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Periodic Wannier–Stark ladder structures of the
energy resonances associated with Bloch oscillations
can be readily modified into quasi-periodic ones
that exhibit peculiar self-similar effects. A compact
theoretical description of the dynamics of driven
Bloch oscillations is developed here within the quasi-
momentum representation. We identify a rather
viable scheme based on ultracold atomic wavepackets
subject to gravity in a driven optical lattice potential
where a self-similar scaling could be observed.
Its feasibility in terms of realistic experimental
parameters is also discussed.

1. Introduction
The issue of electrons moving in periodic crystal lattices
attracted much attention in the past. Yet, with the
advent of optical lattices for ultracold atoms (see [1,
2] and references therein), this issue has gained a
renewed interest. Optical lattices, in fact, are increasingly
employed for realizing laboratory models of solid
crystals, of which Mott-insulator transitions [3], Bloch [4,
5] and super Bloch oscillations [6] are perhaps the
most significant examples. More generally, the intrinsic
flexibility of optical lattices made from a standing wave
of light makes them quite amenable to the study of
quantum transport of matter waves and their nonlinear
dynamics [1,7].

A quantum particle moving in a periodic potential
is characterized by an energy and quasi-momentum
lying on well-defined bands and, owing to the potential

2014 The Author(s) Published by the Royal Society. All rights reserved.
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translational symmetry, particle wavepackets propagate typically unbound through the potential.
When an additional constant force is applied, however, the periodic symmetry of the lattice
potential is broken, suppressing atomic tunnelling between lattice sites. In this case, the
wavepacket can exhibit bound oscillatory motion, performing familiar periodic Bloch oscillations.
Following an early suggestion by Esaki & Tsu [8] (see also [9]), electronic Bloch oscillations were
first observed in semiconductor superlattices [10–12]. Bloch oscillations of atoms driven by a
constant force were then observed [4] in optical lattices and several improvements have followed
since, with experiments on thermal samples [13,14], on weakly interacting [5,15,16] and non-
interacting condensates [17,18] as well as on non-interacting quantum degenerate fermions [19].
The constant external force is, in this case, created by accelerating the optical lattice, a scheme
which has also been employed to observe Rabi oscillations between Bloch bands [20], integer
Wannier–Stark ladder resonances [21] and resonantly enhanced tunnelling of Bose–Einstein
condensates [22]. When the additional external force is instead oscillating in time, the atomic
motion in the periodic potential is in general no longer bound, except for special cases and only
within the nearest-neighbour tight-binding approximation [23].

In this paper, we study the dynamics of Bloch atoms subjected to a generic time-dependent
force, specifically investigating the atoms’ dynamics when both a constant and an oscillating
driving force are present. The resulting dynamics is interpreted in terms of Wannier–Stark
resonances whose structure is found to depend essentially on how the Bloch oscillation period
and the driving period compare with one another. For specific driving configurations, quasi-
periodic Wannier–Stark ladder structures may arise that exhibit a singular self-similar scaling effect
occurring in both the topology and amplitudes of the wavepacket quasi-energy resonances.

We start by providing a compact framework for the description of the dynamics of Bloch
atoms subjected to a generic time-dependent force, restricting ourselves, for simplicity, to a
single-band and a one-dimensional model, i.e. neglecting Zener tunnelling between bands and
hence also decay and disregarding complex optical potential geometries. We similarly neglect
nonlinear effects due to atom–atom interactions [14,17–19] here. This gives a tighter focus to the
basic mechanism underlying the rather involved dynamics of a Bloch wavepacket subjected to a
generic time-dependent driving force. We work in the quasi-momentum representation [24,25],
which offers clear advantages when compared with other approaches [26–31]. This is used in
§2 to obtain an exact expression for the atom’s wave function. A number of exact analytical
results for the atom’s momentum and position are then derived in §3 for the specific situation
in which the force comprises both a constant and an oscillating component. These results are
derived both within and beyond the nearest-neighbour coupling approximation and provide a
valuable insight into how the purely periodic dynamics induced by either the constant or the
oscillating force term may combine to yield periodic as well as non-periodic evolutions. The
analytical expressions for position and momentum derived in §3 are particularly amenable to
a straightforward interpretation in terms of integer, fractional and quasi-periodic Wannier–Stark
ladder resonances and this is done in §4.

It is worth mentioning here that, in spite of a number of theoretical predictions [27–29,32]
brought forward over the past decade or so, not much experimental work on the spectroscopy
of atomic Wannier–Stark ladders has been carried out [7]. This has mainly focused on the
observation of periodic, namely integer [21] and fractional [17,33], Wannier–Stark spectra.
Observations of quasi-periodic Wannier–Stark ladders in atomic systems remain elusive. To this
end, we present a simple experimental procedure through which quasi-periodic atomic Wannier–
Stark ladders and the novel self-similar scaling effects we anticipate may be measured with
ultracold atoms in optical lattices. Such self-similar structures may in fact be retrieved with a
good experimental resolution, an issue that we address at the end of §4.

