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ABSTRACT: NSC12 is an orally available pan-FGF trap able to inhibit FGF2/FGFR interaction and endowed with promising
antitumor activity. It was identified by virtual screening from a NCI small molecule library, but no data were available about its
synthesis, stereochemistry, and physicochemical properties. We report here a synthetic route that allowed us to characterize and
unambiguously identify the structure of the active compound by a combination of NMR spectroscopy and in silico
conformational analysis. The synthetic protocol allowed us to sustain experiments aimed at assessing its therapeutic potential for
the treatment of FGF-dependent lung cancers. A crucial step in the synthesis generated a couple of diastereoisomers, with only
one able to act as a FGF trap molecule and to inhibit FGF-dependent receptor activation, cell proliferation, and tumor growth
when tested in vitro and in vivo on murine and human lung cancer cells.

■ INTRODUCTION

Fibroblast growth factors (FGFs) are members of a large family
of structurally related proteins that affect growth, differ-
entiation, migration, and survival of a variety of cell types by
leading the formation of productive ternary complexes with
signaling FGF receptors (FGFRs) and cell-surface heparan
sulfate proteoglycans (HSPGs).1−3

FGFs are highly expressed in epithelial human tumors where
they modulate growth, neovascularization, metastatic spreading,
and drug resistance.4 In lung cancer, the activation of the FGF/
FGFR signaling pathway promotes cancer cell survival,
resistance to chemotherapy, and growth of small- and non-
small-cell lung tumors.5 Elevated serum concentrations of
FGF2 represent an unfavorable prognostic factor in lung
cancer,6 while amplification of the FGFR1 gene is a frequent
feature of squamous cell carcinomas in smoking patients.7

Thus, the FGF/FGFR system represents a privileged target for
the therapeutic approach of lung tumors in which the FGF-
dependent activation of FGFR is an oncogenic factor.
Current pharmacological approaches to address the inhib-

ition of the FGF/FGFR system include tyrosine-kinase
inhibitors (TKIs) and anti-FGFR antibodies or peptides.8

Multitarget TKIs that inhibit FGFR signaling are used in the

clinic and selective FGFR TKIs are evaluated in clinical trials.
However, both selective and nonselective TKIs show significant
side effects.9 An alternative approach aimed at preventing FGF
binding to its cognate receptors is the use of ligand traps.10

Recently, we reported the characterization of the interaction
between FGF2 and its endogenous binder long-pentraxin 3
(PTX3)11 and identified a 5-mer peptide belonging to the
amino-terminal sequence of PTX3 as the minimal motif needed
to bind FGF2 and to block its biological activity.12 The
pentapeptide was used for the modeling of a pharmacophore,
which in turn was used to screen the NCI2003 library of small
molecules.13 4,4,4-Trifluoro-1-(3-hydroxy-10,13-dimethyl-
2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]-
phenanthren-17-yl)-3-(trifluoromethyl)butane-1,3-diol (com-
pound 1 in Scheme 1, deposited at NCI with the code number
NSC172285 and named NSC12) was identified from this
screening as a low molecular weight compound able to act as a
pan-FGF trap. This property resulted in a potent antiangiogenic
and antitumor activity when tested in various FGF-dependent
tumor models, designating 1 as the first nonpeptidic, orally
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available small molecule FGF trap endowed with potential
implications for the therapy of FGF-dependent cancers.14

However, a survey of the available information provided
minimal data for this compound, with no details regarding its
stereochemistry and its preparation, purification, and character-
ization. We report here the synthesis of 1, designed on the sole
structure provided by the NCI, the assignment of its absolute
configuration, in vitro and in vivo experiments that confirmed
its biological activity, and characterization of its physicochem-
ical properties and oral bioavailability.

■ RESULTS
Synthesis. Retro-synthetic analysis of 1 dissects the

molecule into the steroidal portion and the 1,1-bis-trifluor-
omethyl-1,3-propanediol motif, deriving in turn from the
reduction of the β-hydroxy ketone 2 (Scheme 1) and some
minor protecting group manipulation. Following the dis-
connection at C21, compound 2 derives its carbon backbone
from the aldol condensation of a suitably protected derivative of
commercially available pregnenolone acetate 3 and hexafluor-
oacetone (HFA) 4.15 We were confident that reduction of the
β-hydroxy ketone would furnish the 1,3-propanediol fragment
in high stereoselectivity, assuming as a first hypothesis that 1
had been produced employing conditions that favor attack of
the reducing nucleophile on the si-face of the keto group.16

Before engaging it in the aldol condensation, pregnenolone
acetate 3 was converted to the corresponding benzoate
(Scheme 2, compound 6) by means of transesterification and
subsequent benzoylation of the hydroxyl group of intermediate
5.
The optimized protocol featured the generation of the

lithium enolate of pregnenolone benzoate 6 with freshly
prepared LiHMDS in anhydrous THF at −78 °C and warming
to 0 °C for a few minutes17 and then promptly delivering HFA
to the cold (−78 °C), stirred solution of lithium enolate.18

After quenching of the reaction and aqueous workup, the
product could be isolated in up to 76% yield. The reduction of
the carbonyl function was straightforwardly accomplished by
treatment of β-hydroxy ketone 7 with NaBH4 in a mixture of
methanol and THF (Scheme 2) to furnish 8 as a single
isomer.19 After saponification of the benzoate ester, compound
9 was tested in vitro to evaluate its cytotoxicity, resulting in it
being devoid of significant biological activity.
To rationalize why 9 behaved differently from the compound

provided by the NCI, we set out to perform structural analysis.
Whereas ESI-MS spectra showed identical molecular ion peak
and fragmentation pattern for the two substances, HPLC

analysis showed a different retention time of 9 with respect to 1
(co-injection as shown in Figure 1). Inspection of the 1H NMR

spectrum of both compounds revealed few small but
appreciable differences in some key regions of the spectrum.
Remarkably, the chemical shift of the H18 methyl group is
about 0.3 ppm different and a doublet of triplet at 2.10 ppm
(H12eq) is clearly visible in the spectrum of compound 9 while
absent in that of 11 (see Supporting Information Figure 4).
The signal of H20 for both compounds is almost perfectly
superimposable. We hypothesized that compounds 9 and 1
were diastereoisomers, and given that the only stereocenter
generated during the synthesis was C20, we located the origin
of the epimeric nature of the two compounds at the reduction
step.20

After screening of a variety of reducing agents (LiAlH4,
Luche reduction, DiBAL-H, among others), the only one
capable of delivering useful quantities (dr 87:13, 8/10) of both
diastereoisomers was sodium triacetoxyborohydride, by virtue
of an intramolecular rather than intermolecular reaction
(Scheme 3).21 All the other common reducing agents
consistently furnished exclusively the major isomer 8, precursor
to 9. Attempts to invert the configuration at C20 of compound
8 (sulfonylation/nucleophilic substitution, cyclic sulfate for-
mation/nucleophilic substitution, Mitsunobu conditions) failed
to deliver any useful precursor of 1.

Scheme 1. Retrosynthetic Analysis for Compound 1 Scheme 2a

aReagents and conditions: (a) MeONa, MeOH, rt; (b) BzCl, pyridine,
DMAP cat., rt, 86% yield over two steps; (c) (i) (Me3Si)NLi, THF,
−78 to 0 °C (ii) HFA, −78 °C to rt; 78% yield; (d) NaBH4, MeOH/
THF 1:1; (e) MeONa, MeOH, rt, 68% yield over two steps.

Figure 1. HPLC trace of a co-injection of compounds 9 and 1 showing
different retention times.

