Taihu Lake,
China. The new model was tested using simulated data for the MERIS and GOCI satellite
systems, showing high correlations with the former and poorer correlations with the latter,
principally due to the lack of a 709 nm centered waveband. The new model provides numerous
advantages, making it a suitable alternative for chlorophyll-a estimations in turbid and eutrophic
waters.

Keywords: water color remote sensing, bio-optical model, absorption coefficient, inherent
optical properties

1. Introduction

Chlorophyll-a is an important pigment in nearly all marine
and freshwater algal species. The concentration of this
pigment (Chla, mg m−3) has often been used as a marker for
phytoplankton biomass and in calculations of bio-production
of many water bodies. The use of satellite based sensors
to estimate Chla in large ecosystems provides numerous
advantages with respect to standard field measurements
(Kutser 2004). However, making such estimates in turbid lakes

5 Author to whom any correspondence should be addressed.

presents a number of difficulties, largely due to the complex
optical conditions. In recent years, three-band reflectance
models have been used with success in systems where Chla
is not the dominant optical component (Dall’Olmo et al 2003,
Gitelson et al 2008, Moses et al 2009, Xu et al 2009). These
models are based on the following relationship between Chla
and reflectance (Rrs):

[Chla] ∝ [R−1
rs (λ1) − R−1

rs (λ2)]Rrs(λ3) (1)

where Rrs is a function of the inherent absorption (a(λ)) and
scattering (bb(λ)) properties of the medium, according to the
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basic radiative transfer equation (Gordon et al 1988):

Rrs = f t

Qn2

bb(λ)

a(λ) + bb(λ)
. (2)

Absorption a(λ) which can be separated into absorption
related to phytoplankton biomass (aph), detritus (ad),
chromophoric dissolved organic matter (CDOM, ag) and
pure water (aw), while bb(λ) is the measurement of total
backscattering. The term f/Q, a function dependent on sun
zenith angle (Morel and Gentili 1993), can be approximated to
be 0.0945 (Gordon et al 1988), and t/n2 = 0.54 (Clark 1981,
Austin 1974).

In the three-band models developed to date, the difference
between the reciprocal reflectance R−1

rs (λ1) and R−1
rs (λ2)

(equation (1)) is approximated by

R−1
rs (λ1) − R−1

rs (λ2) ∝ aph(λ1) + aw(λ1) − aw(λ2)

bb
(3)

based on the following assumptions: (a) bb is spectrally
invariant between λ1 and λ2; (b) aph(λ1) � aph(λ2);
(c) ad(λ1) + ag(λ1) ≈ ad(λ2) + ag(λ2). In lakes where
high (non-phytoplankton-related) turbidity is present, such as
Lake Taihu, assumptions (b) and (c) are not always valid. If
these assumptions cannot be made, the difference between the
reciprocal reflectances remains in its original form:

R−1
rs (λ1) − R−1

rs (λ2) ∝ {aph(λ1) − aph(λ2) + ag(λ1) − ag(λ2)

+ ad(λ1) − ad(λ2) + aw(λ1) − aw(λ2)}{bb}−1. (4)

In many turbid systems, ag, ad and aw are independent of
Chla, but are characteristic for the ecosystem. The sum of the
wavelength differences (ag(λ1) − ag(λ2) + ad(λ1) − ad(λ2) +
aw(λ1) − aw(λ2)) can then be treated as an ecosystem specific
parameter c, making the equation

R−1
rs (λ1) − R−1

rs (λ2) ∝ aph(λ1) − aph(λ2) + c

bb
. (5)

In three-band models, the third spectral band, λ3, is
included to represent the effects of backscattering (bb) with
respect to absorption by water. In most cases, λ3 is chosen
to be in the near infrared (NIR) wavelengths, where reflectance
by aph, ad and ag is minimal, i.e. a(λ3) ∼ aw:

Rrs(λ3) ∝ bb

aw(λ3)
. (6)

Based on equations (2), (5) and (6), the original
relationship now becomes

[R−1
rs (λ1) − R−1

rs (λ2)] · Rrs(λ3) = aph(λ1) − aph(λ2) + c

aw(λ3)
.

