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Abstract

BACKGROUND: Bemisia tabaci is a serious pest of agricultural and horticultural crops in greenhouses and fields around the world.
This paper deals with the distribution of the pest under field conditions. In Europe, the insect is currently found in coastal regions
of Mediterranean countries where it is subject to quarantine regulations. To assess the risk presented by B. tabaci to Europe, the
area of potential establishment of this insect, in light of the climate change scenario, was assessed by a temperature-dependent
physiologically based demographic model (PBDM).

RESULTS: The simulated potential distribution under current climate conditions has been successfully validated with the
available field records of B. tabaci in Europe. Considering climate change scenarios of +1 and +2 °C, range expansion by B. tabaci
is predicted, particularly in Spain, France, Italy, Greece and along the Adriatic coast of the Balkans. Nonetheless, even under
the scenario of +2 °C, northern European countries are not likely to be at risk of B. tabaci establishment because of climatic
limitations.

CONCLUSION: Model validation with field observations and evaluation of uncertainties associated with model parameter
variability support the reliability of model results. The PBDM developed here can be applied to other organisms and offers

significant advantages for assessing the potential distribution of invasive species.
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1 INTRODUCTION

Bemisia tabaci is a serious pest of agricultural and horticultural
crops cultivated in tropical and subtropical climates around the
world. A genetic analysis of world populations of B. tabaci revealed
that it is a cryptic species complex composed of 11 well-defined
genetic groups comprising more than 28 distinct species.'> The
global status of B. tabaci as a pest refers mainly to two species:
MEAM1 (formerly named biotype B) and Med (formerly named
biotype Q), which are highly polyphagous, highly invasive and
distributed worldwide, including the coastal regions of Mediter-
ranean countries of Europe. Notwithstanding the major signifi-
cance of MEAM1 and Med, other B. tabaci species can also be
important agricultural pests and be particularly damaging by
transmitting viruses causing serious crop diseases.®~8

B. tabaci occurrence in open fields in Europe is currently
restricted to coastal regions of Mediterranean countries. Because
of its worldwide occurrence as a major pest and the intensive
global movement of agricultural and horticultural commodities,
there is an inherent threat of B. tabaci and its associated viruses
arriving from outside Europe. The pest and the viruses it transmits
are currently subject to quarantine regulations within Europe,
aimed at preventing introductions of B. tabaci and associated
viruses and the further spread of existing populations. Conse-
quently, a pest risk analysis (PRA) of B. tabaci to plant health
in Europe was conducted by the Panel on Plant Health of the

European Food Safety Authority (EFSA) at the request of the
European Commission.’ The present study was initiated to help
the EFSA PRA by providing a map of the potential distribution of
B. tabaci under extant weather and its range expansion in the face
of climate change. Temperature is the major environmental vari-
able that influences the development, survival and reproduction®
and dynamics of B. tabaci populations, and its potential geo-
graphic range. Expansion of the pest northwards is thought to
be limited by low temperatures, explaining why countries in the
north of Europe are considered potentially pest-free areas, but
this could change under the effect of climate variability.
Evaluation of the impact of climate variability on potential range
expansion of invasive alien species requires the use of appropri-
ate methodologies. Common correlative methods used to predict
the geographic distribution of invasive alien species are classed as
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ecological niche models (ENMs) which attempt to characterise the
ecological niche of a species on the basis of weather and other fac-
tors in the species’ native range. With restrictions, ENMs can also be
used to estimate the potential invasiveness of the species in new
areas. These methods include statistical models (e.g. GARP), phys-
iological indexes (e.g. CLIMEX), artificial intelligence (e.g. MaxEnt)
and other methods reviewed by Elith and Leathwick'! and Gutier-
rez etal.’? Empirical or statistical modelling approaches used to
estimate the potential establishment of invasive alien species pro-
vide useful insight when the relationships within the systems are
insufficiently known. However, simplified statistical and correla-
tive models may lead to incorrect interpretation of the effects of
environmental forcing variables on population dynamics. Integra-
tive processes that give rise to counterintuitive population system
responses may occur, and consequently the population dynamical
patterns arising may not be simply interpretable in terms of linear
responses to change in the environmental forcing variables.™