Journal of Medicinal Chemistry Article

DOI: 10.1021/acs.jmedchem.5b02021
J. Med. Chem. 2016, 59, 4651−4663

4652

http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.5b02021/suppl_file/jm5b02021_si_001.pdf
http://dx.doi.org/10.1021/acs.jmedchem.5b02021
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.jmedchem.5b02021&iName=master.img-001.jpg&w=239&h=142
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.jmedchem.5b02021&iName=master.img-002.png&w=239&h=167
http://pubsdc3.acs.org/action/showImage?doi=10.1021/acs.jmedchem.5b02021&iName=master.img-003.jpg&w=227&h=101


After careful chromatographic separation with standard flash
column chromatography, followed by separation of the mixture
enriched of the minor isomer with an automated MPLC
system, reasonable quantities of the two epimers 8 and 10
could be obtained and then deprived of the benzoate ester by
transesterification with catalytic MeONa in MeOH to afford
products 9 and 11. We could finally prove the identity of 11
and 1 spectroscopically by means of 1H and 13C NMR analysis
and chromatographically (HPLC−MS/MS; see Supporting
Information).
NMR Analysis. After establishment that compound 11 is

identical to 1, the substance provided by the NCI, and that
compound 9 is the corresponding C20 epimer, the absolute
configuration of the two compounds at C20 was assigned.
Inspection of 1H NMR spectra revealed the peculiar multi-
plicity of H20, a triplet signal for both compounds 9 and 11.
The coupling constant 3J is 10.3 Hz. H20 is neighbored by
three vicinal protons (H17, H21a, H21b), meaning that such an
unexpected low multiplicity arises from (i) a null-coupling
constant with one of the three protons and (ii) two couplings
of equal magnitude. 1H TOCSY experiment with selective band
center irradiation on H20 allowed observing that H21a has only
one geminal (2J) coupling with H21b (J = 15.0 Hz), in turn
resonating as canonical doublet-of-doublet AB system with
coupling constants of 15.0 and 10.3 Hz, respectively. Therefore,
H21a has the null coupling with H20.22 According to the
Karplus equation,23 the dihedral angle between these protons
should be close to 90°, meaning that H20 should assume an
anti arrangement with both H17 and H21b and suggests a
conformationally locked, six-membered ring induced by an
intramolecular hydrogen bond involving the hydroxyl groups of
the 1,3-diol portion (Figure 2).
The coupling constants calculated by the software

Schrödinger Maestro 9.724 for H20 on the minimum-energy
geometries represented in Figure 2, in which the hydrogen
bond between the two hydroxyl groups is formed, were
consistent with the observed triplets. In particular, the
calculated values for H20−H17, H20−H21a, and H20−H21b
were 9.9, 1.0, and 11.0 Hz for 9 and 9.7, 1.5, and 11.3 Hz for
11, respectively. From the minimized geometries of the
compounds with 20R and 20S stereochemistry (Figure 2) it
is possible to appreciate the enantiomorphic arrangement of

functional groups, in which the remarkable difference in the
distance between the C18 methyl group and the C21
methylene suggested the use of nuclear Overhauser effect
(NOE) NMR experiments to identify the two epimers.25

NOE-NMR spectra of both compounds showed a clear
contact between H18 hydrogens and H20, indicating a
comparable relative distance. While compound 11 showed a
NOE contact between H18 and H21a at 2.18 ppm, compound
9 showed a signal at 2.05 ppm that could not be unequivocally
identified by 2D-COSY nor by HSQC-NMR experiments, due
to extensive signal overlapping from protons of the steroidal
skeleton (Figure 3). We thus decided to engage the C20 and
C22 hydroxyl groups in a six-membered cyclic carbonate
(Scheme 4) to shift some of the critical signals in the NMR
spectra and “freeze” the conformation accessible to the 1,3-diol
portion.26,27 The energy-minimized geometries of carbonates
12 and 13 (Figure 4) allowed the calculation of the distance
between H21a and H18, found to be 4.33 and 2.46 Å for the
20R and 20S carbonates, respectively. 1H NMR analysis of
cyclic carbonates showed that H20 retained the triplet
multiplicity and that the critical pseudoequatorial H21a signal
was in a region of the spectrum free of other resonance peaks.
The results of NOE experiments are depicted in Figure 5. H18
of compound 12 showed NOE contacts with H19 (d = 2.95 Å,
calculated from molecular model), H16 (d = 2.43 Å), H11ax (d
= 2.18 Å), H8 (d = 2.17 Å), H12eq (d = 2.53 Å), and H20 (d =
2.35 Å); the unequivocal assignment of these signals was
accomplished by 2D-COSY and HSQC-NMR experiments, and
these results are consistent with the proposed conformation
(Supporting Information Figure 8). As expected, no contact
was observed between H21eq (2.42 ppm) and H18 of
compound 12. On the contrary, H18 of compound 13, in

Scheme 3a

aReagents and conditions: (a) Na(AcO)3BH, MeOH/THF MeOH, rt;
(b) MeONa, MeOH, rt, 74% yield for 9, 11% for 11 over two steps.

Figure 2. Proposed preferential conformations and geometries for
compounds 9 and 11.
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addition to showing the expected NOE contacts with H19 (d =
2.96 Å), H8 (d = 2.17 Å), H16 (d = 2.43 Å), H11ax (d = 2.18
Å), and H20 (d = 2.41 Å), showed a distinct NOE contact with
H21eq (d = 2.46 Å), as predicted from the molecular models
(see Supporting Information Figures 12 and 13). We therefore
concluded that the cyclic carbonate 12, deriving from
compound 8, the major isomer obtained from the reduction
step, has 20R configuration, whereas 13, the cyclic carbonate

obtained from compound 10, the minor isomer, has 20S
configuration. Given that the absolute configuration at C20 was

Figure 3. 1D NOE-NMR spectra of compounds 9 (top) and 11 (bottom) with selective band center irradiation on H18.

Scheme 4a

aReagents and conditions: (a) triphosgene, pyridine, −50 °C, 77%
yield for 12, 68% yield for 13.

Figure 4. Minimized geometries for compounds 12 (top) and 13
(bottom). Distances between H21eq and the closest C18 hydrogen are
the following: 12, 4.33 Å; 13, 2.46 Å. 3-Benzoyl esters are omitted for
clarity.
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not affected during the generation of the cyclic carbonate, we
also concluded that compound 11, identical to 1, has 20S
configuration (Figure 2).
Molecular Interactions and Docking Simulations.

Compound 1 exerts its FGF2 trap activity by binding to the
growth factor molecule, thus hampering FGF/FGFR inter-
action. On this basis, DMSO stock solutions of 9 and 11 were
diluted in PBS, keeping the final concentration of DMSO at
3%, and their capacity to bind FGF2 was assessed by surface
plasmon resonance (SPR) spectroscopy. In parallel, their
solubility was evaluated under the same experimental
conditions. Similar to 1,14 compound 11 binds FGF2
immobilized to a BIAcore sensor chip in a dose-dependent
manner with an apparent Kd value equal to ∼40 μM (Figure 6).
When assessed for its solubility, 11 was fully soluble in the 3%
DMSO solution up to the concentration of 30 μM, its solubility
decreasing at higher concentrations, whereas compound 9 was
significantly less soluble. When compared to 11, compound 9
appeared to be unable to interact with immobilized FGF2 at
any concentration tested, even when dissolved at a nominal 100

μM concentration, which corresponds to an actual concen-
tration of 25 μM in 3% DMSO solution (Figure 6 and
Supporting Information Figure 14).
A binding mode for compound 1-FGF2, based on docking

and molecular dynamics simulations and supported by NMR
data, has been described.14 Thus, docking simulations that took
into account published information were used to explore the

Figure 5. 1D NOE-NMR spectra of compounds 12 (top) and 13 (bottom) with selective band center irradiation on H18.

