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ABSTRACT

Uromodulin, the major protein secreted in normal urine, is
exclusively produced in the thick ascending limb (TAL) cells of
the kidney. The exact role uromodulin (UMOD) plays in renal
physiology remains enigmatic. UMOD has been linked to water/
electrolyte balance and to kidney innate immunity and it is
believed to protect against urinary tract infections and renal
stones. A renewed interest in UMOD has been triggered by the
identification of UMOD mutations as cause of hereditary dom-
inant renal diseases, now referred to as uromodulin-associated
kidney diseases (UAKDs), presenting with tubulointerstitial
fibrosis, defective urinary concentration, hyperuricaemia and
gout, and progressive renal failure. In UAKDs, the key primary
pathogenetic event is a delayed intracellular trafficking of mutant
UMOD, causing its intracellular accumulation. In the last
decade, multiple genome-wide association studies have identi-
fied common variants in the UMOD gene, causing independent
susceptibility to chronic kidney disease (CKD) and hyperten-
sion, two complex traits representing major global health
problems. The biological mechanism underlying the association
between UMOD risk variants and susceptibility to CKD and
hypertension was not understood until last year, when the link
between UMOD and hypertension was found to be caused
by overactivation of the TAL sodium-potassium-chloride co-
transporter NKCC2, pointing to UMOD as a therapeutic target
for lowering blood pressure and preserving renal function.
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INTRODUCTION

Uromodulin (UMOD), also known as Tamm-Horsfall
protein, is a kidney-specific protein exclusively synthesized
by epithelial cells lining the thick ascending limb (TAL) of
the loop of Henle. UMOD is secreted by TAL cells in the
urine at the average rate of 50 mg/24 h, and it represents
the most abundant urinary protein under physiological
conditions [1]. The process by which the protein achieves
its final conformation in the endoplasmic reticulum (ER)
is complex, resulting in very slow transport of UMOD.
UMOD was first discovered in 1950 by Tamm and
Horsfall, who isolated a mucoprotein from human urine
inhibiting haemagglutination of viruses [2]. In 1985,
Muchmore and Decker isolated a protein from the urine of
pregnant women that they named UMOD, to underline its
origin and its immunosuppressive activity [3]. In 1987,
Pennica et al. determined the primary structure of UMOD,
providing evidence that UMOD was identical to the
Tamm-Horsfall protein [4]. In spite of more than 50 years
of UMOD research, the role that UMOD plays in renal
physiology has remained elusive, causing a gradual decline
of research in UMOD. Recent discoveries have underscored
the importance of UMOD, since UMOD mutations were
found in hereditary dominant tubulointerstitial renal dis-
eases [5-7]. Moreover, using genome-wide association
studies (GWAS), common variants in the UMOD gene
have been identified as a risk factor for complex traits,
including chronic kidney disease (CKD) and hypertension
(8, 9].

610z AINF €0 U0 Jasn epsaig 1p 1PNIS 1169p eysIeAUN Aq Z08YZEZ/0SZ |/8/0€/9BISqR-[0ILE/PU/WOd"dNO-OlWSPEOE//:SANY WO} POPEojUMOd



UMOD: STRUCTURE AND BIOLOGICAL
FUNCTION

UMOD is encoded by the UMOD gene (11 exons), located on
chromosome 16p12.3. The primary structure of UMOD in-
cludes an N-terminal signal peptide; three epidermal growth
factor (EGF)-like domains, which mediate protein-protein
interaction; a central domain of unknown function (‘domain
of 8 cysteines’, D8C); a zona pellucida (ZP) domain, essential
for protein polymerization; a glycosylphosphatidylinositol
(GPI)-anchoring site. A key structural feature of UMOD is its
high cysteine content, likely involved in forming disulphide
bridges responsible for its complex 3D conformation. UMOD
is synthesized on the rough ER of the TAL epithelial cells as an
84 kDa precursor that is converted to the mature glycosylated
and GPI anchor-linked protein with an apparent molecular
weight of 97 kDa. After transport to the apical plasma mem-
brane, the protein is cleaved and released into the tubular
fluid. In the urine, UMOD is found as a high-molecular-
weight polymer. The rate-limiting step in UMOD maturation
is the processing in the ER, likely because of the complex ter-
tiary structure [1, 10].