2. The model
The atom dynamics in a periodic potential is examined here by referring to an optical potential,
i.e. a one-dimensional sinusoidal lattice generated by a standing wave of laser light. Spontaneous
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emission can be neglected provided the laser is detuned sufficiently far from the atomic resonance,
in which case the effective potential experienced by the atom in its ground state is given by
V(x) = Vo cos2(πx/a). The periodicity a is half the laser light wavelength λ and the amplitude Vo

is proportional to the laser intensity and inversely proportional to its detuning from the atom’s
resonance. When the potential is accelerated through an external time-varying modulation xe(t)
of the standing-wave position, the potential Vo cos(πx/a − πxe(t)/a)2 becomes time-dependent
and so is the Hamiltonian in the laboratory frame. The case of a modulation of the form xe(t) =
xo + fot2/2m, for example, can be attained by shifting in frequency the two counter-propagating
components of the standing wave by an amount �ν = t × fo/2 ma, increasing linearly with time.
The lattice potential is no longer stationary in the laboratory frame, yet in the potential rest frame
where the Hamiltonian is now time-independent the atom experiences a constant inertial force
−fo in addition to the periodic potential V(x) = Vo cos2(πx/a). The same form of xe(t) with fo/m = g
is used to assess the effect of the acceleration due to gravity g on the dynamics of atoms in a
periodic potential.

For a generic modulation xe(t), however, the Hamiltonian remains in general time-dependent
both in the laboratory and in the optical lattice rest frame. In a one-dimensional periodic potential
experiencing a generic acceleration ẍe(t), the quantum-mechanical motion of an atom of mass m
in the lattice rest frame may be described as being due to the external force fe(t) = −mẍe(t), which
contributes with a linear term in x to the relevant Schrödinger equation

ih̄
∂Ψ (x, t)
∂t

= Ho(x)Ψ (x, t) − xfe(t)Ψ (x, t). (2.1)

The properties of the eigenstates and eigenenergies of the Hamiltonian

Ho(x) = p2

2m
+ V(x) (2.2)

are usually derived from the Bloch theorem stating that the eigenenergies En(k) and the
eigenstates ψn(k, x) of (2.2) are labelled by a discrete band index n and a continuous quasi-
momentum k. The eigenfunctions can be written as ψn(k, x) = un(k, x) eikx, where un(k, x) is
spatially periodic with the same periodicity of the lattice and where En(k) are periodic in k with
period 2π/a and the quasi-momentum k is then conventionally reduced to the first Brillouin zone.
If the atom’s wave function is expressed as a sum over all bands

Ψ (x, t) =
∞∑

n=1

∫π/a
−π/a

dkφn(k, t)ψn(k, x) (2.3)

we obtain after inserting (2.3) into (2.1) and using the orthogonality properties of the Bloch wave
functions

ih̄
∂φn(k, t)
∂t

= En(k)φn(k, t) − ife(t)∂kφn(k, t) − fe(t)
∑
n′

Zn,n′ (k)φn′ (k, t) (2.4)

with

Zn,n′ (k) = 2π i
a

∫ a/2

−a/2
dxu∗

n(k, x)∂kun′ (k, x), (2.5)

where ∂k denotes the derivative with respect to k. This is the Schrödinger equation for the
atom’s wave function φn(k, t) in the quasi-momentum representation. The terms in (2.5) comprise
intraband (n = n′) as well as interband (n �= n′) couplings caused by the external force fe(t). If all
interband couplings are neglected the sum on the right-hand side of (2.4) reduces to the diagonal
term Zn,n(k). Restricting ourselves only to the single nth band the diagonal matrix element Zn,n(k)
can be further set to vanish.1 In the following, all terms in (2.5) are neglected.

1For symmetric potentials V(x) = V(−x) and a suitable choice of the phase of the Bloch eigenfunctions, i.e.ψn(k, −x) =ψ∗
n (k, x),

the diagonal matrix elements Zn,n(k) in (2.5), can be taken to be zero (e.g. [34]).
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By using the method of characteristics [35] and with the help of the transformation

t = τ k = q + 1
h̄

∫ τ

0
dτ ′fe(τ ′) ≡ q + θ (τ ), (2.6)

where θ (τ ) represents the atom’s instantaneous quasi-momentum displacement, the partial
differential equation (2.4) can be reduced to the first-order (ordinary) differential equation

ih̄∂τ φn(q, τ ) = En(q + θ (τ ))φn(q, τ ), (2.7)

whose integration with constant q yields

φn(q, τ ) = φn(q, 0) exp
[
− i

h̄

∫ τ
0

dτ ′En(q + θ (τ ′))
]

. (2.8)

Upon restoring the original variables k and t explicit solutions of (2.4) can be rewritten as

φn(k, t) = φn(k − θ (t), 0) exp
[
− i

h̄

∫ t

0
dt′En(k − θ (t) + θ (t′))

]
. (2.9)

The first factor on the right-hand side of (2.9) stands for the initial wave function φn(k, 0) with k
being replaced by k − θ (t). The relevant atom’s wave function finally becomes2

Ψ (x, t) =
∫π/a
−π/a

dk φ(k − θ (t), 0)ψ(k, x) exp
[
− i

h̄

∫ t

0
dt′E(k + θ (t′) − θ (t))

]
, (2.10)

where the band index n will hereafter be omitted since only atomic states formed from Bloch
eigenstates in a single band are considered.