Figure 6. SPR analysis of compounds 9 and 11 on a FGF2-coated
sensor chip.
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possibility that this binding mode could explain the different
FGF2-binding capacity of the two diasteroisomers. To this aim,
starting from a crystal structure of FGF2 (see Experimental
Section), only solutions involving the surface around key
residues were considered. Among the first 100 nonredundant
docking poses of compound 11 having polar interactions with
Glu96, one presented all the features previously described, i.e.,
the butyl chain and trifluoromethyl groups within the
hydrophobic patch defined by Leu55, Ala57 and Val63; the
hydroxyl group on C20 taking a hydrogen bond with Glu96;
packing of rings A and B of the steroid scaffold with Leu107. In
this pose, the ligand occupies the portion of FGF2 surface that
faces the linker between FGFR1-D2 and D3 in the crystallized
structure (Figure 7).

Application of the same docking protocol to compound 9
gave a similar pose, with both the hydroxyl groups on the ligand
chain interacting with the carboxylate group of Glu96, while the
steroid nucleus projected toward the FGFR1-D2-interacting
side. In both cases, the docking solutions presented docking
scores significantly lower than the best poses (−1.6 vs −3.5 for
compound 20S and −2.1 vs −3.5 kcal/mol for 20R) that
pointed the steroid nucleus toward the FGFR1-D3-interacting
area and were therefore less consistent with reported NMR
data.
In conclusion, compounds 9 and 11 can be docked on the

FGF2 surface in a binding mode that, even though consistent
with previous observations, does not explain the different
FGF2-binding affinity of the two diasteroisomers. Given the
uncertainty of virtual docking models, further structural or
structure−activity information will be required to elucidate
unambiguously the mode of interaction of the two compounds
with the FGF2 molecule.
In Vitro Studies. Given their different FGF2-binding

potential, compounds 9 and 11 were compared to 1 for their
capacity to prevent the formation of HSPG/FGF2/FGFR1
ternary complexes in a FGF2-mediated cell−cell adhesion
assay.12b The results demonstrate that 1 and 11 dissolved in 3%
DMSO hamper the formation of HSPG/FGF2/FGFR

complexes with an IC50 equal to ∼10 μM, whereas 9 was
inactive also when tested at a nominal 100 μM concentration
(Figure 8A), corresponding to an actual 25 μM concentration
(see above). Accordingly, when tested under the same
experimental conditions, compound 11, but not 9, inhibited
FGFR1 phosphorylation triggered by FGF2 in Lewis lung
carcinoma (LLC) cells in a manner similar to 1 (Figure 8B). As
a consequence, compounds 11 and 1 efficiently impaired the
proliferation of FGF-dependent murine (LLC) and human
(H520) lung carcinoma cell lines in vitro with an identical IC50
value, equal to 2.0 μM and 4.1 μM, respectively (Figure 8C). In
contrast, compound 9 did not exert a significant inhibitory
activity on both tumor cell lines. In the latter experiment, the
final concentration of DMSO was maintained equal to 1%,
higher concentrations of DMSO being cytotoxic in cell
proliferation assays.

Physicochemical Characterization. To assess whether
differences in the physicochemical properties of the two
diastereoisomers might account, at least in part, for their
different antiproliferative activity, we measured the actual
concentration of 9 and 11 when dissolved at 10 μM in cell
culture medium plus 1% DMSO. While a concentration of 10.7
(±0.8) μM was obtained for compound 11, compound 9 was at
least 5-fold less soluble, with a recovered concentration of 2.1
(±0.2) μM.
Moving from these results, we investigated whether the

observed difference in solubility could be ascribed to a different
ionization for the two compounds. The values of aqueous
dissociation constants (pKa) were extrapolated by the
potentiometric pH-metric method, starting from mixtures of
methanol and water in the 40−10% range. Nonlinear
multiparametric analysis of the titration curves revealed the
presence of one ionization site, with pKa values of 9.08 (±0.05)
for compound 9 and 9.04 (±0.08) for compound 11, ruling out
this property as the basis for the differences in solubility.
The role of divalent cations (such as Ca2+ or Mg2+) that are

present in the biological assay conditions and could negatively
influence the solubility through the formation of complexes was
then investigated. The kinetic solubility of compound 9 was
determined in the cell culture medium, adding 2 mM EDTA as
chelating agent. No effect of EDTA chelation was observed, as
the kinetic solubility value for compound 9 was 1.73 (±0.15)
μM, superimposable to the result obtained in absence of
EDTA.
As the kinetic solubility value is a nonequilibrium measure-

ment, its dependence on the concentration within the stock
solution was evaluated. Two different starting concentrations of
compound 9 were tested (i.e., 600 μM and 300 μM in DMSO
stock solution), corresponding to nominal concentrations of
the final solutions of 6 and 3 μM, also employed in the cell
proliferation assay. In both cases, we could recover concen-
trations close to 2 μM, i.e., 1.7 (±0.3) μM and 1.4 (±0.2) μM,
respectively. It therefore appears that 2 μM represents the limit
of kinetic solubility for compound 9, a concentration
corresponding to the IC50 of compound 11 for LLC cells.
Thus, solubility may represent a determinant in the
interpretation of the cell proliferation assay data when 9 is
dissolved in cell culture medium at concentrations higher than
2 μM. However, its incapacity to affect LLC cell proliferation at
this and lower concentrations confirms the lack of FGF trap
activity of 9 when compared to 11.

In Vivo Study. Compound 1 was identified as the first small
molecule FGF trap able to inhibit the growth of human FGF-

Figure 7. (A) Docking solution of compound 11 (orange carbons) on
FGF2 surface. Amino acids reported to interact with the ligand are
shown (green carbons). The colors of FGF2 surface are related to
molecular electrostatic potential. (B) Docking solution of compound 9
(orange carbons) on FGF2 surface. (C) View of the FGF2-FGFR1
(green ribbons) complex, as observed in the crystallized structure 1fq9,
with docked structures of compounds 9 and 11.
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dependent tumor cells following oral administration in tumor-
harboring immunodeficient nude mice.14 In order to extend
these observations in an immunocompetent syngeneic animal
model, we designed a study to evaluate whether the different
physicochemical and biological properties of compounds 9 and
11 also resulted in a different in vivo antitumor FGF trap
activity when administered by oral gavage to syngeneic mice
grafted subcutaneously with FGF-driven murine LLC lung

carcinoma cells.28 In keeping with the in vitro observations,
daily treatment by oral gavage with compound 11 at the dose of
7.5 mg/kg for 7 days significantly reduced the growth of LLC
tumor grafts, while administration of compound 9 did not affect
the rate of tumor growth that was indistinguishable from that
observed in vehicle-treated animals (Figure 9A). Accordingly,
the weight of tumors harvested at the end of experimentation
was significantly reduced in the group treated with compound

Figure 8. (A) Inhibition of HSPG/FGF2/FGFR1 ternary complexes formation exerted by 1 and compounds 9 and 11. (B) Western blot analysis of
FGFR1 phosphorylation (pFGFR1) on murine Lewis lung carcinoma (LLC) cells upon stimulation with FGF2 and treatment with compounds 1, 9,
and 11. β-Actin was used for loading normalization. (C) Antiproliferative effect of 1 and compounds 9 and 11 on murine LLC and human lung
carcinoma H520 cells.