(7)
If the specific absorption of chlorophyll-a (a∗

ph,

m−1(mg m−3)
−1

) is considered as aph = a∗
ph × [Chla] (Morel

and Prieur 1977),

[Chla] = [R−1
rs (λ1) − R−1

rs (λ2)]Rrs(λ3)aw(λ3) − c

[a∗
ph(λ1) − a∗

ph(λ2)] . (8)

It should be noted that the difference in the specific
absorption coefficients [a∗

ph(λ1) − a∗
ph(λ2)] will not be constant

throughout the ecosystem as the pigment composition will vary
temporally and spatially. Equation (8) can be further simplified
by combining the ecosystem specific optical properties into
two variables, ε = aw(λ3)

[a∗
ph(λ1)−a∗

ph(λ2)] and τ = c
[a∗

ph(λ1)−a∗
ph(λ2)] :

[Chla] = ε[R−1
rs (λ1) − R−1

rs (λ2)]Rrs(λ3) − τ. (9)

This new model contains two optically identifiable
parameters that can be determined empirically by fitting of the
measured Chla and observed reflectances. Most importantly,
these parameters can be checked by comparing them with the
inherent optical properties of the study waters. While the
form of the equation is similar to the original three wavelength
model, the proportionality constants are now associated with
measurable quantities.

To compare models, we used measurements obtained
in the field and simulated satellite based reflectance
measurements for a large turbid lake in China. Lake Taihu
(31.15 N, 120.15 E) presents a range of optical properties
which are influenced by recurring phytoplankton blooms
(Duan et al 2009b). MERIS is a medium spectral resolution,
imaging spectrometer which has provided multispectral data
for water color analysis since 2002 (Bezy et al 2000). GOCI
(the Geostationary Ocean Color Imager) is the world’s first
geostationary ocean color multispectral system, with medium
spatial resolution (500 m) and very high temporal resolution
(refresh rate: 1 h). It is scheduled to be launched on 23 June
2010 by the Republic of Korea (ROK), and will include Lake
Taihu in its coverage area.

In the present study, we compare the performance of the
new three-band model to standard Chla models using measured
spectral reflectances and in situ measurements. We examine
the physical significance of the parameters used in the new
three-band model. Finally, we assess the potential use of this
model to estimate Chla using MERIS and GOCI reflectance
data.

2. Methods

2.1. Data

Four data collection campaigns were performed in October
2004, June 2007, October 2008 and April–May 2010 in Lake
Taihu, China (table 1). At each station GPS coordinates
(0.3–3 m accuracy) were recorded and water samples were
collected from the surface to a depth of 30 cm for measurement
in the laboratory. Remote sensing reflectance was measured
with a FieldSpec Pro Dual VNIR (ASD, USA) using
NASA protocols (Mueller et al 2003). The absorption
by total suspended matter, pigment, detritus and CDOM
were determined using the quantitative filter technique with
a Shimadzu UV2401 spectrophotometer (Shimadzu, Tokyo,
Japan). Chla concentrations were extracted using 90%
ethanol and measured with a UV2401 spectrophotometer.
The concentrations of total suspended solids (TSM) were
determined gravimetrically.
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Table 1. Descriptive statistics of the optical water quality parameters measured in Lake Taihu: Chla, chlorophyll-a; TSS, total suspended
solids; ag(440), absorption coefficient of CDOM at 440 nm; ad(440), absorption coefficient of detritus at 440 nm; aph(440), absorption
coefficient of phytoplankton at 440 nm; aph(675), absorption coefficient of phytoplankton at 675 nm. (Note: n represents the number of
sampling points each year; AVE means the average value, MAX means the maximum value and MIN means the minimum value.)

2004 (n = 45) 2007 (n = 35) 2008 (n = 83) 2010 (n = 80)

AVE MAX MIN AVE MAX MIN AVE MAX MIN AVE MAX MIN

Chla (μg l−1) 13.12 22.54 4.98 12.39 55.24 2.37 22.35 108.90 3.35 8.94 46.98 0.13
TSS (mg l−1) 60.14 169.47 13.08 34.23 107.00 10.32 35.58 90.45 7.80 41.37 162.73 9.90
ag(440) (m−1) 1.14 2.01 0.45 1.20 2.27 0.45 0.91 1.67 0.40 0.63 1.34 0.29
ad(440) (m−1) 2.91 6.77 0.64 1.43 3.18 0.59 2.12 5.66 0.60 1.86 7.77 0.53
aph(440) (m−1) 1.07 2.90 0.44 0.74 1.43 0.87 0.42 1.86 0.11 1.20 7.81 0.21
aph(675) (m−1) 0.30 0.52 0.13 0.27 0.23 0.10 0.22 1.09 0.06 0.57 4.13 0.07

Table 2. The new three-band model compared with original three-band model.