Mechanistic approaches are preferable when the underlying
functional mechanisms of the processes are known in sufficient
detail. Mechanistic models are crucial to evaluate the effects
of biological and ecological processes on population dynam-
ics, especially in complex systems characterised by non-linearity
and acting over a wide range of space and time, as is the
case when evaluating the effects of climate variation.'~® Mech-
anistic approaches based on physiologically based population
dynamics models (PBDMs'?) allow fine-scale predictions of the
potential distribution using ecologically meaningful state vari-
ables directly related to the pest (population number or biomass).
PBDMs have significant implications for the projection of pop-
ulation distribution and dynamics under climate change sce-
narios. These models take into account non-linear relationships
between environmental forcing variables (e.g. temperature) and
biological processes, so that population dynamics can be realis-
tically described in sufficient detail, allowing the exploration of
complex scenarios in which no simple (i.e. linear) conclusions
can be drawn.

This paper reports on the development of an age-structured
population model describing the local temporal dynamics of B.
tabaci MEAM1 under current climatic conditions. The model sim-
ulates the population dynamics at the nodes (i.e. local dynamics)
of a gridded map of Europe. Simulation data on whitefly popu-
lation dynamics driven by extant temperature are used to define
prospectively the potential distribution of the whitefly in Europe.
The potential distribution is validated by comparison with data on
the current field distribution of B. tabaci. Change in the average
local population abundance and in the area of potential distribu-
tion are then investigated, considering variability in population
dynamics owing to variability observed in the data used to develop
the model. Finally, systematic perturbations of temperature of +1
and +2 °C are used to simulate the effects of climate change on
the potential abundance and distribution of B. tabaci.

2 METHODS

2.1 Model structure

A lattice PBDM was used to describe the population dynamics of B.
tabaciin Europe ona 25 x 25 km grid. Two developmental stages of
the insect were considered: immature (egg, nymphal instars) and
reproductive adult. At each node of the grid, the population abun-
dance of immature and adult stages was calculated using a PBDM,
mathematically represented by von Foerster equations,’”” =2 the
details of which are stated in Appendix 1.

In the model, population dynamics is the outcome of the
three fundamental demographic processes: development, mortal-
ity and fecundity regulated by rate functions (also known as biode-
mographic functions) that depend on environmental variables. In
this first approximation, temperature was considered as the most
important environmental forcing variable because of its main role
in regulating the rate of biophysical processes in heterotherm
species such as B. tabaci. Further relevant variables, including the
host plant, could be easily introduced into the model.'?

The daily rate of development as a function of temperature
defines the change in physiological age within immature stage
and adult stage (ageing process). The mortality rate function
is the daily rate of individuals leaving the system owing to
temperature-dependent intrinsic mortality.’”® The fecundity rate
function is the daily number of eggs produced by a reproduc-
tive female and describes the flux from the adult stage into the
immature stage. Functional forms of development, mortality and
fecundity rate functions are detailed in Appendix 2. Parameters for
these functions were estimated for each stage of the population
by fitting literature data for B. tabaci MEAM 1 using a non-linear
least-squares regression method. This method also allowed esti-
mation of the confidence bands for the biodemographic functions
(Appendix 2).

Population abundance N,-j(t) at each stage i in cell j at time t
was obtained by considering a discretisation of the von Foerster
Equations.?®2" The model simulates an entire year of B. tabaci
population dynamics with a time step of 1 h. This small time
interval guarantees convergence of the discretised von Foerster
equations. The initial condition for whitefly is 0.1 adults plant=' on
1 March. From N,(t), an index was derived for population pressure
related to average population abundance defined as the average
number of adults per plant and time unit calculated for the period
of the year during which the abundance of adults was above a
threshold of 1 adult plant™'. The index values were then mapped
to visualise the area of potential establishment under the current
climatic conditions and under two climate change scenarios.