Figure 9. (A) Left panel: inhibition of murine Lewis lung carcinoma tumor growth exerted by oral daily administration of compounds 9, 11, or
vehicle. Right panel: tumor picture and weight after administration of 9, 11, or vehicle. (B) Mice plasma concentrations after a single oral
administration of 7.5 mg/kg of 9 or 11: (∗) p < 0.05, (∗∗) p < 0.01, (#) p < 0.001.
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11 when compared to the one treated with 9 and control
animals (Figure 9A). In addition, in line with the antiangiogenic
activity of 1, all tumors of animals treated with compound 11
were less vascularized, as shown by their pale appearance when
compared to the reddish appearance of the grafts of the other
experimental groups (Figure 9A). Both compounds were well
tolerated, as treated mice did not show significant clinical signs
of toxicity and body weight changes throughout the whole
experimental procedure. The bioavailability of compounds 11
and 9 following gavage administration in mice was assessed at
different time points after administration. The two compounds
(Figure 9B) showed a significant difference in their
bioavailability. Indeed, the plasma levels of compound 11
measured 30 min after a single oral administration of the
molecule in adult mice were significantly higher (Conc(11,30
min) = 316 ± 45 nM) than those measured in the plasma of
age-matched animals treated with compound 9 (Conc(9,30
min) = 128 ± 28 nM). At later time points (2 and 8 h after
gavage), plasma levels of compound 11 decreased to values that
remained higher than those measured for 9.

■ DISCUSSION AND CONCLUSIONS

Previous observations led to the identification of 1 as the first
low molecular weight FGF trap molecule. Given its novel
mechanism of action and its efficient in vitro and in vivo activity
on different FGF-dependent tumor cell lines, 1 may represent a
prototype for the development of novel orally available
therapeutic agents targeting those tumors where ligand-
dependent FGFR activation represents a key factor. In this
paper we described the synthetic procedure for the preparation
of 1 that allowed definition and confirmation of its chemical
structure, permitting at the same time the identification,
isolation, and physicochemical characterization of the two
C20 epimers of this steroidal derivative (compounds 11 and 9).
The results demonstrate that compound 11 recapitulates all

the anti-FGF properties described for 1, while 9, obtained as
the major isomer, is devoid of a significant FGF trap activity. In
particular, 11 acts as an FGF trap molecule able to inhibit
FGFR activation, cell proliferation, and tumor growth when
tested in vitro and in vivo on FGF-dependent murine and
human lung cancer cells, whereas 9 was ineffective. In addition,
a relevant point descending from the characterization of the
two C20 epimers is that solubility is an issue for the biological
activity and bioavailability of these steroidal derivatives.
Despite our efforts, the inability to increase the yield of

compound 11 still represents a limitation in the synthetic
protocol. Further chemical exploration will be required based
on the novel observation that the absolute configuration of C20
represents a crucial point for the structure−activity relationship
of the compound.
In conclusion, this first chemical investigation traces the way

for the synthesis of new FGF trap small molecules,
characterized by improved solubility, to devise relevant
structure−activity relationships aimed at the design of new
compounds with optimized physicochemical properties and
improved potency while retaining the critical oral efficacy and
lack of toxicity. These data will constitute the starting point for
chemical optimization and structure−activity relationship
studies of a promising class of compounds acting as FGF
traps with a genuine protein−protein interaction-inhibitor
mechanism of action.

■ EXPERIMENTAL SECTION
Chemistry. All chemicals were used as received unless stated

otherwise. All reactions were performed under a steady overpressure of
nitrogen delivered through a balloon. Tetrahydrofuran was distilled
over sodium/benzophenone prior to use. Anhydrous solvents such as
dichloromethane, N,N-dimethylformamide, and pyridine were pur-
chased stored over 3 Å molecular sieves and packed under argon. They
were subsequently manipulated by syringe under a steady pressure of
nitrogen. Column chromatography was performed on silica gel 60
(0.040−0.063 mm) under forced flow of the appropriate solvent
mixtures. TLC analysis was conducted on HPTLC aluminum sheets
(Sigma-Aldrich, silica gel 60, F254). Compounds were visualized by UV
absorption (245 nm) and/or by dipping in a solution of
(NH4)6Mo7O24·4H2O 25 g/L and (NH4)4Ce(SO4)4·2H2O 10 g/L,
in 1 L of 10% aqueous H2SO4.

1H, 13C, and 19F NMR spectra were
recorded with Bruker AV 300, 400 and with a Varian 600. Chemical
shifts (δ scale) are reported in parts per million (ppm) relative to the
residual hydrogen peak of the deuterated solvent. Optical rotation was
measured with a PerkinElmer 341 polarimeter, the concentration c of
the analytes being reported as mg/mL. Mass spectra were recorded on
an Applied Biosystem API-150 EX system spectrometer with an ESI or
an APCI interface. Purity of final compounds was analyzed by HPLC
with UV detection at λ = 220 nm employing a Shimadzu HPLC
gradient system (Shimadzu Corp., Kyoto, Japan) on a Supelco
Discovery C18 column (150 mm × 4.6 mm, 5 μm particle size) by
gradient elution, equipped with two LC-10AD solvent delivery
modules, a Rheodyne 7125 sample injector, and a SPD-10A UV−vis
detector. Prior to analysis, samples were prepared in MeOH at a final
concentration of 0.1 mg/mL. Flow rate was 1 mL/min, and injected
volume was 10 μL. Solvent A: MeCN with 0.1% v/v of HCOOH.
Solvent B: H2O with 0.1% v/v HCOOH. Isocratic conditions were
employed for all final compounds: 75% A/25% B. Purity results are
presented as tR (minutes) and relative chemical purity (%). All tested
compounds were >95% pure.

3β-Hydroxypregn-5-en-20-one (5).29 To a solution of pre-
gnenolone acetate (2.0 g, 5.6 mmol) in a mixture of MeOH/THF
(1:1, 60.0 mL), Na (25.8 mg, 1.12 mmol 0.2 equiv) was added at room
temperature. The reaction was stirred for a total of 4 h, when TLC
analysis showed complete consumption of the starting material. The
reaction mixture was neutralized with Amberlite IR-120 resin (H+

form). The solids were filtered and the solvents removed in vacuo to
afford 5 (1.7 g, quant) as a white powder used without any further
purification. 1H NMR (300 MHz, CDCl3) δ: 5.33 (bd, 1H, J = 5.2
Hz); 3.50 (m, 1H); 2.51 (t, 1H, J = 9.0 Hz); 2.32−2.15 (m, 3H); 2.11
(s, 3H); 2.05−1.97 (m, 2H); 1.88−1.81 (m, 2H); 1.71−1.37 (m, 9H);
1.29−0.93 (m, 7H); 0.62 (s, 3H). 13C NMR (100 MHz, CDCl3) δ:
209.7; 140.9; 121.4; 71.6; 63.7; 56.9; 50.0; 44.1; 42.3; 38.9; 37.3; 36.6;
31.9; 31.8; 31.6; 24.5; 22.8; 21.1; 19.4; 13.3. ESI-MS calcd for
C21H32O2: 316.24. Found: 317.1 [M + H]+.

3β-Benzoyloxypregn-5-en-20-one (6).30 Pregnenolone 5 (2.5 g,
8.0 mmol) was dissolved in pyridine (30 mL) at 0 °C. Benzoyl
chloride (1.2 mL, 10.3 mmol) was added, and the reaction mixture was
stirred at room temperature for 24 h. The reaction was quenched with
1 M HCl solution, and the mixture was diluted with DCM (50 mL).
The organic phase was washed with HCl 1 M (20 mL) and brine.
After drying over Na2SO4, the solvent was evaporated under reduced
pressure. The crude product was triturated with EtOAc to afford 6 (2.7
g, 86%) as a white crystalline solid. Analytical data correspond to those
reported in the literature.30 Mp 192−193 °C (lit. 192−193 °C). 1H
NMR (300 MHz, CDCl3) δ: 8.05 (d, 2H, J = 7.1 Hz); 7.57 (t, 1H, J =
7.4 Hz); 7.45 (t, 1H, J = 7.7 Hz); 5.44 (bd, 1H, J = 4.3 Hz); 4.87 (m,
1H); 2.57 (t, 1H, J = 9.1 Hz); 2.50 (d, 2H, J = 7.8 Hz); 2.26−1.92 (m,
8H); 1.83−1.48 (m, 8H); 1.30−1.19 (m, 3H); 1.14−1.05 (m, 4H);
0.66 (s, 3H). 13C NMR (100 MHz, CDCl3) δ: 209.7; 166.1; 139.8,
132.9; 130.9; 129.6; 128.4; 122.6; 74.5; 63.8; 56.9; 50.0; 44.1; 38.9;
38.2; 37.1; 36.8; 31.9; 31.9; 31.7; 27.9; 24.6; 22.9; 21.2; 19.5; 13.3.
ESI-MS calcd for C28H36O3: 420.26. Found: 421.1 [M + H]+.