Original three-band model New three-band model

Datasets λ1 λ2 λ3 R2 RMSE λ1 λ2 λ3 R2 RMSE ε τ

2004 671 710 714 0.50 2.77 665 689 814 0.59 2.52 294.71 11.61
2007 674 711 822 0.86 4.98 662 672 900 0.93 3.55 −1153.91 −3.76
2008 685 710 862 0.88 5.81 688 705 862 0.89 5.76 649.26 25.22
2010 678 710 854 0.89 3.58 690 694 853 0.90 3.48 928.42 6.64
All 686 710 839 0.66 8.25 688 692 870 0.78 6.64 1495.85 7.18

2.2. Fitting method

In order to optimize the three band positions of equation (9),
an iterative fitting algorithm with linear least squares
was developed using MATLAB software. The algorithm
minimizes the sum of squared residuals between the measured
concentration and the value provided by a model. The
root mean squared error (RMSE) is employed to assess the
performance of the model as

RMSE =
√∑n

i=1 (Chlamea,i − Chlapre,i )2

n
(10)

where n is the number of samples and Chlamea,i and Chlapre,i

are the measured and predicted Chla values.

3. Results and discussion

3.1. Model comparison

Table 2 shows the results of both models in estimating Chla
during the four measurement campaigns in Lake Taihu based
on field reflectance measurements. In all campaigns, the new
three-band model provided a higher determination coefficient
(R2) and a smaller RMSE than the original model. Considering
the whole dataset, the new model predicted Chla with a R2

of 0.78 with respect to 0.66 for the original model. For Chla
ranging from 0.13 to 108.90 μg l−1, the RMSE for the new
model did not exceed 6.64 μg l−1. In the light of these results,
the new model provided better results than the older model.

Another restriction with the original three-band model
is related to the limits of the wavelength intervals for each
spectral band λ1, λ2 and λ3 with respect to the following
assumptions: (1) λ1 should be located at the maximum
phytoplankton absorption; (2) the absorption by detritus

and CDOM at λ2 should be similar to that at λ1, while
aph(λ2) � aph(λ1); (3) reflectance at λ3 should be least
affected by differences in absorption while remaining sensitive
to the variability in scattering and (4) the total backscattering
coefficients for λ1, λ2 and λ3, are approximately equal. To
meet the above requirements, each wavelength is restricted
within certain intervals (Gitelson et al 2009). By using the
spectral reflectance measured over Lake Taihu in the 2004–
2010 dataset, it is possible to identify these wavelength limits
(figure 1).

In the visible and NIR spectral regions, reflectance was
highly variable and similar to typical reflectance spectra
collected in turbid waters (Gitelson et al 2006). Absorption by
dissolved organic matter and detritus as well as backscattering
by particulate matter combines to determine the spectral
distribution of reflectance. The reflectance in the 400–500 nm
interval was relatively low with respect to that between 500
and 600 nm. Reflectance above 600 nm presented several
spectral features: (a) a slight reflectance reduction around
620 nm probably linked to phycocyanin absorption from
cyanobacteria (Simis et al 2005); (b) a minimum reflectance
around 675 nm likely to be related to chlorophyll-a absorption,
although no direct correlation between Chla and R675 was
observed. The peak between 670 and 715 nm observed in most
reflectance curves can be associated with high backscattering
and minimum absorption by all optically active constituents in
this wavelength interval (Gitelson et al 2008). The optimal
wavelengths which meet the four assumptions of the original
three-band model fall into the following intervals: 650–690 nm
for λ1, 710–740 nm for λ2, and >750 nm for λ3.

The optimal positions for each wavelength of the three-
band model will depend on the optical properties of the study
waters. For example, in Chesapeake Bay, the optimal λ1, λ2,
and λ3 were found in the intervals between 674–676, 691–
698, and 723–739 nm, respectively (Gitelson et al 2007); in
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Figure 1. Reflectance spectra measured over Lake Taihu, China:
(A) all data during 2004–2010; (B) the maximum, minimum and
average data of each year.