3. The atom quasi-momentum, momentum and position
The mean quasi-momentum can be directly evaluated from (2.10) to yield

〈k(t)〉 =
∫π/a
−π/a

dk k|φ(k − θ (t), 0)|2, (3.1)

whose evolution clearly relies on the form of the quasi-momentum displacement θ (t). This is
particularly apparent for a static force fo and a narrow initial distribution φ(k, 0) centred at ko, in
which case (3.1) yields 〈k(t)〉 	 ko + (fo/h̄)t. The atomic wavepacket moves uniformly through the
k space spanning the reduced Brillouin zone in a time To = h/(afo) in accordance with what one
would expect classically for a particle of momentum h̄k. When the wavepacket approaches the
zone boundaries, however, an umklapp process will take place, i.e. the atom’s wavevector will
change by a reciprocal lattice vector and will appear at the opposite point of the reduced Brillouin
zone and the process will repeat itself.

The atom’s momentum expectation value, defined as

〈p(t)〉 = −ih̄
∫+∞

−∞
dx Ψ ∗(x, t)∂xΨ (x, t), (3.2)

hinges instead on the evaluation of the Bloch states’ momentum matrix elements. These can be
shown to be

− i
∫+∞

−∞
dxψ∗(k′, x)∂xψ(k, x) = δ(k − k′)

∂kE(k)

h̄2/m
, (3.3)

leading to a mean momentum

〈p(t)〉 = m
h̄

∫π/a
−π/a

dk|φ(k − θ (t), 0)|2∂kE(k), (3.4)

correctly expressed as a superposition of k components having group velocity ∂kE(k)/h̄ and
weighted by the corresponding probability density acquired by the atom at time t.

2The atom’s wave function Ψ (x, t) remains at all times normalized to unity, i.e.
∫π/a

−π/a dk|φ(k − θ(t))|2 = 1.
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The atom’s position expectation value, on the other hand, can be derived directly from (2.1),
which can be rewritten as

fe(t)〈x(t)〉 =
∫+∞

−∞
dxΨ ∗(x, t)[Ho(x) − ih̄∂t]Ψ (x, t). (3.5)

The integral can be performed analytically and full details are given in appendix A, where we
obtain the following expression for the mean position:

〈x(t)〉 = 1
h̄

∫π/a
−π/a

dk|φ(k − θ (t), 0)|2∂k

∫ t

0
E[k + θ (t′) − θ (t)] dt′. (3.6)

Rather than using the reduced Brillouin zone scheme above in which umklapp processes take
place at the first Brillouin zone boundary, it is worth noting that the quasi-momentum evolution
can equivalently be studied by considering a repeated Brillouin zone scheme [24]. Owing to the
periodicity in k of the band dispersion and provided that φ(k − θ (t)) remains non-negligible well
within a single reciprocal lattice period, the atom wave function may indeed be defined in this
case over the entire k space.3

(a) The nearest-neighbour tight-binding approximation
Standard laser cooling techniques enable one to tailor at will the initial quasi-momentum
distribution of the atom, which will be taken here to be in the form of a Gaussian centred at
ko = 0, i.e.

φ(k, 0) = 1
(πσ 2)1/4 e−k2/2σ 2

. (3.7)

Because atoms with a spread smaller than the photon recoil momentum may easily be prepared,
quasi-momentum widths σ much smaller than the Brillouin zone width 2π/a may be attained.

In this section, we will further restrict our considerations only to nearest-neighbour couplings
between the lattice sites of the periodic potential V(x) in (2.2). In this case, the energy dispersion
for the lowest band takes the form [24]

E(k) = −W cos(ka), (3.8)

where 2W is the band full-width. From (3.4) and (3.7), we obtain

〈p(t)〉 = mWa
h̄σ

√
π

∫∞

−∞
dk e−[k−θ(t)]2/σ 2

sin(ka), (3.9)

where the repeated Brillouin zone discussed in the previous section has been adopted here. The
integral in (3.9) can be carried out,

〈p(t)〉 = mWa
h̄

e−a2σ 2/4 sin
[

a
h̄

∫ t

0
dt′fe(t′)

]
, (3.10)

and for an accelerating external force of the form

fe(t) = fo + f cos(ωt) (3.11)

it reduces to

〈p(t)〉 = mWa
h̄

e−a2σ 2/4 sin
[
ωot

(
1 + f

fo

sinωt
ωt

)]
, (3.12)

where ωo ≡ 2π/To = afo/h̄.
In the simplest case of a time-independent force term fo, the periodic symmetry of Ho(x) is

broken, suppressing atomic tunnelling between lattice sites. Atomic states then become localized,