Preparation of Hexafluoroacetone. HFA is a colorless,
hygroscopic, nonflammable, and highly reactive gas at standard
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pressure and temperature. The only commercial form that we could
reasonably access, however, was the liquid trihydrate. A survey of the
patent literature suggested the use of strong mineral acids to sequester
water from the trihydrate.31 After minor optimization, we successfully
prepared gaseous HFA by dropping the trihydrate in warm (50 °C)
98% sulfuric acid under stirring and delivering the liberated gas to the
reaction flask through a Teflon tubing by means of a slight
overpressure of nitrogen. A picture of the reaction setup is given in
the Supporting Information.
3β-Benzoyloxy-21-(bis(trifluoromethyl)hydroxymethyl)-

pregn-5-en-20-one (7). To a stirred solution of bis-trimethylsilyl-
amine (550 μL, 2.62 mmol) in THF (50 mL) at −78 °C in a two-neck
flask, BuLi (1.55 M in hexane, titrated with diphenylacetic acid prior to
use,32 1.6 mL, 2.48 mmol) was added. The mixture was allowed to stir
for a total of 30 min. Compound 6 (1003.1 mg, 2.39 mmol) was
dissolved in dry THF (10 mL) and added with a syringe to the −78 °C
cold solution of LiHMDS thus formed under nitrogen atmosphere and
allowed to stir for 40 min. In a separate two-neck flask containing
H2SO4 (98%, 10.0 mL) warmed to 50 °C, hexafluoroacetone
trihydrate (3.0 mL, 21.5 mmol) was added dropwise from a pressure
equalizing dropping funnel, under a positive pressure of nitrogen. The
gas was delivered to the flask containing the enolate through a Teflon
tube with both extremities secured to the second neck of the flasks
with a septum. The reaction mixture was allowed reaching room
temperature over the course of 4 h. The reaction was quenched with
AcOH (5% v/v in H2O, 10 mL) and diluted with EtOAc (50 mL).
The organic layer was washed with H2O (30 mL) and brine (30 mL),
dried over Na2SO4, and the solvent was evaporated under reduced
pressure. The residue was purified by flash column chromatography
(SiO2 Hex/DCM 50:50) to give 7 (1093.6 mg, 78%) as a white solid.
Mp 181 °C. 1H NMR (400 MHz, CDCl3) δ: 8.04 (d, 2H, J = 7.1 Hz);
7.55 (t, 1H, J = 7.4 Hz); 7.43 (t, 1H, J = 7.8 Hz); 7.08 (s, 1H); 5.41
(bd, 1H, J = 4.7 Hz); 4.86 (m, 1H); 2.94 (d, 1H, J = 17.2 Hz); 2.80 (d,
1H, J = 17.2 Hz); 2.61 (t, 1H, J = 9.0 Hz); 2.47 (bd, 2H, J = 7.0 Hz);
2.18 (q, 1H, J = 9.3 Hz); 2.04−1.90 (m, 4H); 1.79−1.49 (m, 8H);
1.30−1.20 (m, 3H); 1.09−1.04 (m, 4H); 0.69 (s, 3H). 13C NMR (100
MHz, CDCl3) δ: 212.1; 166.1; 139.8; 132.9; 130.8; 129.6; 128.4;
(127.0; 123.9; 121.1; 118.4 (CF3)2); 122.3; (76.8; 76.5; 76.2; 75.9
(COH(CF3)2); 74.4; 64.9; 57.0; 49.9; 45.3; 38.7; 38.3; 37.8; 37.1;
36.7; 32.0; 31.8; 27.9; 24.4; 22.9; 21.1; 19.5; 13.3. 19F NMR (376
MHz, CDCl3) δ: −78.03 (q, J = 9.4 Hz), −78.24 (q, J = 9.4 Hz). ESI-
MS calcd for C31H36F6O4: 586.25. Found: 585.16 [M − H]−.
( 2 0R ) - 3β - B enzoy l oxy - 21 - ( b i s ( t r ifluo rome thy l ) -

hydroxymethyl)pregn-5-en-20-ol (8). Compound 7 (110.2 mg,
0.19 mmol) was dissolved in MeOH/THF (1:1 v/v, 20 mL), and
NaBH4 (10.3 mg, 0.27 mmol) was added at 0 °C. The reaction was
warmed to room temperature and stirred for 1 h, when complete
conversion of the starting material was observed by TLC analysis. The
reaction was quenched with HCl solution (1 M, 5.0 mL), and stirring
was continued for 15 min. Then reaction was diluted with aqueous
NaOH (2 M, 30 mL) and stirred for an additional 2 h. After addition
of EtOAc (50 mL), the organic layer was washed with water and brine,
dried over Na2SO4 and the solvent was evaporated under reduced
pressure, affording a white solid. The residue was purified by flash
chromatography (SiO2 Hex/DCM 30:70) to furnish 8 (80.5 mg, 72%)
as a white powder. Mp 252 °C. 1H NMR (400 MHz, CDCl3) δ: 8.03
(d, 2H, J = 7.1 Hz); 7.56 (t, 1H, J = 7.4 Hz); 7.44 (t, 1H, J = 7.8 Hz);
6.77 (s, 1H); 5.42 (bd, 1H, J = 4.8 Hz); 4.88 (m, 1H); 4.21 (q, 1H, 9.3
Hz); 2.98 (d, 1H, J = 7.7 Hz); 2.48 (m, 2H); 2.18 (q, 1H, J = 9.3 Hz);
2.09−1.92 (m, 6H); 1.81−1.35 (m, 9H); 1.26−1.15 (m, 3H); 1.09−
1.040 (m, 4H); 0.84 (s, 3H). 13C NMR (100 MHz, CDCl3) δ: 166.7;
139.8; 133.2; 130.4; 129.7; 128.4; (128.0; 127.3; 125.1; 124.4; 122.3;
121.5; 119.2; 118.4; (CF3)2); 122.6; (77.1; 76.8; 76.5; 76.2
(COH(CF3)2); 56.9; 56.1; 50.0; 42.6; 39.9; 38.2; 37.2; 36.8; 33.7;
31.9; 31.7; 28.3; 27.8; 25.4; 24.5; 21.0; 19.5; 12.6. 19F NMR (376
MHz, CDCl3) δ: −75.68 (q, J = 9.8 Hz), −79.53 (q, J = 9.8 Hz). ESI-
MS calcd for C31H38F6O4: 588.27. Found: 587.2 [M − H]−.
(20R)-21-(Bis(trifluoromethyl)hydroxymethyl)pregn-5-en-

3β,20-diol (9). Compound 8 (85.3 mg, 0.14 mmol) was dissolved in a
mixture of MeOH/THF (2:1 v/v). Na (4.9 mg, 0.21 mmol) was

added and the reaction stirred for 1 h. After neutralization with a 1 M
HCl solution, the mixture was diluted with EtOAc and the organic
phase was washed with brine (5 mL), dried over Na2SO4 and the
solvent was evaporated under reduced pressure. The residue was
purified by flash column chromatography (SiO2 Hex/EtOAc 70:30) to
afford 9 (64.4 mg, 95%). Mp 203 °C; [α]D