GPI-anchoring, multidomain structure and the large quan-
tities excreted in urine suggest that UMOD may have multiple
physiological functions. In the tubule, UMOD polymerizes into
complex, reversible, filamentous gel-like structures serving as a
physical barrier to water permeability [10-13]. Such a barrier
may play an important role in ion transport and maintenance
of countercurrent gradient in the interstitium. Recent evidence
from Umod ™"~ mice suggests that UMOD regulates the activity
of the renal outer medullary potassium (ROMK) channel and
of sodium-potassium-chloride (NKCC2) transporter, the two
main ion transporters in the NaCl reabsorption by the TAL
segment [14, 15].

The biochemical properties of UMOD make it a candidate
for being a host defence factor involved in clearing bacteria
from the urinary tract. In vitro studies have shown that UMOD
can specifically bind, via its high-mannose residues, to Type 1
fimbriated Escherichia coli, blocking the attachment of the E.
coli cells to the uroplakins, the urothelial receptors for Type 1
fimbriae. These findings have been confirmed in vivo, since
UMOD ™'~ mice revealed an increased susceptibility to urinary
tract infection (UTI) when inoculated with type 1-fimbriated
E. coli [16-18]. UMOD may also play a role in regulating stone
formation. In vitro and in vivo studies in UMOD ™~ mice
suggest that UMOD is a potent inhibitor of the aggregation of
calcium crystals. A direct binding between UMOD and calcium
ions or calcium crystals might be crucial [19-22]. However, in
humans, the protective role of UMOD against UTI and nephro-
lithiasis remains controversial, since individuals with reduced
UMOD urinary levels, i.e. patients with UMOD mutation and
tubulointerstitial nephritis (see below), do not show increased
frequency of UTI or renal stone formation [5-7, 10].

Clinical and experimental studies indicate an involvement
of UMOD in several forms of inflammatory kidney disease.
UMOD has been suggested to play a key role in innate im-
munity of the kidney, triggering monocytes and granulocytes
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to produce inflammatory molecules. Moreover, intravenous
challenge of animals with UMOD resulted in the induction of
a tubulointerstitial nephritis, and anti-UMOD antibodies are
consistently found in the peripheral blood of patients with
UTT and acute/chronic pyelonephritis. Finally, abnormal de-
position of UMOD and ensuing inflammatory reactions have
been observed in cast nephropathy and urolithiasis [23-26].
However, the underlying mechanisms explaining how UMOD
contributes to inflammatory reactions have remained obscure
until recently, when it has been demonstrated that UMOD ac-
tivates myeloid dendritic cells (DCs) via Toll-like receptor 4
(TLR4), triggering them to reach a fully mature phenotype.
TLR4 knockout mice were found to be severely impaired in
the UMOD-specific humoral immune responsiveness, suggest-
ing that the TLR4 signalling pathway is essential for the
UMOD-specific Ab response [27]. The immunostimulatory
effects of UMOD by TLR4 could represent an important host
defence mechanism employed in the human urinary tract
system. In healthy mammals, it can be hypothesized that anti-
UMOD antibodies or interstitial UMOD deposits are not pro-
duced because the exclusive localization of UMOD at the
luminal surface of tubular cells keeps the protein from the adap-
tive and innate immunity machinery. This segregation could be
abolished in kidney diseases by loss of cell integrity. Thus,
UMOD may act as a danger-signalling molecule, which triggers
an inflammatory response once the injury has damaged the
nephron integrity, allowing UMOD to be released in the inter-
stitial space. However, despite these in vitro/in vivo studies, the
proinflammatory role of UMOD remains controversial. The
presence of UMOD in a damaged renal area might be coinci-
dental or reactive. In addition, UMOD knockout mice were re-
cently shown to develop more functional/histologic renal
damage and had delayed recovery after ischaemia-reperfusion
injury, suggesting that UMOD may play a protective role in
acute kidney injury by decreasing inflammation and enhancing
recovery [28].