2.2 Dataand parameter estimation
Biodemographic parameters for B. tabaci MEAM1 were obtained
from available literature on life history studies.??~°2 Most ref-
erences considered a dependence of life history traits on
temperature as well as on host plant. The present authors only
considered the dependence of biodemographic functions on
temperature, and host plant as well as other factors (e.g. the origin
of the experimental population) are regarded as components con-
tributing to experimental heterogeneity. For precision, only data
from reports in which the taxonomic identity of the experimental
population was clearly determined were considered.
Meteorological variables are the fundamental driving forces for
B.tabaci population dynamics. The climatological data input of the
model was retrieved from the WORLDCLIM database (University
of California at Berkeley, http://www.worldclim.org/)>® contain-
ing the monthly mean of minimum and maximum temperatures
for the period 1950-2000. The WORLDCLIM database consists of
gridded data assembled from a large number of sources, includ-
ing: (i) the Global Historical Climate Network Dataset (GHCN),
v.2. (http://www.ncdc.noaa.gov/pub/data/ghcn/v2); (i) the clima-
tological normals (CLINO) for 1961-1990 (WMO, 1996); (iii) FAO-
CLIM 2.0, the global climate database (FAO, 2001). For simulation
of population dynamics in Europe, the original world grid was
restricted to the area —11-41° E, 30-73° N. The climate data cal-
culated for such a long reference period express a robust average
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temperature input for the model. From the WORLDCLIM database,
maximum and minimum monthly temperatures were obtained for
each node of the grid. Subsequently, an interpolation model con-
sidering geographic position and astronomic data was used to
obtain the hourly temperatures at each node (see Appendix 3).

Model validation was done with all records of B. tabaci presence
in Europe and studies on the geographical distribution of the
insects taken into account>*~74 The model performance was
evaluated by superimposing the locations of B. tabaci findings in
Europe, as reported in the literature,>*~7% on the map of model
prediction of B. tabaci occurrence.

2.3 Scenario analysis

2.3.1 Exploring biological variability

Literature data on development, survival and fecundity
temperature-dependent rates of B. tabaci are affected by the
heterogeneity inherent in the different experimental datasets,
including biological variability. To take into account variations in
biodemographic functions, the 95% confidence bands of the esti-
mated development, mortality and fecundity rate functions were
estimated (see Appendix 2). A commonly used approach to intro-
ducing variability into a model is to apply a Monte Carlo method
performing various simulations of population dynamics by vary-
ing development, survival and fecundity rate functions in the
confidence band regions, and to use these estimates to compute
the mean of the simulated abundances. The high computational

40 9 & 7 6 5 -4 3 2 A 0 A

complexity of the present system, however, made this method
inapplicable, and consequently only two extreme situations were
considered here: (i) the lower bound and (ii) the upper bound of
the confidence band for development, survival and fecundity rate
functions. The distribution area simulated using the Monte Carlo
approach was expected to fall between these two extreme cases.

2.3.2  Exploring climate change

Climate scenarios generally consider changes in temperature for
time horizons far beyond that of risk assessment analyses. Pro-
jections on temperature changes, based on global climate mod-
els (GCMs), are subject to uncertainty. This uncertainty is low on
a global scale, but with decreasing scale, i.e. on a continental or
regional scale, errors increase.”> Thus, the reliability of scenarios
on future spatial and temporal patterns of temperature is strongly
affected, and this also disturbs an analysis of B. tabaci popula-
tion dynamics following temperature change. Sensitivity analysis
in PBDMs driven by meteorological variables'® can be carried out,
imposing perturbation to time series of weather data by means
of stochastic methods’® or deterministic methods modifying the
dataset with predefined changing factors.”” The latter approach
has been adopted here, and the forcing variable (temperature) was
systematically perturbed by adding 1 and 2 °C to the hourly tem-
peratures derived from the current climate average at each node
for the selected temporal horizon. Further explanation and justi-
fication are given in Appendix 4. To assess the impact of climate
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Figure 1. Spatial distribution of the simulated B. tabaci population pressure in Europe, starting from an initial condition of 0.1 individuals plant=" on 1
March, compared with field data (circles). Population pressure is the average number of adults per plant and time unit calculated for the period of the year

in which the adult abundance is over 1 individual plant~".
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change on whitefly population dynamics, a time horizon of 20
years was considered.

3 RESULTS

3.1 Model validation and delineating the potential
distribution of B. tabaci in Europe

The model output obtained under current climate conditions is
validated by superposing the available information on the distri-
bution of open field records of B. tabaci in Europe® on the map
of the prospective spatial distribution of the B. tabaci population
pressure index (Fig. 1). The simulated distribution of B. tabaci satis-
factorily corresponds to the observed distribution, as all recorded
findings fall within the predicted area of the potential establish-
ment forecast by the model. Some discrepancies may result from
the 25 x 25 km spatial resolution in the simulation based on tem-
perature estimated at the node of a cell.