20 −28.8 (c 2.88, CHCl3/
MeOH = 1/1). 1H NMR (400 MHz, CD3OD) δ: 5.34 (bd, 1H, J = 2.8
Hz); 4.06 (t, 1H, J = 10.3 Hz); 3.39 (m, 1H, J = 4.9 Hz); 2.21 (m,
2H); 2.10 (dt, 1H, J = 3.5, 12.8); 2.02−1.92 (m, 3H); 1.85 (dt, 1H, J =
3.54, 13.4); 1.78 (m, 1H); 1.69 (m, 2H); 1.57−1.45 (m, 6H); 1.29−
1.14 (m, 4H); 1.09−1.02 (m, 4H); 0.96 (td, 1H, J = 5.2, 6.2); 0.81 (s,
3H). 13C NMR (100 MHz, CD3OD) δ: 141.0; (128.2; 127.5; 125.4;
124.6; 122.5; 121.8; 119.7; 119.0; (CF3)2); 121.0; 76.9; 76.8; 76.4
(COH(CF3)2); 71.1; 70.9; 56.7; 56.3; 50.5; 42.4; 41.7; 39.2; 37.3;
36.4; 33.5; 31.8; 31.7; 31.0; 25.1; 24.2; 20.7; 18.6; 11.2. 19F NMR (376
MHz, CD3OD) δ: −77.18 (q, J = 9.9 Hz), −80. (q, J = 9.8 Hz). ESI-
MS calcd for C24H34F6O3: 484.24. Found: 483.3 [M − H]−. HPLC−
UV purity: tR = 6.6 min, 96%.

( 2 0S ) - 3β - B en zoy l o xy -21 - ( b i s ( t r ifluo rome thy l ) -
hydroxymethyl)pregn-5-en-20-ol (10). Compound 7 (191.6 mg,
0.33 mmol) was dissolved in THF (20 mL), and Na(OAc)3BH (190
mg, 0.9 mmol) was added at 0 °C. The reaction was warmed to room
temperature and stirred for 6 h, when complete conversion of the
starting material was observed by TLC analysis. The reaction was
quenched with HCl solution (1 M, 5.0 mL), and stirring was
continued for 15 min. The mixture was diluted with aqueous NaOH
(2M, 30 mL) and stirred for additional 2 h. After addition of EtOAc
(50 mL), the organic layer was washed with water and brine, dried
over Na2SO4 and the solvent was evaporated under reduced pressure,
affording a white solid. The residue was purified by flash column
chromatography (SiO2 Hex/EtOAc 80:20). The fractions containing
both epimers 8 and 10 were subjected to MPLC (Isolera Dalton,
Biotage, gradient t(0) Hex/EtOAc 98:2, t(20) Hex/EtOAc 80:20,
giving 10 (21.9 mg, 11%) as a white amorphous solid. Mp 256 °C. 1H
NMR (400 MHz, CDCl3) δ: 8.03 (d, 2H, J = 7.2 Hz); 7.55 (t, 1H, J =
7.4 Hz); 7.43 (t, 1H, J = 7.7 Hz); 6.42 (bs, 1H); 5.42 (bd, 1H, J = 4.4
Hz); 4.85 (m, 1H); 4.21 (t, 1H, 9.6 Hz); 2.47 (d, 2H, J = 7.8 Hz); 2.23
(d, 1H, J = 15.2 Hz); 2.04−1.43 (m, 13H); 1.35−1.07 (m, 8H); 0.85
(m, 1H); 0.72 (s, 3H). 13C NMR (100 MHz, CDCl3) δ: 116.1, 139.7,
132.8, 130.7, 129.6, 128.3, 125.0, 122.4, 122.1, 74.5, 72.0, 57.3, 56.4,
49.8, 41.8, 39.0, 37.0, 36.6, 33.6, 31.7, 31.5, 29.7, 27.8, 24.8, 23.9, 20.7,
19.4, 12.5. 19F NMR (376 MHz, CDCl3) δ: −75.45 (q, J = 9.8 Hz),
−79.50 (q, J = 9.8 Hz). ESI-MS calcd for C31H38F6O4: 588.3. Found:
587.2 [M − H]−.

(20S)-21-(Bis(trifluoromethyl)hydroxymethyl)pregn-5-en-
3β,20-diol (11). Compound 10 (85.3 mg, 0.14 mmol) was dissolved
in a mixture of MeOH/THF (2:1 v/v). Na (4.9 mg, 0.21 mmol) was
added and the reaction stirred for 1 h. After neutralization with a 1 M
HCl solution, the mixture was diluted with EtOAc and the organic
phase was washed with brine (5 mL), dried over Na2SO4 and the
solvent was evaporated under reduced pressure. The residue was
purified by flash column chromatography (SiO2 Hex/EtOAc 80:20)
giving 55.4 mg of 11 as a white powder (96%). Mp 205 °C; [α]D

20

−34.5 (c 5.73, CHCl3/MeOH = 1/1). 1H NMR (400 MHz, MeOD)
δ: 5.35 (bd, 1H, J = 5.5 Hz); 4.05 (t, 1H, J = 10.3 Hz); 3.39 (m, 1H, J
= 4.6 Hz); 2.24−2.19 (m, 3H); 1.98 (m, 1H); 1.94−1.86 (m, 2H);
1.80 (m, 2H); 1.72−1.43 (m, 8H); 1.28−1.04 (m, 5H); 1.02 (s, 3H);
0.96 (td, 1H, J = 11.4, 4.7); 0.72 (s, 3H). 13C NMR (100 MHz,
MeOD) δ: 142.4; (129.6; 128.7; 126.8; 126.0; 124.0; 123.2; (CF3)2);
122.4; 76.9; 76.8; 76.4 (COH(CF3)2); 72.6; 71.8; 59.1; 58.1; 51.7;
43.1; 42.8; 40.6; 38.6; 37.8; 35.0; 33.0; 32.9; 32.4; 31.0; 26.6; 25.0;
22.1; 20.0; 12.9. 19F NMR (376 MHz, CDCl3) δ: −76.95 (q, J = 10.0
Hz), −80.66 (q, J = 10.0 Hz). ESI-MS calcd for C24H34F6O3: 484.2.
Found: 483.3 [M − H]−. HPLC−UV purity: tR = 5.2 min, 98%.

(17R)-3β-Benzoyloxy-17-((4R)-6,6-bis(trifluoromethyl)-2-
oxo-1,3-dioxan-4-yl)androst-5-ene (12). Compound 8 (50.1 mg,
0.08 mmol) was dissolved in anhydrous DCM (5 mL) under nitrogen
atmosphere before anhydrous pyridine (70 μL, 0.8 mmol) was added.
The mixture was cooled to −50 °C, and triphosgene (25.3 mg, 0.08
mmol) was added and stirred for 2 h. Once the mixture was warmed to
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room temperature, to the mixture were added saturated aqueous
solution of NH4Cl and a 1 M HCl solution. The mixture was then
diluted with EtOAc and the organic phase was washed with brine (5
mL) dried over Na2SO4 and the solvent was evaporated under reduced
pressure, affording a white solid (55 mg). The residue was purified by
flash column chromatography (SiO2 Hex/DCM 50:50) giving 12
(39.8, 77%) as a white powder. Mp 268 °C. 1H NMR (400 MHz,
CDCl3) δ: 8.04 (d, 2H, J = 7.5 Hz); 7.55 (t, 1H, J = 7.4 Hz); 7.43 (t,
1H, J = 7.7 Hz); 5.41 (bd, 1H, J = 4.7 Hz); 4.86 (m, 1H); 4.44 (t, 1H,
J = 10.9 Hz); 2.47−2.38 (m, 3H); 2.21 (m, 2H); 2.19 (m, 3H); 2.17−
1.45 (m, 9H); 1.28−1.03 (m, 8H); 0.80 (s, 3H). 13C NMR (100 MHz,
CDCl3) δ: 166.0, 144.5, 139.9, 132.8, 130.8, 129.5, 128.3, 122.2, 77.4,
74.4, 55.9, 53.6, 49.9, 42.9, 38.8, 38.2, 37.0, 36.7, 31.8, 31.7, 27.8, 27.3,
24.4, 24.2, 20.7, 19.4, 12.4. 19F NMR (376 MHz, CDCl3) δ: −77.00
(q, J = 9.4 Hz), −78.3 (q, J = 9.4 Hz).
(17R)-3β-Benzoyloxy-17-((4R)-6,6-bis(trifluoromethyl)-2-