3In the extended Brillouin zone scheme, the integrals over k in equations (3.4) and (3.6) extend from −∞ to +∞ and the
evolution of 〈p(t)〉/m in (3.4) is straightforwardly recovered from 〈x(t)〉 upon differentiation.
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Figure 1. (a,b) Momentum evolution of an atomic wavepacket of width σ in a periodically driven optical lattice for different
driving strengths f and a fixed driving period T . The characteristic Bloch oscillation (3.13) with period To for an initial wavepacket
of vanishing width and subject only to the constant force fo is also shown (dark curve) for comparison in both frames. The
momentum is in units ofmWa/h̄. (Online version in colour.)
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Figure 2. (a–c) Periodic and non-periodic momentum evolution of an atomic wavepacket of width σ for different driving
periods T that are, respectively, commensurate and incommensurate multiples of To. The notation is otherwise the same as in
figure 1. (Online version in colour.)

giving rise to familiar Bloch oscillations at the Bloch frequency ωo

〈p(t)〉 = mWa
h̄

sin(ωot), (3.13)

which is obtained from (3.12) in the limit in which σ → 0 and f → 0. For time-dependent external
force fe(t) in (3.11), however, the driving period T sets an additional time scale and the atom
dynamics crucially depends on the relative magnitude of T and To as well as on that of f and fo as
shown in figures 1 and 2.
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The effect of a time-dependent frequency modulation on the momentum is already clear in
figure 1, which shows the momentum for different f/fo ratios at a fixed modulation period T.
The frequency chirp in (3.12) is directly proportional to the ratio f/fo so that stronger modulation
strengths make the atom undergo more complex oscillations, yet maintain in this case the same
periodicity. The situation becomes more involved, however, when, for a fixed value of f/fo as
shown in figure 2, the modulation period T is specifically set to acquire integer, rational and
irrational multiple values of To. Here the momentum is plotted for rational values T/To = p/q (p, q
integers), which comprises the limit case of integer values T/To = p, as well as for irrational values
of T/To. Unlike in the latter case, in which the typical periodicity of the momentum oscillations
is lost at least for appreciable strengths f/fo, in the case of integer and rational values of T/To

the momentum evolution remains fully periodic.4 The periodicity is in this case given by pTo as
inferred by inspection of (3.12).

The momenta have been plotted for an initial distribution of non-vanishing widths and
compared with the familiar oscillations occurring when only the static term fo is present (black
curve). The broadening only reduces the oscillation amplitudes. To the extent to which only
the periodic or non-periodic nature of the evolution is to be examined, broadening may then
simply be neglected. It is also worth noting that for a sufficiently narrow initial distribution the
exact quantum-mechanical evolution of the momentum in (3.4) correctly recovers the momentum
evolution of a classical particle. For a single band, in fact, the particle velocity (1/h̄)∂kE(k)
depends on time through its quasi-momentum whose time evolution k(t) 	 θ (t), as determined
from (3.1) for a narrow distribution, leads to a momentum time-dependence of the form p(t) 	
(m/h̄)∂kE(θ (t)). When only a constant force fo is present, for example, k(t) 	 fot/h̄ evolves linearly
in time so that the periodicity of the dispersion E(k) directly entails momentum oscillations of the
same form [4] and a frequency given by afo/h̄.

For the same initial distribution (3.7) and energy dispersion (3.8) used in this paragraph, yet
for a generic external force fe(t), the atoms’ mean position (3.6) can be rewritten as

〈x(t)〉 = W
h̄

∫∞

−∞
dk′ e−k′2/(aσ )2

σ
√
π

∫ t

0
sin[k′ + aθ (t′)] dt′

= Wa
h̄

e−a2σ 2/4
∫ t

0
dt′ sin

[
a
h̄

∫ t′

0
dt′′fe(t′′)

]
. (3.14)

As in (3.10) the repeated Brillouin zone scheme has been used while the last expression on the
right-hand side of (3.14) can be obtained from a standard Gaussian integration procedure [35].
For the accelerating force (3.11), this reduces to

〈x(t)〉 = Wa
h̄

e−a2σ 2/4
∫ t

0
dt′ sin

[
ωot′

(
1 + f

fo

sinωt′

ωt′

)]
(3.15)

or to the familiar Bloch oscillations with amplitude 2W/fo

〈x(t)〉 = 2W
fo

sin2
(
ωot
2

)
, (3.16)

when, for a vanishing wavepacket width, the accelerating external force comprises only the
constant term ( fo).

(b) Beyond the nearest-neighbour approximation
The tight-binding approximation, by which only neighbouring sites are directly coupled to one
another, leads to a rather useful cosine approximation for a band dispersion. In realistic situations,
however, more than one neighbour may be coupled to a given lattice site. The resulting dispersion

4Floquet theory [30,31] can also be applied to this situation, provided we deal with a periodicity that is not simply the period T
associated with the oscillating component of the force, but rather an integer multiple of it and at once also an integer multiple
of the Bloch period To associated with the constant component (e.g. [27,28]).
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may turn out to have a more complicated form. For a given band, the dispersion E(k) may be
derived from the eigenvalue equation