UMOD-ASSOCIATED KIDNEY DISEASE

The importance of UMOD in renal diseases had not been fully
appreciated until mutations of UMOD were discovered in a
group of hereditary autosomal-dominant tubulointerstitial
diseases, encompassing medullary cystic kidney disease type II
(MCKD2; MIM 603860), familial juvenile hyperuricaemic ne-
phropathy (FJHN; MIM 603860) and glomerulocystic kidney
disease (GCKD; MIM 609886) [5-7, 10]. MCKD?2 is a tubu-
lointerstitial nephritis developing during adulthood. The earli-
est symptom is hyperuricaemia and gout, developing after
adolescence. End-stage renal disease (ESRD) is reached in late
adulthood. Renal imaging may reveal corticomedullary cysts.
Histology shows interstitial fibrosis and tubular atrophy
[29-31]. The phenotypic features of FJHN overlap those of
MCKD2, being characterized by hyperuricaemia, precocious
gout and progressive tubulointerstitial nephropathy [7, 32].
ESRD typically ensues in young adulthood. Renal biopsy find-
ings are non-specific, with interstitial fibrosis and tubular
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atrophy. As a rule, cysts are not present. Based on the striking
clinico-pathological resemblance and a strong linkage to the
same chromosomal interval, Dahan et al. suggested a possible
allelism between MCKD2 and FJHN [33]. In 2002, Hart et al.
provided evidence that MCKD2 and FJHN arise from muta-
tion of the UMOD gene and are allelic disorders [5]. Since
then, FJHN and MCKD?2 are collectively referred to UMOD-as-
sociated kidney disease (UAKD). Mutations in the UMOD gene
were also reported in two families affected by a variant of
GCKD (MIM 609886), resembling the UAKD phenotype [6,
34]. Histology is similar to other UAKD except for the presence
of cystic dilatation of the Bowman’s space. GCKD is genetically
heterogeneous, because it can be also found with mutation in
the hepatocyte nuclear factor 1-p gene (HNF I-§) [35].

UAKD is a rare disease. However, the true prevalence of
UADK is difficult to determine, because the condition is fre-
quently underdiagnosed. The findings of slowly progressive
renal failure, non-significant urinalyses and unremarkable renal
ultrasounds make the correct diagnosis elusive. Families with
UAKD have been reported from Europe, USA, Asia and Africa.
A nationwide epidemiologic survey of UAKD conducted in
Austria revealed a prevalence of 1.7 cases per million population
and 1 case per 1000 renal replacement therapy patients. No
other systematic study of the epidemiology of UAKD is avail-
able. However, a prevalence of UADK of 1.52 and of 0.7 patients
per million population has been calculated in the Czech Repub-
lic and in France (and Belgium), respectively [36]. In families
presenting with symptoms fulfilling diagnostic criteria of FJTHN/
MCKD2, UMOD mutations can be detected in 12-31% [37].

The renal clinical phenotype caused by UMOD mutation is
characterized by dominant inheritance, CKD due to chronic
tubulointerstitial nephritis, hyperuricaemia, gout and, incon-
stantly, renal cysts [5-7, 10]. More than 100 mutations in the
UMOD gene have been described so far; the majority of re-
ported UMOD mutations cluster in exons 4 and 5, resulting in
the replacement of cysteine residues and leading to misfolding
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of the UMOD molecule [5-7, 10, 38] (Figure 1). The clinical
phenotype of UAKD and genotype-phenotype correlations
have been examined in two large cohorts of patients. In a
French study, 37 UMOD mutations were identified in 109 pa-
tients from 45 families. The majority of patients had hyperuri-
caemia; gout was present in 75% of men and 50% of women.
The median age at first gouty episode was 21 years. Cysts were
detected in 34% of patients. The median renal survival was
54 years. Phenotype was not accurately predictive of UMOD
mutation and a high intrafamilial variability of renal survival
was observed [37]. In a second series of 202 patients from
74 families with 59 different UMOD mutations, median ages
at onset of hyperuricaemia, gout and ESRD were 24, 40 and
56 years, respectively. Men developed gout and ESRD signifi-
cantly earlier than did women. The location of the mutation
appeared to affect the progression of renal disease, because the
median age at ESRD development was lowest in patients with
mutations in the EGF2 and EGF3 domains [39].

