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ABSTRACT

In this paper the problem of multi-class face segmentation
is introduced. Differently from previous works which only
consider few classes - typically skin and hair - the label set
is extended here to six categories: skin, hair, eyes, nose,
mouth and background. A dataset with 70 images taken from
MIT-CBCL and FEI face databases is manually annotated
and made publicly available!. Three kind of local features -
accounting for color, shape and location - are extracted from
uniformly sampled square patches. A discriminative model
is built with random decision forests and used for classifica-
tion. Many different combinations of features and parameters
are explored to find the best possible model configuration.
Our analysis shows that very good performance (~ 93% in
accuracy) can be achieved with a fairly simple model.

1. INTRODUCTION

Pixel-wise semantic segmentation is a critical topic of mid-
level vision which aims at jointly categorizing and grouping
image regions into coherent parts. Extensive research work
has been carried out on the subject, mainly driven by the PAS-
CAL VOC segmentation challenge [1]. Notwithstanding, a
limited number of works specifically focus on faces.

Indeed, face labeling is potentially of interest in many
situations. Huang et al. [2] showed that simple learning al-
gorithms could be used to predict high-level features, such
as pose, starting from the labeling of a face image into hair,
skin and background regions. In their vision, intermediate
level features such as segmentations, provide important in-
formation for face recognition and are extremely useful in
estimating other charateristics such as gender, age, color of
hair, color of skin, etc. Psychology literature seems to con-
firm their claim, as important facial features extracted from
face regions (forehead, hair) are shown to be informative for
the human visual system in order to recognize the face iden-
tity [3,4].

Moving to different application scenarios, hair modelling,
synthesis, and animation have already become active research
topics in computer graphics [5, 6]. Moreover, face processing
and enhancement applications such as skin smoothing [7],

IThe labeled dataset is downloadable at http://massimomauro.
github.io/FASSEG-dataset/
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Fig. 1. Face segmentation as produced by our algorithm

skin color beautification [8] and virtual make-up [9] began
to appear in literature. In all such applications the precise
knowledge - at pixel level - of face segments is of crucial im-
portance.

1.1. Related work

Several authors have built systems for segmenting hair, skin,
and other face parts [2, 10-13] The work of Yacoob and
Davis [10] is the first work specifically addressing hair label-
ing. The authors build a Gaussian Mixture Model (GMM)
for hair color and then adopt a region growing algorithm to
improve the hair region. Lee et al. [11] extend the GMM
approach by learning six distinct hair styles, and other mix-
ture models to learn color distributions for hair, skin, and
background. Huang et al. [2] use a superpixel-based condi-
tional random field (CRF) [14] trained on images from LFW
dataset [15] to disambiguate among the same classes. Schef-
fler et al. [12] learn color models for hair, skin, background
and clothing, and also introduce a spatial prior for each label.
They combine this information with a CRF that enforces local
label consistency. Finally, Kae et al. [13] propose a GLOC
(GLObal and LOCal) model that combines the strengths of
CRFs and Shape Boltzmann Machines [16] to jointly en-
force local consistency and a proper global shape structure.
To our knowledge, this is the best-performing algorithm for
hair-skin-background segmentation to date.

With respect to state of the art, extending the face cat-
egories into more semantic classes may open new research
scenarios and enhance the performance and the flexibility of
most previously cited applications. E.g., an application for
skin beautification could certainly benefit of a method which
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Fig. 2. Schema of the proposed algorithm described in Section 2.

disambiguates “real” skin from mouth and eyes. For these
reasons, in our work we extend the label set to six classes:
skin, hair, eyes, nose, mouth, and background.

Differently from several previous works which use a gen-
erative mixture model approach, we purely rely on labeled
data and build a discriminative model by using a random for-
est [17] classifier. We classify the image content considering
square patches as processing primitive. We adopt 3 kind of
local features, accounting for color, shape and location. The
spatial cue is combined in two different settings, explained in
Section 2. We investigate the impact of each feature, of its pa-
rameters and of the spatial combination setting in order to find
the best possible configuration. We build - and make publicly
available - a dataset of 70 manually labeled images taken from
the MIT-CBCL [18] and the FEI [19] face databases!. We
analyse the different settings and show that very good perfor-
mance is obtained with a fairly simple model.

The rest of the paper is arranged as follows: in Section 2
we explain our algorithm, in Section 3 we present the dataset
and analyse experimental results, while Section 4 draws con-
clusions and discusses future work.

2. PROPOSED ALGORITHM

A schema of the proposed algorithm is in Fig.2. We divide
the presentation of the algorithm in two parts: patches and
features extractions are described in Subsection 2.1, classifi-
cation and combination with spatial information are explained
in Subsection 2.2.