Shitoukoumen Reservoir and Songhua Lake, these intervals
were 650–680 nm, 670–700 nm, and >700 nm (Xu et al 2009);
in lakes and reservoirs of Nebraska and Iowa, they were 658–
674 nm, 700–735 nm, and 733–780 nm (Gitelson et al 2008);
in Lake Taihu, they were 660–690, 700–750, and 730–750 nm
(Zhang et al 2009); in Lake Chagan, they were 670–710 nm,
660–690 nm, and 710–750 nm (Duan et al 2009a). Therefore,
the selection of wavelength intervals for each band depends
on a priori knowledge of the optical conditions of the study
waters. It is important to note that the selection of wavelength
intervals will influence the Chla estimation. For example, using
the 2007 Lake Taihu dataset, if different wavelength ranges
for λ1, λ2, and λ3 are compared, in one case 650–685 nm,
690–730 nm, and 730–780 nm, in the other 650–690 nm,
710–740 nm, and 750–900 nm, the determination coefficient
between estimated and measured Chla will vary from 0.82 to
0.86, respectively.

In many eutrophic and turbid lakes, the dominance of
absorption related to phytoplankton pigments with respect
to detritus and CDOM may not occur, negating the
second assumption of the original model (figure 2(A)).
Furthermore, in such optical conditions, the difference between
[ad(λ1) + ag(λ1)] and [ad(λ2) + ag(λ2)] may not be zero
(figure 2(B)). Finally, aph(λ1) may not always be far larger than
aph(λ2), especially when λ1 is located beyond the peak near
680 nm (figure 2(A)), going against the first assumption. The
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Figure 2. (A) Average spectral absorption of detritus (ad),
phytoplankton (aph) and CDOM (ag) for each year during
2004–2010; (B) the sum of the average spectral absorption of detritus
(ad) and CDOM (ag) between 650 and 700 nm.

new three-band model, by including c, does not require such
rigid assumptions. It has the further advantage that it does not
depend on specific wavelength ranges in the estimation of the
three optimal wavelengths.

The new model makes fewer rigid assumptions due to
the fact that the specific optical properties of the lake are
included in the calibration equation. As a results, larger
wavelength intervals are possible, λ1 > 600 nm, λ2 >

600 nm, λ3 > 750 nm. This allows for a less subjective
selection of wavelengths as well as allowing for better inter-
lake comparison.

3.2. Applying the new model to MERIS and GOCI

MERIS was designed mainly for ocean and coastal water
remote sensing and therefore has a large number of wavebands
specifically selected for ocean color. GOCI provides a very
high temporal resolution with a smaller number of wavebands.
We investigated the potential use of the new three-band
model for both of these remote imagining spectrometers using
simulated reflectance data. Field spectra were resampled with
respect to their center wavelengths for the MERIS spectral
bands (413, 443, 490, 510, 560, 620, 665, 681, 709, 754, 761,
779, 865, 886, 900 nm) and GOCI spectral bands (412, 443,
490, 555, 660, 680, 745, 865 nm). To meet the requirements
of the new model, nine bands from 665 to 900 nm were used
for MERIS, but only four bands (660, 680, 745, 865 nm)
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Table 3. Results of the new three-band model applied to MERIS and GOCI in Lake Taihu.

MERIS GOCI

Datasets λ1 λ2 λ3 R2 RMSE ε τ λ1 λ2 λ3 R2 RMSE ε τ

2004 665 709 754 0.44 2.94 105.17 15.82 680 745 865 0.12 3.67 30.50 21.99
2007 681 709 754 0.85 5.20 146.35 14.20 680 745 865 0.30 11.07 83.55 40.66
2008 681 709 865 0.87 6.06 404.24 24.84 680 745 865 0.73 8.83 246.63 101.30
2010 681 709 754 0.89 3.67 82.52 9.56 660 745 865 0.59 7.07 89.67 37.47
All 681 709 865 0.62 8.75 237.75 16.13 680 745 865 0.35 11.41 116.04 51.18

Table 4. The new three-band model applied to MERIS while λ1 at
665 nm, λ2 at 709 nm, and λ3 at 754 nm.