Several physiological aspects of UAKD, especially the puta-
tive link between UMOD-mutated protein, renal salt wasting
and uric acid handling remain enigmatic. Immunohistochem-
istry analysis of renal biopsies of UAKD patients showed the
presence of large UMOD intracellular aggregates, colocalizing
with ER markers, in the cells lining the TAL [6, 7]. Different
cellular models revealed that mutant UMOD isoforms are de-
fective in trafficking to the plasma membrane, being retained
in the ER [6, 7, 40]. A recent transgenic UAKD mouse model
recapitulated most of the UAKD features, confirming that the
key primary event is ER accumulation of mutant UMOD in
the TAL cells, which precedes a progressive renal damage,
characterized by tubulointerstitial fibrosis with inflammatory
cell infiltration and tubule dilation [41]. Thus, UMOD muta-
tions affect biosynthesis of the protein, leading to an aberrant
intracellular trafficking, ER storage, abnormal UMOD expres-
sion in the kidney and decreased urinary UMOD excretion. As
opposed to mice expressing mutant UMOD, mice lacking
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FIGURE 1: Structure of UMOD protein and summary of the published mutations associated with UADK. Upper panel: schematic representa-
tion of the structure of the UMOD protein, showing a leader peptide, three epidermal growth factor EGF-like domains, a central domain named
D8C, a ZP domain and a glycosylphosphatidylinositol GPI-anchoring site. Glycosylation sites are represented as Y. Lower panel: summary of all
UMOD mutations found with their corresponding functional domain and exon. A total of 113 mutations [5, 6, 42, 43, 44] have been reported to
date. Most of UMOD mutations are clustered in exons 4 (>80%) and 5 (>11%).
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UMOD do not recapitulate the biochemical, clinical and histo-
logical features of UAKD in humans, suggesting a gain-of-
function effect of UMOD mutations.

However, the potential pathogenetic events downstream of
mutant UMOD ER retention are not clear. We can hypothe-
size that ER accumulation of mutant UMOD may lead to the
functional and structural injury of the TAL [30]. Loss of the
integrity of the TAL would decrease the concentrating ability
of the loop of Henle, resulting in decreased urinary concentra-
tion. The decreased ability to reabsorb sodium in the TAL
would be balanced by an increase in reabsorption of sodium in
the proximal tubule and secondarily of uric acid, resulting in
hyperuricaemia. Moreover, UMOD retention may initiate an
inflammatory process, likely triggered by ER stress pathways
activated in the TAL cells, resulting in progressive interstitial
fibrosis and tissue scarring. Finally, the ER UMOD retention
reduces the amount of UMOD reaching the apical membrane,
affecting the trafficking of the wild-type protein. A recent in
vitro and in vivo study demonstrated that the mutant UMOD
can partially escape the ER quality control, being trafficked to
the plasma membrane, and secreted [42]. In the urine, mutant
UMOD, which has a higher propensity to aggregation than
the wild-type protein, tends to form large extracellular aggre-
gates that interfere with wild-type protein polymerization,
causing a detrimental effect, suggesting that the proteotoxic
effect of the mutant UMOD could be exerted through both
intra- and extracellular gain-of-function mechanisms. Finally,
more recently, in a mouse model of UADK, activation of NF-
kB pathway in TAL of Henle’s loop cells was demonstrated,
identifying a novel disease mechanism of UAKD [43].