Simulation results presented in Fig. 1 depict the area of poten-
tial establishment for B. tabaci in Europe, and indicate areas with a
population pressure greater than zero. Prospectively, B. tabaci solid
establishment is expected in the Mediterranean coastal areas and
in the interior regions of Spain (red). Limited presence, indicated
by very low population abundance (blue), is expected in south-
ern France, in some areas of northern Italy and in some regions of
the Balkans, suggesting low favourability. Note that intermediate
values are very rare. Further, it is not expected that B. tabaci will
expand its distribution to colonise regions outside this coloured
region because of the lower temperatures prevailing in central

A0 9 B 7 6 5 4 3 2 4 0 1

northern regions of Europe, particularly during winter. Thus, coun-
tries in the north of Europe (white area in Fig. 1) can be considered
to be beyond the climatic limits of the pest.

A further characteristic associated with the potential establish-
ment is the fraction of the year in which adult whitefly abun-
dance is above a given threshold. Considering a threshold level of
1 adult plant™, the fraction of the year in which the populations
are potentially active is computed at each node of the grid, and
results are mapped in Fig. 2. In most of the area of potential estab-
lishment, the whitefly is expected to be active only 3-5 months of
the year. Only in the warmer areas of southern Europe is the white-
fly active for 7 months, in contrast to 1-3 months in the northern
limits of its distribution.

Uncertainty associated with experimental heterogeneity was
included in the model by considering the upper and lower limits
of the 95% confidence bands of the biodemographic functions
estimated by literature data (Figs 3 and 4). When the lower bounds
for development, survival and fecundity were considered, the
potential distribution of B. tabaci was greatly reduced. The whitefly
distribution remained limited to the European Mediterranean
coastal areas and partly to central Spain, with only lower values
of population pressure (Fig. 3). In this case the simulated area of
potential establishment was far smaller than the area of current
distribution (see the circles in Fig. 1).

Using the worst-case scenario, where the upper limits for devel-
opment, survival and fecundity are considered, the area of poten-
tial establishment increased and, with it, the putative population
density and level of infestation. This is shown by a sharp increase
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Figure 2. Fraction of the year in which the simulated abundance of B. tabaci adults is above the threshold of 1 adult plant~'.
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Figure 3. Spatial distribution of the simulated B. tabaci population pressure in Europe, starting from an initial condition of 0.1 individuals plant™' on 1
March, and considering lower limits of 95% confidence bands for development, survival and fecundity rate functions. Population pressure is the average
number of adults per plant and time unit calculated for the period of the year in which the adult abundance is over 1 individual plant™".

in the whitefly population pressure index (red) in areas where the
insect is established (Fig. 4), and also by an expansion of its poten-
tial range generally (e.g. the Balkans). Nonetheless, countries in
northern Europe (white) are not in the expanded range and hence
not at risk that B. tabaci might establish.

3.2 Exploring the consequences of climate change scenarios
Simulating temperature increases of 1 and 2 °C, expansion of
the areas currently invaded by B. tabaci is predicted (Figs 5 and
6). Further spread and an increase in abundance are expected,
particularly in Spain, France, Italy, Greece and along the Adriatic
coast of the Balkans. Apart from small areas in southern Germany
and patches in Poland that are prospectively suitable for insect
development (Fig. 6), B. tabaci is not expected to establish in such
isolated areas. Even under a climatic change scenario of +2 °C,
northern European countries are not likely to be suitable for B.
tabaci establishment because of adverse conditions, in particular
low winter temperatures.

4 DISCUSSION AND CONCLUSIONS

Several population models that can be helpful to predict the
potential establishment of B. tabaci have been developed
in the past years (for review, see Naranjo etal.'®). The mod-
els integrate biological and ecological knowledge and are
temperature-dependent’®’® or spatiotemporal models,48 or

aim at predicting population abundance®' =% to support pest
management tactics and strategies or to explain the role of
different parasitoids in the biological control of whitefly.

With respect to the models on B. tabaci previously developed,
the model proposed here is novel in that it considers biological
uncertainties in the projection of the population dynamics and dis-
tribution. The model accounts for the biological variation in life
history traits of the organism related to heterogeneity characteris-
ing different experimental datasets reported in the literature. The
model has also been used to explore the effects of climate change
on the potential establishment of B. tabaci.