oxo-1,3-dioxan-4-yl)androst-5-ene (13). Compound 10 (68.8 mg,
0.1 mmol) was dissolved in dry DCM (5 mL) under nitrogen
atmosphere before pyridine (7.0 mL) was added. The mixture was
cooled to −50 °C, and triphosgene (42.1 mg, 0.1 mmol) was added
and stirred for 2 h. Once the mixture was warmed to room
temperature, to the mixture were added a saturated aqueous solution
of NH4Cl and a 1 M HCl solution. The mixture was then diluted with
EtOAc and the organic phase was washed with brine (5 mL) dried
over Na2SO4 and the solvent was evaporated under reduced pressure,
affording a white solid (65 mg). The residue was purified by flash
column chromatography (SiO2 Hex/EtOAc 95:5) giving 13 (48.9 mg,
68%) as a white powder. Mp 220 °C. 1H NMR (400 MHz, CDCl3) δ:
8.04 (d, 2H, J = 7.3 Hz); 7.55 (t, 1H, J = 7.4 Hz); 7.43 (t, 1H, J = 7.6
Hz); 5.42 (bd, 1H, J = 4.6 Hz); 4.86 (m, 1H); 4.21 (t, 1H, J = 9.5 Hz);
2.56 (d, 1H, J = 13.9 Hz); 2.47 (m, 1H); 2.21 (t, 1H, J = 12.9); 2.10−
1.99 (m, 3H); 1.91 (dt, 1H, J = 13.3, 3.4 Hz); 1.82−1.43 (m, 10H);
1.34−1.01 (m, 7H); 0.74 (s, 3H). 13C NMR (100 MHz, CDCl3) δ:
166.0, 144.9, 139.6, 132.8, 130.8, 129.5, 128.3, 122.9, 122.7, 122.4,
120.7, 119.8, 79.3, 79.0, 78.0, 74.4, 56.1, 54.0, 49.8, 41.9, 38.8, 38.2,
37.0, 36.6, 31.7, 31.4, 27.8, 27.7, 25.1, 24.1, 20.7, 19.4, 12.6. 19F NMR
(376 MHz, CDCl3) δ: −77.2 (q, J = 9.3 Hz), −78.2 (q, J = 9.3 Hz).
Kinetic Solubility Measurements. Kinetic solubility for com-

pounds 9 and 11 was determined starting from freshly prepared
DMSO stock solutions.33 To assess solubility in the cell-based assay
buffer (DMEM buffer + 0.4% FBS), an amount of 2 μL of each stock
solution was added to 198 μL of buffer to reach the final nominal
concentrations of 10, 6, 3 μM (9) or 10 μM (11) in a 96-well plate. In
the EDTA-treated samples, 10 μM 9 was incubated in DMEM buffer +
0.4% FBS further added with 2 mM EDTA. Final DMSO
concentration in samples was 1%. The plate was kept under stirring
for 4 h (250 rpm, rt). To assess solubility for 9 and 11 in the SPR assay
buffer (PBS buffer), DMSO stock solutions of 9 and 11 were added to
PBS to reach the final nominal concentrations of 100, 44, 29, 16, 8.9
μM. Final DMSO concentration in samples was 3%. Samples were
stirred for 5 min (250 rpm, rt). At the end of the reported stirring
times, all samples were centrifuged (1000g, 3 min, 20 °C) to separate
undissolved compound, and an aliquot of the supernatant was further
diluted 1 to 100 with MeCN containing the internal standard 8 at the
final concentration of 100 nM. Samples were further centrifuged
(14 000g, 10 min, 5 °C), and an amount of 10 μL of the supernatant
was injected into the HPLC−MS/MS system for quantification
employing the described analytical method.
pKa Measurements. The pKa values for compounds 9 and 11

were determined by the potentiometric pH-metric method,34

employing a Sirius GLpKa instrument (Sirius Analytical Instruments
Ltd., Forrest Row, U.K.) equipped with a semimicro combined
electrode, quartz precision dispensers, a temperature probe, and a
micro mechanical stirrer. As the solubility of the compounds did not
allow a direct aqueous determination of pKa, aqueous pKa values were
extrapolated starting from cosolvent pKa values (psKa) obtained in
mixtures of water (at 0.15 M fixed ionic strength for KCl addition) and
methanol in the 40%−10% w/v range. All potentiometric titrations
were performed at 25.0 ± 0.1 °C under a nitrogen atmosphere.

HPLC−ESI-MS/MS Analytical Method. A HPLC−ESI-MS/MS
method for the quantitative analysis of compounds 9 and 11 was
developed employing a Thermo Accela ultra high performance liquid
chromatography (UHPLC) gradient system coupled to a Thermo
TSQ Quantum Max triple quadrupole mass spectrometer (Thermo
Italia, Milan, Italy) equipped with a heated electrospray ionization (H-
ESI) ion source. Chromatographic separation occurred on a
Phenomenex Synergi Fusion column (100 mm × 2.0 mm, 4 μm
particle size) by gradient elution. Eluent A was acetonitrile; eluent B
was water. Gradient: t(0 min), 5%A/95%B. t(1 min): 5%A/95%B. t(6
min): 95%A/5%B. t(9 min): 95%A/5%B. t(11 min): 5%A/95%B, with
a 3 min re-equilibration time. Mass spectrometric analyses were done
in negative ion mode and in multiple reaction monitoring (MRM). H-
ESI interface parameters were set as follows: probe middle (D)
position; capillary temperature 270 °C; spray voltage 3.0 kV. Nitrogen
was used as nebulizing gas at the following pressure: sheath gas, 35 psi;
auxiliary gas, 15 arbitrary units (a.u.). Argon was used as the collision
gas at a pressure of approximately 1.5 mTorr. For quantitative analysis,
the following parent ion → product ions transitions were selected. 9:
m/z 483.1 → m/z 413.3 + m/z 111.0 + m/z 69.1 (tube lens 74;
collision energies 22, 25, 74 eV, respectively; retention time (tR), 7.50
min). 11: m/z 483.1 → m/z 413.3 + m/z 111.0 + m/z 69.1 (tube lens
74; collision energies 22, 25, 74 eV, respectively; retention time, 7.33
min). 8 (internal standard): m/z 587.1 → m/z 517.5 + m/z 499.6 +
m/z 111.0 (tube lens 93; collision energies 22, 30, 25 eV). Calibration
curves for the analyte were prepared by spiking blank mouse plasma
with stock solutions of 9 or 11 in DMSO. Both calibration and
unknown samples were processed by protein precipitation via organic
solvent addition (acetonitrile containing the internal standard; ratio
1:2). Samples were centrifuged (13 000 rpm, 10 min, 4 °C), and an
amount of 10 μL of the supernatant was injected into the HPLC−ESI-
MS/MS system for quantification. Linearity was checked in the 500−1
nM concentration range, with a LOQ equal to 1 nM. The coefficients
of correlation (r2) were >0.99 for all curves. The specificity of the assay
was evaluated by comparison of HPLC−ESI-MS/MS chromatograms
of compounds 9 and 11 at the LOQ to those of blank plasma samples.
Extraction efficiency was determined by comparing the peak area ratio
of spiked mouse plasma samples at three concentration levels (low,
intermediate, and high) to those of extracted blank plasma spiked with
the corresponding concentrations. The mean extraction recovery
ranged between 90% and 95%.