2.1. Patches and Feature Extraction

Many of the semantic segmentation algorithms work at pixel
or super-pixel level. Here we use square patches as process-
ing primitive: we classify the image content of every patch
and transfer the labeling to the center pixel of the patch. Our
approach enjoy some benefits: information contained in these
patches is more comprehensive than a single pixel. At the
same time, every pixel is classified individually, differently
from a super-pixel approach where a mistake may compro-

mise the classification on the whole super-pixel region. In
both training and testing we rescale the original images to
have a constant height H = 512 pixels while width W is var-
ied accordingly to keep the original image ratio. As a result,
the type of content for a given patch dimension is comparable
for different face images.

We use color and shape local features for our classifica-
tion, combined with spatial information. As color features we
adopt HSV color histograms: hue, saturation, and variance
histograms are concatenated to form a single feature vector.
We explore different parametrizations for the patch dimension
(Dpsy=16x16, 32x32 and 64 x64) and for the number of
histogram bins (Np;,,s = 16, 32 and 64). For each patch we get
afeature vector f}5s, € R*®, f3%,, € R%, or f¥,, € R'?
depending on Ny, s.

To account for shape information we extract the widely
used HOG feature [20], changing the patch dimension among
Dyog = 16x16, 32x32 and 64x64. Using these values
each patch generates feature vectors f354° € R, firno? €
R34 and fi55" € RY64 respectively.

As spatial informations we use the relative location of the
pixel. Given a pixel at position (z,y) the relative location is
defined as fi,. = [xz/W,y/H] € R2.

2.2. Classification with spatial information

Since the classification is performed indipendently at every
location, it consists at labeling every pixel with its maximum-
probability class:

¢ = argmax p(c|C,S,L)
ceC

where C' = {skin, hair, eye, nose, mouth, background}
and random variables C, S, and L are the features fysy
(Color), frroa (Shape) and fj,. (Location) respectively.

We investigate two different settings to integrate the spa-
tial information into the classification: as feature concatena-
tion and as spatial prior. In the first case, the 2D feature f,.
is concatenated to sy and fgog in a unique feature vector
which is given as input to the classifier. In the second case,



Fig. 3. Example of segmentation results. Labeled ground truth on the second line, algorithm output on the third.

Features Settings Accuracy
color + location | Dysv = 16 X 16, Ny;ns = 16, FC-setting 92.27%
color + location | Dusv = 32 X 32, Nyins = 16, FC-setting 91.70%
color + location | Dusv = 64 X 64, Nyns = 16, FC-setting 90.25%

Table 1. Impact of Dy gy color parameter

Features Settings Accuracy
color + location | Dgsy = 16 X 16, Npins = 16, FC-setting 92.03%
color + location | Dgsy = 16 X 16, Npins = 32, FC-setting | 92.27%
color + location | Dgsy = 16 X 16, Npins = 64, FC-setting 91.71%

Table 2. Impact of Ny;,,s color parameter

fi0c 18 used to estimate a spatial prior p(c|L) and then the
classification is performed as:

¢ = argmax p(c|L) - p(c|C, S)
ceC
We use random forests to train the model, exploiting the
C++ ALGLIB [21] implementation.

3. EXPERIMENTS

Our experiments are presented here. The experimental setup
is explained in Subsection 3.1, while Subsection 3.2 and 3.3
contain the analysis and the discussion of results.

3.1. Experimental setup

The dataset we use for training and evaluation is made of
70 frontal face images, taken from the MIT-CBCL and FEI
databases. The faces present a moderate degree of variabil-
ity, as we included people of different ethnicity, gender, and

age. Moreover, faces are not perfectly aligned in position and
scale. This makes the algorithm suitable for performing face
segmentation on the bounding-boxes derived from a previ-
ous face detection. We select a random subset of 20 images
for extracting patches during training, while the remaining 50
images are used for testing. Accuracy is used as performance
metric.

3.2. Results

Impact of HSV parameters. The HSV color feature has two
important parameters to be considered: the patch dimension
Dy sy on which the histogram is computed and the number
of bins Ny, s of the histogram itself. To evaluate the impact
of both, a first stage of experiments is performed by only us-
ing location and color features and ignoring shape. We con-
sider all the 9 combination of values from the sets Dgygy =
{16x16,32x32,64x64} and Np;,s = {16,32,64}. We find
that the best accuracy - 92.27% - is achieved with Dy gy =
16 x 16 and Np;,s = 32. Results are reported in Table 1 and



Features Settings Accuracy
color + shape + location | Dysy = 16 X 16, Npins = 16, Dnoe = 16 x 16, FC-setting 92.44%
color + shape + location | Dgsy = 16 X 16, Npins = 16, Drnog = 32 x 32, FC-setting 92.82%
color + shape + location | Drsy = 16 X 16, Npins = 16, Dnoc = 64 x 64, FC-setting 92.95%