UAKD belongs to a group of renal hereditary disorders,
linked by common findings of tubulointerstitial disease and
dominant inheritance, for which Ekici et al. recently proposed
the unifying term of autosomal dominant tubulointerstitial
kidney disease (ADTKD) [44]. According to these authors, the
ADTKD family of renal diseases should include, in addition to
UADK, MCKD1 (MIM 174000), FJHN2 (MIM 613092) and
HNFI-f-associated renal diseases. Medullary cystic kidney
disease type 1 (MCKD1) is caused by mutation in the variable
number tandem repeat (VNTR) region of MUCI1 gene, which
encodes the mucoprotein mucin-1, a transmembrane protein
expressed on the apical borders of secretory epithelial cells [45].
To date, all disease-causing mutations add one cytosine to a
tract of seven cytosine nucleotides, resulting in a frameshift mu-
tation causing truncation of the VNTR. The abnormal gene
product appears to be improperly processed and deposited in
the cytoplasm of the cells from the Henle’s loop, distal convo-
luted tubule and collecting duct, where it is thought to induce
cellular death resulting in a slowly progressive kidney disease.
Because of the complex structure of the VNTR region of the
MUCI gene, this unusual type of mutation is recalcitrant to de-
tection by both Sanger and massively parallel sequencing and
requires specific genotyping assays to be detected. For this
reason, the disease-causing gene of MCKDI has been only re-
cently identified, 15 years after the first mapping of the locus on
chromosome 1q21 [46]. Although MUCI is widely expressed
(renal distal tubular cells, skin, breast, lung, gastrointestinal tract
and salivary glands), MCKDI1 has a very limited clinical
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presentation, and there is no evidence of clinical alterations of
organs or tissues beside the kidney. Individuals with the MUC1
mutation show an adult onset of slowly progressive renal failure,
usually in the absence of gout. Urinalysis reveals a bland sedi-
ment and minimal or no proteinuria. The age of onset of end-
stage kidney disease is highly variable, ranging from the third to
seventh decade of life [45, 47]. FJHN2 is a very rare disease, de-
scribed in only four families and defined by the presence of a
mutation in REN, the gene encoding renin. For this, it is also
known as REN-associated kidney disease. Heterozygous REN
mutations segregate with a phenotype of early onset hypoproli-
ferative anaemia, low blood pressures (BPs), mild hyperkalae-
mia, low plasma renin activity, hyperuricaemia and gout and
progressive kidney failure [48]. In humans, mutations of the
HNF 1-B gene can be associated with a complex and heterogen-
ous renal phenotype. Usually, mutations of the HNF 1-B gene
produce maturity-onset diabetes of the young, Type 5
(MODY5) associated with renal cystic dysplasia of variable se-
verity. The acronym RCAD (renal cysts and diabetes) has been
coined to describe this syndrome. In addition to cysts, other
kidney abnormalities have been observed in MODYS5, such as
renal agenesis or hypoplasia. Infrequently, however, mutations
in the HNF1-f gene have been reported with a renal phenotype
of chronic tubulointerstitial nephritis, particularly in adults
[35].

In conclusion, it is well established that the renal phenotype
in adults with UMOD, MUCI, REN and HNF1-B mutations is
clearly one of chronic tubulointerstitial nephritis. However,
this group of inherited tubulointerstitial nephritis is clinically
heterogeneous, particularly showing distinct extrarenal fea-
tures. HNF1-B nephropathy is also characterized by a wide
clinical heterogeneity of the renal phenotype, with a large
spectrum of renal morphologic, structural and parenchymal
manifestations. Moreover, while there has been significant
advancement in the understanding of the pathophysiology of
UADK over the recent past, the pathophysiology of the renal
findings observed in MCKDI1, REN disease and HNFI1-f
nephropathy is largely unknown. Finally, it is of note that the
nomenclature for UAKD and related conditions is very con-
fusing, and other terms in the past have been commonly used
for dominant tubulointerstitial diseases, including MCKD,
FJHN and dominant nephronophthisis. All together, these
considerations suggest a cautious approach when proposing a
new terminology for these disorders. Additional clinical data
and pathogenetic knowledge are needed before accepting this
new nomenclature for dominant tubulointerstitial diseases,
although this unifying terminology might facilitate the clinical
recognition of the diseases. The existence of families with
tubulointerstitial nephritis and with gene locus outside of the
known genes (on chromosome p22.1-p21; FJHN3) [49] seems
to further support this prudent approach.