For model development, sufficient information on the biolog-
ical characteristics of B. tabaci, from life history data to vector
transmission capacity, is available. Because of their significance,
most studies have focused on the former B. tabaci biotypes B
(MEAMT) and Q (Med). In the initial phase of model develop-
ment, the estimated biodemographic functions for MEAM1 and
Med were compared, and it was found that only the number of
eggs laid per female was generally higher in MEAM1 than for
Med species, while development and mortality rates were very
similar for the two species. Because significantly more literature
references were available for MEAM1, only data for this species
were used for model parameter estimation. Based on its biodemo-
graphic performances, the present authors consider that MEAM1
has prospectively a wider area of potential establishment and
reaches higher average densities. The fact that the Med species
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Figure 4. Spatial distribution of the simulated B. tabaci population pressure in Europe, starting from an initial condition of 0.1 individuals plant™" on 1
March, and considering upper limits of 95% confidence bands for development, survival and fecundity rate functions. Population pressure is the average
number of adults per plant and time unit calculated for the period of the year in which the adult abundance is over 1 individual plant™".
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could take advantage of its resistance to pesticides would not
affect the projection of its potential prospective range as a func-
tion of climate.

For the purpose of the PRA, the goal of which was to assess
the establishment and spread of B. tabaci in Europe, the model
predictions for the area suitable for establishment (Fig. 1) matched
well with those locations where B. tabaci has been reported. The
regions in Fig. 1 that are highlighted (blue-red) in the graphical
presentation of the model correspond to the regions in Europe
where B. tabaci is known to occur. This was taken as reasonable
proof of the model’s validity. The blue areas in Fig. 1 represent
the outermost limits of the B. tabaci possible range and thus
demarcates the borders of the area of establishment. Northward,
beyond that boundary, B. tabaci cannot establish because low
temperatures are limiting. Insects introduced into these areas, i.e.
with plant materials, may survive under conducive conditions (in
summer or in greenhouses), even lay eggs and develop locally
for a few generations, but adverse autumn/winter conditions will
prevent establishment.

It can be assumed that B. tabaci species around the world have
temperature requirements similar to those of MEAM1 or Med,
and hence it is unlikely that B. tabaci species other than Med
and MEAM1 could invade and establish in locations outside areas
in which B. tabaci MEAM1 and Med have established. Therefore,
based on biological data for B. tabaci MEAM1, the model probably
captures what is probably the worst-case scenario in terms of the
potential establishment and spread.

The results of model validation and the exploration of model
parameters made it possible to consider the uncertainties asso-
ciated with the definition of the area of potential establishment
of B. tabaci. Choosing model parameters less favourable to B.
tabaci population dynamics results in a significant reduction in
the area of potential establishment. However, this projected dis-
tribution was far less than the observed distribution in Europe,
making this scenario very unlikely. When highest survival, devel-
opment and fecundity for B. tabaci were used in the model,
the geographic range of the pest expanded significantly into
northern Europe. The area predicted in the worst-case scenario
of parameter exploration corresponded well to a +2 °C climate
change increase in temperature, which makes the worst-case sce-
nario unlikely. Considering that (i) the simulated area suitable
for establishment that was obtained with the estimated parame-
ters matched well with those locations where B. tabaci has been
reported, and (ii) the probability associated with the scenario less
favourable to B. tabaci is very low and the probability associated
with the scenario more favourable to B. tabaci is low, the authors
conclude that the estimated biodemographic curves are reliable
and the model is only slightly affected by biological parameter
uncertainty.

Exploration of the effect of the climate change scenario revealed
that, even when a systematic perturbation of +1 and +2 °C
is added to the current climate, northern European countries
are unlikely areas for B. tabaci establishment because of limiting
thermal conditions. In northern European countries with extensive
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greenhouse agriculture, spread from greenhouse areas to the field
will be only seasonal.