Ho(x)ψ(k, x) = E(k)ψ(k, x) (3.17)

with the help of the orthogonality properties of the Bloch eigenfunctions ψ(k, x). If the matrix
elements of Ho(x) are rewritten in terms of localized Wannier functions, departures from the
tight-binding approximation may be modelled by taking matrix elements in the form 〈m|Ho|m′〉 =
−(W/2) e−β|m−m′|. Here again W is related to the width of the band while β−1 denotes the range of
an exponentially decaying coupling between Wannier states at sites m and m′. After some algebra,
we arrive at5 the dispersion

E(k) = W
2

sinh(β)
cos(ka) − cosh(β)

, (3.18)

which shows increasingly shrinking band-widths for decreasing values of the coupling range β−1.
Upon inserting (3.18) into (3.4) and proceeding as done in (3.9), we obtain

〈p(t)〉 = mWa
h̄

sinh(β)
2

∫∞

−∞
dk

e−k2/σ 2

σ
√
π

sin(ka − aθ (t))
[cos(ka − aθ (t)) − coshβ]2 . (3.19)

Since the initial distribution broadening does not affect the evolution (quasi) periodic structure
we may simply take here σ → 0; the first factor in (3.19) becomes a δ(k), yielding a momentum

〈p(t)〉 	 mWa
h̄

sinh(β)
2

sin(aθ (t))
[cos(aθ (t)) − coshβ]2 (3.20)

whose evolution is determined by a periodic function of the quasi-momentum displacement θ . If
the driving (3.11) is used, the argument of these functions takes the same form as that appearing
in the square bracket on the right-hand side of (3.12) and this is shown in figure 3 for different
values of the coupling range β−1 either in the absence or in the presence of external driving. The
prominent feature of these oscillations is their asymmetry, which obviously reflects the departure
of the actual dispersion from the typical ‘cos’ relation. Such an asymmetry, which has been
observed in experimental measurements of Bloch oscillations of ultracold atoms [4], hinges on the
fact that the atom performs a coherent motion over several coupled sites. Similar considerations
may be drawn for the atom’s mean position and will not be repeated here.

4. The atom quasi-energy spectra: integer, fractional and quasi-periodic cases
It is instructive to Fourier decompose the time evolution of the peculiar atom dynamics observed
in §3. Fourier series are commonly used, in fact, to represent the response of a system to a periodic
input. We will deal here, for instance, with the atom’s momentum by examining both the case of
nearest-neighbour interactions and the more general case in which neighbouring sites are coupled
to one another. Since broadening affects essentially only the amplitude of the oscillations while
leaving the oscillation time evolution unaltered, we will further restrict ourselves to a vanishingly
narrow initial distribution specifically referring to the results (3.12), in the appropriate limit in
which σ → 0, and (3.20).

We start by examining the case T = (p/q)To, with p and q integers. When the external
driving (3.11) is used, 〈p(t)〉 becomes an odd function of time with period qT as inferred
from (3.12). The relevant sine-Fourier decomposition reads as

〈p(t)〉 =
∞∑

r=1

br sin
(

2π
qT

rt
)

(4.1)

with frequency components

ωr ≡ 2π
qT

r = ωo

p
r

(
T = p

q
To

)
(4.2)

5Similarly, the ‘cos’ band dispersion (3.8) is easily obtained by taking as matrix elements 〈0|Ho|0〉 = W and 〈0|Ho|m〉 =
−(W/2)δm,±1.
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Figure 3. (a–c) Momentum evolution of a narrow atomic wavepacket (σ → 0) with and without external driving when
neighbouring sites coupling with range β−1 is taken into account (see §3b). The evolution profiles are displayed for the three
different valuesβ = 0.75,β = 1.00 andβ = 1.25 and have amplitudes that become smaller and smaller with increasingβ ’s.
The notation is otherwise the same as in figure 1. (Online version in colour.)

spaced by an integral fraction (ωo/p) of the Bloch frequency. The corresponding amplitude

br = 2
qT

∫ qT

0
dt〈p(t)〉 sin

(
2πr
qT

t
)

(4.3)

yields instead the strength with which the different Fourier components contribute to the specific
momentum evolution pattern. When, on the other hand, T = mTo, with m integer, 〈p(t)〉 is an odd
function with period T and exhibits an expansion similar to (4.1) with frequencies and amplitudes
given, respectively, by

ωr ≡ 2π
T

r = ωo

m
r (T = mTo) (4.4)

and

br = 2
T

∫T

0
dt〈p(t)〉 sin

(
2πr
T

t
)

. (4.5)

The momentum Fourier frequency components turn out to be separated by integer multiples
of the ratio ωo/p or ωo/m, respectively, suggesting that the evolution of the momentum observed
in the previous section may be directly associated with the different modifications that Bloch
bands experience under the influence of an external force.

In the presence of a static force, a Bloch band splits, in fact, into a series of equally spaced
energy resonances separated by integer multiples of the Bloch frequency (ωo). If the force is
sufficiently weak Landau–Zener tunnelling between bands can be neglected and the atomic
motion becomes periodic, performing oscillations at the characteristic Bloch frequency ωo.6 As

6For the rather deep optical lattices considered here, say Vo > 10h̄2
π2/(2ma2), a conservative estimate leads to

afo, af < 2h̄2
π2/(2ma2), following, for example, [28].
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anticipated already by Wannier, these oscillations are associated with such an ‘integer’ Wannier–
Stark ladder structure of the energy resonances. When the external force also comprises a
time-dependent driving of period T in addition to the static contribution, the Wannier–Stark ladder
modifies into a new one whose separation now depends on how the two periods T and To

scale with one another and, in particular, on whether the two periods are commensurate or
incommensurate.