Datasets R2 RMSE ε τ

2004 0.44 2.94 105.17 15.82
2007 0.82 5.66 145.39 16.91
2008 0.83 7.10 245.96 29.62
2010 0.87 3.91 54.91 8.78
All 0.39 10.94 74.64 16.15

were used for GOCI. The results show that the new three-
band model successfully estimates Chla using the MERIS
spectral bands with high determination coefficients and low
RMSEs. For most datasets, the optimal wavebands selected
were 681 nm (λ1), 709 nm (λ2) and 754 nm (λ3) (table 3).
Two datasets showed the best results for 865 nm (λ3), but
NIR bands beyond 750 nm are rarely used for aircraft and
satellite based remote sensing of water (Moses et al 2009).
Likewise, the 681 nm band is strongly affected by variation in
phytoplankton fluorescence, leading sometimes to difficulties
for remote observations. To examine the use of the model
for more commonly used wavebands (λ1 at 665 nm, λ2

at 709 nm, and λ3 at 753 nm) a new analysis was made,
showing slightly lower determination coefficients (table 4). By
comparison, the highest determination coefficients were found
for the hyperspectral data, followed by the optimal wavebands
and finally by the most common MERIS wavebands (tables 2–
4). The GOCI simulated reflectance data provided poorer
estimates with respect to the MERIS sensors, even though
the results from 2008 to 2010 gave an elevated determination
coefficient (table 3). The loss in precision for the GOCI
estimates can be associated with the lack of a reflectance
waveband at 709 nm (λ2).

3.3. Physical significance of ε and τ

The parameters c, ε, and τ in the new model are directly linked
to specific inherent optical properties of the study waters, as
ε represents aw(λ3)

[a∗
ph(λ1)−a∗

ph(λ2)] , τ represents c
[a∗

ph(λ1)−a∗
ph(λ2)] , and

c is the sum of (ag(λ1) − ag(λ2) + ad(λ1) − ad(λ2) +
aw(λ1) − aw(λ2)). The comparison between ε estimated from
reflectance data with respect to ε determined from the inherent
optical properties of Lake Taihu during different measurement
campaigns shows a high 1:1 correlation (figure 3(A)). A
negative correlation (r = −0.93) for τ (figure 3(B)) occurs.
This is largely due to the lack of in situ absorption data (ag and
ad) at wavelengths greater than 700 nm, where zero absorption

Figure 3. Scatter plot of the parameters estimated using the new
three-band model against measured in situ data: (A) ε; (B) τ . In this
study, aw come from (Smith and Baker 1981); aph, ad and ag

measured in situ come from average data of each year during
2004–2010; ‘Field spectral’ represents the new three-band model
dataset of table 2; ‘MERIS 1’ represents the MERIS dataset of
table 3; ‘MERIS 2’ represents the dataset of table 4; ‘GOCI’
represents the GOCI dataset of table 3.

was assumed. As expected, these parameters showed a wide
interannual variation (tables 2 and 3).

The original three-band model is parameterized using
a linear regression between [R−1

rs (λ1) − R−1
rs (λ2)]Rrs(λ3)

and Chla concentrations, where the slope and intercept are
not intended to be related to specific optical properties
and provide no information to compare optically different
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waters. Furthermore, the model assumes that the Chla
specific absorption coefficient, a∗

ph, remains constant, whereas
this coefficient will vary in relation to differences in the
phytoplankton community and physiological state. In the
new three-band model, a∗

ph is not considered constant and is
included in the parameters ε and τ , the latter also including
the errors in the absorption coefficients of the major optical
constituents of the water body. Making fewer assumptions and
linking model parameters to the optical conditions of the water
body, the new model responds better to the complex conditions
of turbid and eutrophic waters.

4. Summary

In the present study, a new three-band model was developed
to estimate Chla in eutrophic and turbid waters. Unlike
the original three-band model, larger waveband intervals
can be used (λ1 > 600 nm, λ2 > 600 nm, λ3 >

750 nm). Furthermore, the parameters that result from the
fitting procedure, ε and τ , have clear links to the inherent
optical properties of the water body. The new model was
shown to provide a higher precision than the original three-
wavelength model for the turbid and eutrophic waters of
Lake Taihu. Importantly, it can be used with MERIS data,
while its use with the new GOCI data is reduced due to
the lack of a waveband at 709 nm. Since the dataset has a
broad range of water component concentrations and shows a
seasonal and interannual variability, it is very representative for
Lake Taihu and other lake ecosystems. The three-wavelength
model presented here offers a robust alternative to other Chla
estimation approaches currently being used and can be used
widely.
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