PBDMs such as the one developed here for the study of the
potential establishment of B. tabaci can be applied to other organ-
isms and offer significant advantages, especially when the poten-
tial distribution of invasive alien species is to be assessed. Because
PBDMs are mechanistic, demographic processes of invasion can
be explained from life history strategies described at the individ-
ual level."”-'* PBDM:s are transparent, and the biologically relevant
features used to project the population dynamics are mathemat-
ically described in detail. PBDMs are based on well-recognised
and accepted models in mathematical population ecology, and,
because they are realistic and flexible, they can be applied to a
variety of species and systematic groups.'? Because PBDMs are bio-
physical models, they can consider how the physiology related to
life history strategies is conditioned by biotic and abiotic environ-
mental variables. A further great advantage of using PBDMs is that
they permit assessment and quantification of sources of variability
and uncertainty.2*8> PBDMs produce quantitative outputs (num-
bers or biomass), and the information on the spatiotemporal pop-
ulation abundance is biologically meaningful because it can be
directly related to impact or used to define ecological properties
of populations such as resistance and resilience, or to predict the
effect of perturbations (e.g. environmental and biological stochas-
ticity). Assessing population development/abundance is also fun-
damental to the design of pest management strategy and tactics.
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APPENDIX 1

Model equations
In the model presented here, the population structure of B. tabaci
is composed of two stages: immature and adult. Denote by x the
physiological age of an individual, i.e. the percentage of develop-
ment in a stage, and by ¢/(t, x) dx the number of individuals at
stage i at time t with physiological age in (x, x + dx),i=1,2 (i =
1 for immature and i = 2 for adult).

The population dynamics is described by the system of von
Foerster equations

o' (t, %) +ol () o' (t, %)

"¢ (t,x)=0 0,1],i=1,2
o o +u P (tx)=0, xe(0,1],i=1,

with the boundary conditions

o (P ,0)=F (@), i=1,2
and the initial conditions
P Ox0=¢x, i=12

where ¢'(t) and 4/(t) are development and mortality rate, respec-
tively, depending on time through temperature, and $’ (x) is the
initial distribution for stage i.

The egg production flux, F'(t), is given by

1
F'(t) = / 7 (t) fec (t) ¢? (t,x) dx
0

Table A1. Parameters of the immature and adult development rate
function

a Tine (°C) TSLIID (°Q)
Immature 0.00003502 9.67 37.05
Adult 0.00005112 12.07 36.26

where fec(t) is the number of eggs produced by a female in the
time unit and depends on time through temperature, and #(t) is a
function dependent on adult development rate.

The flux of individuals from stage 1 to stage 2, F%(t), is given by

FPt)=c ' 1)

For more details on von Foerster equations in population
dynamics, see Hoppensteadt,®® Curry and Feldman,'® Metz and
Diekmann'® and Di Cola et al.?° For a discretisation of von Foerster
equations to solve the problem numerically, see Di Cola et al.?®
and Buffoni and Pasquali.?!

APPENDIX 2

Biodemographic functions and parameter estimation

Development rate function

Different development rate functions have been reported for
B. tabaci in the literature: Bonato etal?®* used a Logan func-
tion, while in Mufiz and Nombela®® the development rate
function of B. tabaci was described using a Lactin function.
For the functional form of the Logan and Lactin functions, see
Kontodimas et al.®” Here, the development rate function is mod-
elled using the function proposed by Briere etal.®® because
of the advantages it offers in terms of interpolation of the
experimental data:

o(T)=dl (T_Tinf) Tsup_T

Data collected in the literature are fitted with the function
o(T) using the nlinfit MATLAB function based on a non-linear
least-squares regression method. The estimated parameters a, T,
and T, for the immature and adult are reported in Table A1.
For the adult stage, development has to be interpreted in terms
of ageing, and the development period defines the maximum
lifespan of the adult.

The MATLAB tool nlintool for non-linear fitting and predic-
tion makes it possible to obtain the 95% confidence bands for
the estimated curves on the basis of published data on devel-
oped rate (development period~") at different temperatures. Con-
fidence bands are useful when considering the effect of experi-
mental heterogeneity in the model. The 95% confidence bands
are reported in Fig. A1 for immature and adult development rate
functions.

Mortality rate function
A finite survival rate function of the polynomial type

sur(T) =p, T +p,T+p;

wileyonlinelibrary.com/journal/ps
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Figure A1. Estimated development rate curves (continuous lines, in day~") as a function of temperature (in °C) with 95% confidence bands (dotted lines)

for immature (left) and adult (right).