For commensurate ratios, the integer ladder that one has for a static force is replaced by
a fractional ladder as the relevant quasi-energy resonances are now separated by irreducible
fractions of the Bloch frequency ωo just exactly as they appear in (4.2) and (4.4) for the two
specific commensurate values of the ratio T/To examined there. The complex periodic oscillations
observed in figures 1–3 can then be associated with this ‘fractional’ Wannier–Stark ladder
structure of the quasi-energy resonances. For incommensurate values of T/To, however, 〈p(t)〉 is
no longer periodic in time and a Bloch band does not split into quasi-energy resonances with a
fractional ladder structure. This may be seen, for example, directly from (3.12). In the limit σ → 0,
we have

〈p(t)〉 = mWa
h̄

sin(ωot + α sinωt),
(
α ≡ T

To

f
fo

)
, (4.6)

where α is the ratio of the momentum acquired over a cycle of the time-dependent force
component to that of the static one. With the help of the Jacobi–Anger expansion (e.g. [35],
p. 681), the sin-function on the right-hand side of (4.6) may be decomposed to obtain the following
momentum expansion:7

〈p(t)〉 =
∞∑

r=−∞
Br sin[(ωo + rω)t], (4.7)

with amplitudes8

Br = mWa
h̄

Jr(α), (4.8)

proportional to the Bessel function Jr(α) of integer order r and frequency components ωr =
(ωo + rω). The complex oscillations observed in figure 2c, for example, arise then from this
peculiar Wannier–Stark ladder structure of the quasi-energy resonances, each contributing with
a weight (4.8) to the overall momentum evolution.

Furthermore, relaxing the tight-binding approximation and specifically considering
exponentially coupled neighbouring sites as in §3b, the discussion follows along similar lines.
When the external driving comprises both a time-dependent and a static component, a Bloch
band splits into several quasi-energy sub-bands with a fractional or quasi-periodic Wannier–
Stark ladder structure depending on whether the ratio T/To acquires as before commensurate
or incommensurate values, respectively. We may illustrate this point here by first Fourier
decomposing the momentum in (3.20) with respect to aθ . This is an odd function of period 2π and
the resulting sin-Fourier components turn out to be of the form (4.6), whose decomposition (4.7)
may then be used to arrive at the following expansion:

〈p(t)〉 =
∞∑

n=−∞

∞∑
r=−∞

Bn,r sin[(rωo + nω)t)] (4.9)

with amplitudes

Bn,r = mWa
h̄

Jn(αr) sinhβ
4π

∫ 2π

0
dξ

sin ξ sin(ξr)
(cos ξ − coshβ)2 (4.10)

and frequency components ωn,r = (rωo + nω), which now depend on the two integers n and r. The
time evolution described in (4.9) is a typical quasi-periodic one, which is the simplest example of
a deterministic, but non-periodic, behaviour.

7Note that when T and To are commensurate the amplitudes and frequency components in (4.7) (tight-binding) recover those
obtained from (4.2) to (4.5) and likewise for the amplitudes and frequency components in (4.9) (beyond tight-binding).
8In spite of an abuse of notation, we differently denote amplitudes associated with commensurate (br) or incommensurate
(Br) ratios of T/To.
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For commensurate ratios T/To, the momentum amplitude b’s can be evaluated from (4.3)
and (4.5). We report in figure 4, for example, the main amplitudes corresponding to the first two
evolutions shown in figure 2. While for the rational case (T/To = 3/7) the dominant contribution
is clearly the one at ωo, that is, when ω3 →ωo at r = 3, for the integer case (T/To = 2) a number
of appreciable components other than ωo are instead seen to contribute to the atomic evolution.
This is exactly what gives rise to larger departures from the characteristic Bloch oscillations in
the case of rational T/To ratios of figure 2 (black curve). We report in figure 5a the enhancing
effect that neighbouring sites coupling has on the Fourier amplitudes. When compared with the
corresponding case in figure 4a, where only nearest neighbour coupling is considered, appreciable
components become available also at large r.