Computational Methods. The structures of compounds 9, 11,
12, and 13 were built with Maestro 9.7,24 and their geometries were
optimized with OPLS2005 force field in combination with an implicit
solvent model (water) using a convergence criterion for energy
minimization of 0.05 kcal mol−1 Å−1.35

A model of FGF2 was built, by the Protein Preparation Wizard of
Maestro 9.7, from the crystal coordinates of a ternary FGF2-FGFR1-
heparin complex (PDB code 1fq9). In the final structure, the C and N
termini were capped with a methylamino and an acetyl group,
respectively; glutamate and aspartate residues were deprotonated,
lysines and arginines were protonated, and histidines were in their
neutral form. Amino acid polar side chains and water molecules were
reoriented to optimize the overall hydrogen-bond network. Prior to
docking simulations, all molecules different from FGF2 of the first
subunit were removed.

Docking studies were performed with Glide 6.1.36 The docking grid
on the surface of FGF2 was centered on the residues that interact with
the ligand in the binding mode described in a previous work,14 i.e.,
Leu55, Ala57, Val63, Glu96, and Leu98. The bounding box, enclosing
ligand center of mass, was extended for 15 Å in each axis. Docking
simulations were performed in standard precision mode, imposing a
hydrogen bond constraint on the carboxylate group of Glu96. van der
Waals radii of the ligand were scaled to 0.7. One-hundred poses were
collected for each compound, avoiding multiple solutions of similar
poses.

We adopted residue numbering from mature FGF2, which is also
used in the PDB file. The previous work had adopted a different
numbering, with a positive shift of nine units (Leu64, Ala66, Val72,
Glu105, and Leu107).
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Biology Reagents and Cell Cultures. Human recombinant
FGF2 was from Tecnogen (Piana di Monteverna, Caserta, Italy).
Murine Lewis lung carcinoma (LLC), cultured in DMEM plus 10%
heat-inactivated FBS, were provided by R. Giavazzi (Istituto M. Negri,
Milan, Italy). Human H520 cells were obtained from ATCC and
cultured in RPMI plus 10% FBS. Cells were maintained at low passage,
returning to original frozen stocks every 3−4 months, and tested
regularly for Mycoplasma negativity.
Surface Plasmon Resonance (SPR). Compounds 9 and 11 were

analyzed for their capacity to directly bind to immobilized FGF2 using
a BIAcore X-100 apparatus (BIAcore Inc., Piscataway, NJ, USA).
FGF2 (20 μg/mL in 10 mM sodium acetate, pH 6.0) was allowed to
react with a flow cell of a CM5 sensor chip previously activated with a
mixture of 0.2 M N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide
hydrochloride and 0.05 M N-hydroxysuccinimide (35 μL, flow rate 10
μL/min). After ligand immobilization, matrix neutralization was
performed with 1.0 M ethanolamine (pH 8.5) (35 μL, flow rate 10
μL/min) and the activated/deactivated dextran was used as reference
(control) system. Increasing concentrations of 9 and 11 (ranging
between 8 and 150 μM) were injected over the FGF2-coated sensor
chip, and the response was recorded as a function of time-tracking the
SPR intensity change upon binding progression. Injection lasted for 4
min (flow rate 30 μL/min) to allow association to immobilized FGF2
and was followed by 10 min of dissociation; each run was performed in
3% DMSO in PBS and the sensor chip was regenerated with 10 mM
NaOH. The equilibrium (plateau) values of the SPR sensorgrams were
used to build the binding isotherms displayed, after normalization.
Binding isotherm points were fitted with the Langmuir equation for
monovalent binding to evaluate the mass surface dissociation constant,
Kd. The best-fitting procedure was performed with the SigmaPlot 11.0
software package (Systat Software Inc.).
HSPG/FGF/FGFR1 Mediated Cell−Cell Adhesion Assay. This

assay was performed as described with minor modifications.37 Briefly,
wild-type CHO-K1 cells were seeded in 24-well plates at 150 000
cells/cm2. After 24 h, cell monolayers were washed with PBS and
incubated with 3% glutaraldehyde in PBS for 2 h at 4 °C. Fixation was
stopped with 0.1 M glycine, and cells were washed extensively with
PBS. Then, A745-CHO-flg-1A-luc cells (50 000 cells/cm2) were added
to CHO-K1 monolayers in serum-free medium plus 10 mM EDTA
with or without 30 ng/mL of FGF2 in the absence or presence of
increasing concentrations of 1, 11, or 9 dissolved in 3% DMSO. After
2 h of incubation at 37 °C, unattached cells were removed by washing
twice with PBS, A745-CHO-flg-1A-luc cells bound to the CHO-K1
monolayer were solubilized, and luciferase activity was quantified. All
experiments were performed in triplicate.
Western Blotting. LLC cells were treated with FGF2 (30 ng/mL)

in the absence or presence of compound 1, 9, or 11 dissolved in
culture medium and 3% DMSO. After 20 min of incubation, cell
samples were washed in cold PBS and homogenized in RIPA buffer
containing 1% Triton-X100, 0.2% BriJ, 1 mM sodium orthovanadate,
and protease inhibitors cocktail. Protein concentrations were
determined using the Bradford protein assay (Bio-Rad Laboratories,
Milano, Italy). Blotting analysis was performed using antiphospho
FGFR1 (Santa Cruz Biotechnology, Santa Cruz, CA, USA). Equal
loading of the lanes was confirmed by immunoblotting with anti-β-
actin antibody.
Viable Cell Counting. Cells were cultured under appropriate

conditions for 48 h (LLC cells) or 72 h (H520 cells) in the absence or
presence of compound 1, 9, or 11 dissolved in culture medium and 1%
DMSO. Propidium iodide (PI) staining (Immunostep, Salamanca, SP,
EU) was used to detect PI-negative viable cells by flow cytometry.
Absolute cell counts were obtained by the counting function of the
MACSQuant analyzer (Miltenyi Biotec).
In Vivo Studies. Animal experiments were performed in

accordance with the institutional and national guidelines and
regulations. Eight-week-old C57BL/6 mice were injected sc into the
dorsolateral flank with 5 × 105 LLC cells in 200 μL total volume of
PBS. When tumors were palpable, 11 or 9 (both at 7.5 mg/kg) or
vehicle was administered daily by gavage in a 200 μL final volume of
DMSO/H2O (1:1, vol:vol). Tumors were measured in two

dimensions, and tumor volume was calculated according to the
formula V = (D × d2)/2, where D and d are the major and minor
perpendicular tumor diameters, respectively.28 At the end of the
experimental procedure, tumors were harvested, weighed, and
photographed. For the determination of plasma levels of compounds
9 and 11, eight-week-old C57BL76 mice were treated orally with 7.5
mg/kg of each compound and blood samples were collected 30 min, 2
h, and 8 h thereafter for plasma analysis.

Statistical Analyses. Statistical analyses were performed using the
statistical package Prism 5 (GraphPad Software). Student’s t test for
unpaired data (two-tailed) was used to test the probability of
significant differences between two groups of samples. For more than
two groups of samples, data were statistically analyzed with a one-way
analysis of variance, and individual group comparisons were evaluated
by the Bonferroni multiple comparison test. Tumor volume data were
statistically analyzed with a two-way analysis of variance, and individual
group comparisons were evaluated by the Bonferroni correction.
Differences were considered significant when P < 0.05.
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