Table A2. Parameters of the survival rate function for immature and
adult

4 P2 p3
Immature —0.002194 0.0997 —-0.4587
Adult —0.003227 0.1549 —1.3541

is considered, where p;, p, and p, are constants that have to be
estimated. The temperature-dependent mortality rate function is
given by

—o (T) - log [sur (T)] forT € [Tinss Toup)
=0 (Ti) - log [sur (Tipg)| (T =T+ 1) for T < Ty
—0 (Top) - log [sur (Top)| (T =Ty + 1) for T> T,

u(l) =

where o(T) is the development rate function described above.

The mortality rate function is defined piecewise. In the interval
between the two development thresholds [T, ., T ], the definition
depends on the development rate function. Outside this interval,
the mortality rate is a function that increases as the temperature
increases (for T > T,,,) or decreases (for T < T).

Owing to the density dependence regulation, the mortality has
a further term depending on the number of individuals when
the population abundance is greater than the threshold of 100
individuals. The temperature- and density-dependent mortality
rate function m(T) is defined as follows:

{y(T) if N (t) < 100
m(T)=0.03+ )
u(T){0.6log [N (t) — 100+ 1]+ 1} if N(t) > 100
where N(t) is the total population at time t per spatial unit (single
plant).

The survival rate functions for immature and adult were esti-
mated by fitting all the data reported in the literature using the
nlinfit MATLAB function. The best fit ofimmature and adult survival
was obtained using the values of parameters of survival function
indicated in Table A2. For immature T, = 10, T, = 37.049, for
adults T,\; =124, T, = 36.259.

The 95% confidence bands for immature and adult survival
functions are obtained using MATLAB nlintool. Survival curves
(continuous lines) with 95% confidence bands are reported in
Fig. A2.

Fecundity rate function
The number of eggs per female is represented by the function'®

T_Tmin_Tmid :
fec(T) = a max |1 - ( —22—"2) .0

mid

where a, T, and T, are constants that have to be estimated.

By fitting all the data from the literature by means of the nlinfit
MATLAB function, the parameters in Table A3 are obtained.

MATLAB nlintool makes it possible to obtain the 95% confidence
bands for the estimated fecundity presented in Fig. A3.

Appendix 3

Hourly temperature reconstruction

Starting from the WORLDCLIM database of monthly maximumand
minimum temperature averages, hourly temperatures have been
reconstructed.

The algorithm used for reconstruction is based on the equation
published in de Wit.8 As a first step, the daily maximum and mini-
mum temperatures have been obtained, fitting the monthly max-
imum and minimum temperatures by a third-order polynomial.

Denote by T, and T,,,, the minimum and the maximum tem-
peratures of the current day, by T,,,,, , the maximum temperature
of the previous day, and by T,,,,, . the minimum temperature of the
next day. Let hlev be the time of sunrise. The temperature at hour
h is given by®°

7'max,1 +Tmin Tmax,1 —Tmin z(h+10)
<
2 2 hlev+10 0= h < hlev
T (h) = 4 InextTmin _ Tmax=Tmin g | 2th=hlev) hlev <h < 14
2 2 14—hlev
7'ma\><+7—min+] Tmax’Tmin_H cos n(h—14) 14 < h <24
2 2 hlev+10
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Table A3. Parameters of the fecundity rate functions

a Tonin CQ) Tiia Q)

143.53 13.42 11.11

200 T T T T T T

8
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8

8 & 8 8

(=}

Temperature (°C)

Figure A3. Estimated fecundity rate curve (continuous lines, in eggs
female~! day~") as a function of temperature (in °C) with 95% confidence
bands (dotted lines).

Itis assumed that the maximum temperature occurs at 2:00 p.m.,
and the minimum temperature at sunrise.

APPENDIX 4

Exploration of climatic scenarios

Climate scenarios are frequently used for the analysis of biological
and ecological system responses to change in environmental
forcing variables. Nonetheless, projections carried out by GCMs
are subject to inaccuracies of different kinds. Maslin and Austin®
signalled a paradox arising from continuous increasing climate

model complexity (more equations and parameters that describe
processes). This feature brings increasing uncertainties in model
projections. Regional downscaling emphasises uncertainties on
the local scale, and model outputs sometimes give very different
indications.