For incommensurate ratios T/To, the momentum amplitudes B can be evaluated from (4.8)
and (4.10). We plot in figure 4c the main amplitudes Br (r ≥ 0) from (4.8) contributing to
the momentum evolution shown in figure 2c. The remaining components (r< 0) are readily
obtained from the relation B−r = (−)rBr. In figure 5b, we report instead the momentum amplitude
components for an atomic wavepacket subject to the same driving parameters, yet in the presence
of exponentially decaying couplings between neighbouring sites. As in figure 4c, the largest
contributions occur over the first modes and decrease rather quickly as n and r increase. Again it
is sufficient to report here only positive mode amplitude Bn,r({n, r} ≥ 0).9

We report in figure 6a, the Fourier transform of (3.20), which shows delta function peaks at each
frequency of the form (rωo + nω) ≡ ω̃ω, as implied by the corresponding decomposition (4.9). The
frequency components ω̃= n + r(T/To) are no longer equally spaced in this case, directly assessing
the cross over between the periodic and quasi-periodic quasi-energy structure of driven atoms in
optical lattices. For typical quasi-periodic functions, an ever-increasing number of such peaks
with smaller and smaller weights densely fill the frequency axis, yet the emerging overall shape
of the spectrum is far from being without a structure. It exhibits in fact a recursive [36] pattern

9The remaining ones follow directly from the relations Bn,−r = (−)n+1Bn,r, B−n,r = (−)nBn,r and B−n,−r = −Bn,r.
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characteristic of self-similar phenomena and which hinges in our case on the way in which our
sub-bands cluster themselves together. As an example, we have marked in figure 6a with red
arrows a pattern of three prominent peaks in the range 0 � ω̃� 20. The same pattern is found
again in figure 6b,c, where the quasi-energy amplitudes are shown over the smaller spectral
ranges 5 � ω̃� 8 (figure 6b) and 17 � ω̃� 20 (figure 6c), respectively, associated with the first

 on January 8, 2016http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


13

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140421

...................................................

and the third peaks marked in figure 6a. This hints at a definite self-similar scaling of the quasi-
energy amplitudes with a hierarchical structure of clusters appearing over smaller and smaller
frequency ranges.10

Although self-similar features are quite common in deterministic non-periodic systems, the
specific system we examine here makes self-similar scaling in the quasi-energy amplitudes of a
driven atomic wavepacket in a gravitational field amenable to direct experimental observation.
Our ratio T/To plays in fact a role similar to that of the Hofstadter scaling parameter in the
electronic problem, namely the ratio between the magnetic flux through a lattice cell and the
flux quantum [37]. By loading atoms into a vertically aligned optical potential and subject to
the gravity force g one implements in fact the static Hamiltonian Ho(x) + V(x) generating, under
suitable conditions [14], coherent Bloch oscillations at frequency ωo = mag/h̄ that may easily be
maintained for seconds. The time-varying external modulation (3.11), which is responsible for
the time-periodic-dependent part of the Hamiltonian, is instead realized through a modulation
in phase of one of the counter-propagating beams generating the lattice potential [38] or in
a retro-reflected configuration with a reflecting mirror mounted on a piezo-electric transducer
subject to a driving tension at frequency ω [39]. By recording the atom’s momentum evolution at
different values of ω and extracting its Fourier components ω̃, one directly obtains the quasi-
energy spectrum of the driven Bloch oscillations. For typical Bloch periods To 	 2 ms and a
periodic driving at T/To = π , spectra such as the one in figure 6 could indeed be easily measured
either for commensurate or for incommensurate ratios T/To through sampling over 1 s at a rate
of 10 kHz [14]. This is done in figure 7, where we simulate a typical spectral measurement. The
Fourier spectrum calculated from equation (3.19) is sampled during 1 s of the velocity evolution.
We also verified that such a spectrum is in quantitative agreement with the spectral weight of
the Fourier components in equation (4.10). The three-peak structure shown by the arrows in
figure 7a may be easily recognized in the other two blow-ups (figure 7b,c) representing two
different regions of the spectrum. In the latter, the fine details are limited by the realistically chosen
energy resolution used for the plots. Although, in general, the experimental resolution11 may
limit the observation of a self-similar structure down to finer scales, the realistically broadened
spectra reported here already indicate a rather manifest self-similar (pattern) behaviour. We
have also checked that the self-similar structure of the spectra is essentially maintained for
variations of T/T0 of the order of a few per cent with only small changes in some of the
amplitudes of the frequency components. This is not to say that this novel behaviour of driven
atomic wavepackets could easily be unveiled, but such an intriguing spectrum certainly deserves
thorough experimental testing.

It is finally worth noting that the above procedure may also be employed to observe self-similar
scaling effects in the dynamics of a periodically driven atomic wavepacket directly in the topology
of the quasi-energies in the {ω̃, T/To} plane [41]. Pairs of {ω̃, T/To} may indeed be mapped as
shown in figure 8 for rational values of T/To between 0 and 1. Of course, the reconstruction of
the complete spectrum in figure 8 entails a dense ensemble of driving frequencies and hence
comes at the expense of a substantial effort in terms of acquisition time. The spectrum discloses
in great detail and order the symmetries and subsequent recursive topological structure of the
atom’s quasi-energy. These become particularly conspicuous when quasi-energies are clustered
into groups with the characteristic shape of a ‘kite’. An extraordinary degree of self-similarity
is seen, for example, in figure 8a, where upon a suitable resizing of the two scale parameters
T/To and ω̃ one obtains four self-similar kite-like patterns that can be fitted into the spectrum
skeleton to form an exactly self-similar larger kite pattern (ABCD). This spectrum, with a pattern
which is symmetric with respect to the origin, repeats itself recursively over ω̃ regions placed at
(integer) multiples of the interval [0, 1] as shown, for example, in figure 8b. Owing to a further