Table 3. Impact of Do shape parameter

Features Settings Accuracy
color + shape + location | Drsy = 16 X 16, Nyins = 16, Duoc = 16 x 16, FC-setting 92.44%
color + shape + location | Dysy = 16 X 16, Npins = 16, Duoc = 16 x 16, SP-setting 91.20%
color + shape + location | Drsy = 16 X 16, Npins = 16, Duoa = 32 x 32, FC-setting 92.82%
color + shape + location | Dgysy = 16 X 16, Npins = 16, Duoc = 32 X 32, SP-setting 91.27%
color + shape + location | Dysy = 16 X 16, Npins = 16, Dpoc = 64 x 64, FC-setting | 92.95%
color + shape + location | Dgysy = 16 X 16, Npins = 16, Dnoc = 64 X 64, SP-setting 91.67%

Table 4. Impact of spatial setting

2. Feature concatenation (FC) setting is used for the inclusion
of spatial information.

Impact of HOG feature and parameters. We then introduce
HOG feature and run a second stage of experiments to evalu-
ate the impact of the patch dimension D og. We find that the
best accuracy - 92.95% - is achieved with Dyog = 64 x 64
and FC-setting. Results are reported in Table 3.

Impact of spatial setting. We run all previous tests by us-
ing both the feature concatenation and the spatial prior (SP)
settings for the location feature. In Table 4 we show the re-
sults obtained in the two cases with different feature and pa-
rameter configurations. Results highlight that the FC-setting
constantly outperforms the SP-setting in terms of accuracy.

3.3. Discussion of results.

A few considerations emerge from the results. The first is that
the right choice of features and parameters matters. Among
all the configurations we experimented there is indeed a big
difference between the worst - which has an accuracy of
79.89% (not shown here) - and the best, which achieves
92.95% and is obtained with Dy gy = 16 X 16, Npins = 32,
Dpyog = 64 x 64, and FC-setting.

A second observation is that the HOG feature boosts the
accuracy from 92.27% to 92.95%. This may seem a small im-
provement, but it corresponds to a 9% reduction in error rate.
Moreover, the classes which benefit the most from the intro-
duction of HOG are eyes, nose and mouth, which are mostly
distinguishable from their shape. Since these classes are the
least frequent, they have a smaller impact on the accuracy.

A third and last note is that, though the overall accuracy
of FC spatial setting is always higher, for certain classes the
SP-setting performs better. In Table 5 and 6 we show the
confusion matrices corresponding to the best possible config-
uration in the FC and SP settings respectively. Such results
highlight that if we are more interested in the skin region, the
SP-setting could be preferable, as it improves the accuracy for
the skin category from 93.39% to 96.61%.

Predicted class

skin hair eyes nose mouth | back

skin 93.39 | 5.19 | 0.64 | 0.06 0.26 5.19

] hair 3.17 | 95.14 | 0.11 0.00 0.00 1.58

—3 eyes 1524 | 255 | 822 | 0.00 0.00 0.00

1 nose 68.08 0.29 1.24 | 29.83 0.54 0.00

& [ mouth | 2947 | 002 | 0.26 | 0.00 70.23 0.00

back 2.46 5.02 | 0.00 | 0.00 0.00 92.50
Table 5. Best results in the FC spatial setting

Predicted class

skin hair eyes nose | mouth | back

skin 96.61 | 2.75 0.3 0.00 0.14 0.19

2 hair 7.59 | 91.84 | 0.01 0.00 0.00 0.56

% eyes 35.77 1.64 | 62.59 | 0.00 0.00 0.00

2 | nose 97.00 | 0.00 0.00 | 3.00 0.00 0.00

& [ mouth | 533 0.00 0.00 | 0.00 | 46.97 0.00

back 3.65 12.64 | 0.00 | 0.00 0.00 83.71

Table 6. Best results in the SP spatial setting

4. CONCLUSION AND FUTURE WORK

In this work we introduce the problem of multi-class seman-
tic segmentation of faces. For the purpose, we collect and
make publicly availble a dataset of 70 face images taken from
FEI and MIT-CBCL face databases. We use such database for
training a discriminative model and propose a simple yet ef-
fective algorithm for segmentation. Exploring various config-
urations of color, shape and location features we can achieve
a pixel labeling accuracy of 92.95%.

A few research directions are planned as future work.
First, we aim to extend our dataset and method to support
a higher level of variability, especially regarding face pose
and orientation. Second, we intend to integrate our estimated
pixel probabilities into a CRF with smoothness-based priors,
in order to enhance the local labeling consistency. Lastly,
we plan to combine our method with the result of rigid part
detectors to improve the accuracy for the most problematic
classes, such as eyes, nose and mouth.
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