Hence, to avoid the uncertainties resulting from these inaccura-
cies, the present authors adopted a simpler approach based on a
systematic perturbation of time series of temperature to analyse
the responses of the B. tabaci population dynamics model to tem-
perature change.

The climate models outputs (used to generate climate
scenarios) have been verified by the IPCC (IPCC, 2007:
http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ ch8s8-1
-2-1.html) and by researchers from other research institutions and
organisations. Results of these verifications show that climate
model outputs do not provide a deterministic forecast, but rather
only a probabilistic range of values of meteorological driving
variables (IPCC 2007, IPCC-TGICA, 2007: http://www.ipcc-data.org/
guidelines/TGICA_guidance_sdciaa_v2_final.pdf).

The verification of climate models for the last 150 years, per-
formed by Anagnostopoulos et al.,’' found uncertainties in mean
values and standard deviation of yearly mean temperatures. In par-
ticular, the interannual fluctuations of temperature are strongly
smoothed in climate models with respect to the observations. The
uncertainties on temperature (mean and standard deviation) are
low on the global scale, but errors increase at the continental or
lower scale.”

The highlighted uncertainties in climate model outputs strongly
affect the possibility of obtaining reliable scenarios on future spa-
tial and temporal patterns of temperature for the purpose of the
analysis of B. tabaci population dynamics in response to tempera-
ture change. The sensitivity analysis of B. tabaci population dynam-
ics to temperature performed here is based on a perturbation
approach in which the forcing variable (temperature) is perturbed
by adding 1 and 2 °C to calculated hourly temperature. The ther-
mal perturbation is considered for a 20 year timescale.

The worst-case scenario, a temperature perturbation of +2 °C,
is the outcome of an analysis of the last 50 years of Euro-
pean climate. In particular, from second half of the 1980s, the
Euro-Mediterranean area has been affected by an abrupt climatic
change due to a trajectory reconfiguration of the westerlies. On a
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macro scale, this phenomenon has been highlighted by the strong
positive values of the NAO index (North Atlantic Oscillation),
beginning in the second half of the 1980s.%2~°* Moreover, the his-
torical recurrence of phases with persistent positive NAO values in
the last millennium has also been highlighted by means of suit-
able paleoclimatic proxies.” This change in circulation caused an
abruptincrease of +1 °Cin yearly mean temperature (1988-2010)
relative to the 1973-1987 period.”® On a lower spatial scale
(regional) and during the spring period, the thermal anomaly rose
to 2 °C. On the basis of this evidence, it was assumed that a similar
kind of circulation change might happen in the next 20 years.

Another important point supporting the choice of +2 °C as
the temperature perturbation is the consistency of this value
with climate projections. The major part of these projections is
based on increased concentrations of greenhouse gases on a long
timescale. An increase in temperature in the range 1.4-5.8 °C by
the year 2100 has been obtained for a stable CO, increase (IPCC,
2007), or 1.5-4.5 °C for a doubling of atmospheric CO, concen-
tration (otherwise known as the ‘equilibrium climate sensitivity’,
see IPCC-TGICA, 2007). These projections are referred to a very
long timespan, and hence the results cannot be interpolated for
a period of 20 years.

A valid support to +2 °C as the temperature perturbation
is obtained from short-term climate projections referred to
Europe. For example, the chosen perturbation is consistent
with a projection provided by the PESETA Project (http://peseta.
jrc.ec.europa.eu/docs/ClimateModel.html). This project considers
change in thermal and rainfall patterns from 2010 to 2040. Projec-
tions have been obtained from the model RCA3/ECHAMS5 of the
Danish Meteorological Institute [project PRUDENCE: Prediction
of Regional scenarios and Uncertainties for Defining European
Climate change Risks and Effects (http://prudence.dmi.dk/)]. The
PESETA Project estimates a rise in temperature of +3 °C in 30
years for summer temperatures in most of the southern Euro-
pean regions, and an increase of +2 °C for most of the northern
European regions.

According to the above historical evidence, and relating to the
European climate scenario, the decision of +2 °C perturbation
seems to be a representative description of possible extreme
thermal increase in Europe over the next 20 years. For the purpose
of the analysis of B. tabaci population dynamics responses to
temperature change, this can be considered to be the climate
worst-case scenario.
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