10Owing to the cut-off values for n and r employed in figure 6, the main ω̃ spacing appearing in these spectra corresponds to
π − 3 	 1/7, i.e. to r = 1 and n = −3.
11Fourier-limited resolution is also expected in this case as for Hamiltonian systems following a periodic evolution [39].
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symmetry upon reflection about T/To = 1/2, the same recursive structure can be observed in
the upper part (AB′CD′) of the spectrum of figure 8a spanning rational values of T/To between
1/2 and 1.
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5. Conclusion
We study quasi-periodic Wannier–Stark ladder structures that could occur in the evolution
of ultracold atomic wavepackets subject to gravity in a driven optical lattice potential.
This is done by using realistic experimental parameters for well-resolved and long-lived
atomic Bloch oscillations routinely achieved in time-modulated lattices [42,43]. The atom’s
wavepacket dynamics is studied within a compact framework provided by the quasi-momentum
representation. At variance with the fairly involved Floquet theory approach, the explicit form of
the wave function in (2.10) provides direct access to all the relevant dynamics, yielding in most
cases exact expressions for the wavepacket momentum and position. Besides recovering well-
known results associated with Wannier–Stark spectra with periodic ladders of energy resonances,
the atom’s dynamics studied here is further seen to exhibit peculiar Bloch oscillations relating
instead to quasi-periodic Wannier–Stark distributions of quasi-energy resonances. In this quasi-
periodic regime, the atom’s momentum spectrum exhibits a definite self-similar scaling with a
hierarchical structure in both amplitude and topology of the quasi-energy resonances.

The intrinsic self-similar structures of these quasi-periodic Wannier–Stark spectra are
associated with incommensurate values of the ratio between the Bloch (To) and the driving
(T) period and departs, for example, from other AC-driven Wannier–Stark spectra investigated
previously [32]. The ratio T/To plays here the role of a scaling parameter which is experimentally
easily accessible, making the observation of self-similar spectra associated with quasi-periodic
Wannier–Stark quasi-energies of an atomic wavepacket rather viable. Although these phenomena
could be observed in systems where Bloch oscillations have been realized, such as optically
excited semiconductor superlattices [10–12,44] (see the review by Lyssenko & Leo [45]) and
coupled optical waveguides [46,47], quantum gases in optical lattices realize practicable artificial
solids with a higher degree of control and manipulation. They have, in fact, become a powerful

12More precisely, the quasi-energy components’ amplitudes are displayed here through a grey-scale colour map denoting
amplitudes ranging from 0 (white) to 0.20 (black) in units of Wa/h̄.
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experimental platform to explore matter waves’ many-body interactions [1,2], matter waves’
singular dynamics including electric quantum walks [48,49], super [6] and anomalous [50] Bloch
oscillations as well as light-matter waves’ interactions in stationary [43,51–58] and moving [59–62]
ordered atomic structures trapped in an optical lattice. Within this context, it is worth mentioning
the recent work [63] on cold rubidium atoms trapped in an optical lattice and subject to external
lasers that impart a circular motion to them, analogous to the motion of electrons in a strong
magnetic field, with which self-similar fractal structures of the spectra (Hofstadter bands) are
expected to be seen.13

Acknowledgements. It is a pleasure to acknowledge enlightening conversation on the subject with M. Inguscio
and A. Alberti for valuable suggestions at the early stage of this work and the CRUI-British Council
Partnership Programme on ‘Atoms and nanostructures’.

Appendix A
We derive an expression for the wavepacket mean position through direct evaluation of the
integral on the right-hand side of (3.5). With the insertion of (2.10) into (3.5), and with the help
of (3.17), the first integral can easily be shown to yield

∫π/a
−π/a

dk|φ(k − θ (t), 0)|2E(k), (A 1)

where the Bloch eigenstate’s orthogonality has been used. Similarly, by using the Schrödinger
equation (2.4) in the appropriate limit, the second integral becomes

−
∫π/a
−π/a

dk|φ(k, t)|2E(k) + if (t)
∫π/a
−π/a

dkφ∗(k, t)∂kφ(k, t), (A 2)

where the first term exactly cancels with (A 1). When the explicit form of the atom’s wave function
φ(k, t) in the quasi-momentum representation in (2.9) is used, the other integral (A 2) can further
be decomposed as

if (t)
∫π/a
−π/a

dkφ∗(k − θ (t), 0)∂kφ(k − θ (t), 0) + f (t)
h̄

∫π/a
−π/a

dk|φ(k − θ (t), 0)|2

×
∫ t

0
dt′∂kE(k + θ (t′) − θ (t)). (A 3)

Owing to the periodicity φ(k + 2π/a, 0) = φ(k, 0) (reduced Brillouin zone scheme) and the fact that
φ(k, t = 0) can be taken as real, the former integral can be shown to vanish while the latter just
yields the position average expression in (3.6). We note that, with the choice of phase of the Bloch
functions used here (see footnote 1), this corresponds to the case 〈x(t = 0)〉 = 0.
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