UMOD AS A RISK FACTOR FOR
HYPERTENSION AND CKD

The scientific interest on UMOD has been further boosted in
recent years by the seminal work by Kéttgen et al. [50] that
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identified common variants in the UMOD gene associated
with estimated glomerular filtration rate (eGFR) and increased
risk of CKD through GWAS in population-based cohorts,
mostly of European ancestry. In this study, the authors re-
ported that the minor T allele for the lead SNP rs12917707,
located in the gene promoter, is associated with a 20% reduc-
tion of the risk of CKD and with higher eGFR. The genetic as-
sociation was independent of major kidney disease risk factors
such as the presence of hypertension or diabetes. These find-
ings were later replicated in a similar study in a large Icelandic
population [51] and by other studies in European isolates [52]
and in a large European cohort [53]. In these works, a second
UMOD variant, rs4293393, was associated with the risk of
CKD and renal function. This variant is also located in the
UMOD gene promoter and it is in full linkage disequilibrium
(LD) with rs12917707. Interestingly, another SNP, rs13333226,
mapping in the UMOD promoter within the same LD block
was reported to be associated with increased risk of hyperten-
sion and cardiovascular disease in a large European case-
control study [54]. As for SNPs associated with CKD and renal
function, the minor G allele of rs13333226 was associated with
a protective effect. Additional studies have identified genetic
association of UMOD promoter gene variants with ESRD
[55, 56], type 2 diabetic nephropathy [57] uric acid and in-
creased risk of gout and renal stones [51], though in the latter
case with an opposite effect, i.e. risk variants for CKD were pro-
tective. Of note, in two studies the association of UMOD var-
iants with increased risk of CKD was clearly age-dependent,
UMOD being the only gene for which the effect was significant-
ly greater in individuals >65 years of age [51, 58].

In order to understand the functional link of UMOD var-
iants with the risk of developing CKD, Koéttgen et al. carried
out a case—control study of incident CKD and could show
that urinary UMOD levels were significantly higher in indi-
viduals carrying UMOD risk variants in a dose-dependent
fashion [59]. These data suggested that UMOD variants
identified through GWAS could have a direct effect on
UMOD urinary excretion and that this effect could be
linked with the development of CKD and hypertension. The
same group also published sequencing data of the UMOD
gene that seemed to exclude the involvement of other
UMOD variants in LD with the lead ones from GWAS [60].
The role of UMOD variants in regulating UMOD excretion
has been recently confirmed in a large meta-analysis on
10 884 individuals of European descent from three genetic
isolates and three urban cohorts [61]. Through a genome-
wide approach, Olden et al. identified a very significant asso-
ciation (P =7.85E—73) of UMOD urinary levels with SNP
rs12917707, located in the UMOD gene promoter. Each
copy of the G allele, associated with increased risk of CKD
in the study by Kottgen et al. [50], was associated with
higher levels of UMOD in all six cohorts analysed and with
lower levels of GFR in the CKDGen Consortium partici-
pants. The biological bases of UMOD association have been
uncovered by the recent work of Trudu et al. [9]. In this
study, the authors first demonstrated that UMOD risk var-
iants in the gene promoter are associated with increased
gene expression, both in vitro and in vivo. This effect was
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also confirmed at the urinary protein level through the
quantification of UMOD excretion in a large population-
based cohort. The effect of UMOD variants on gene expres-
sion was modelled in vivo through the use of transgenic
mice that overexpress UMOD relative to control mice at
levels comparable with the expression difference observed
between individuals homozygous for either the risk or pro-
tective UMOD variants. Over-expression of UMOD leads to
salt-sensitive hypertension in UMOD transgenic mice, estab-
lishing a causal relationship between the effect of UMOD risk
variants on gene expression and increased BP. The authors de-
monstrated that this effect is essentially due to over-activation
of the TAL sodium-potassium-chloride co-transporter NKCC2.
Indeed, acute treatment of transgenic mice with furosemide,
a well-known diuretic that specifically blocks NKCC2, was
associated with higher natriuretic response and drop in BP
relative to control mice. Interestingly, this mechanism seems to
play a role in human hypertension, as furosemide was effect-
ive in reducing BP only in hypertensive patients homozygous
for UMOD risk variants. The role of UMOD in regulating
BP is also supported by the work by Graham et al. [62].
These authors demonstrated that mice lacking UMOD have
reduced baseline BP that is not increased by high-salt diet,
as opposed to control mice. Such a phenotype is consistent
and complementary to the one reported on Umod overexpres-
sing mice, linking UMOD expression, salt intake and BP
regulation. Data collected in TAL primary cells suggest that
the link between salt intake and UMOD could be explained
by its negative modulation of the action of tumour necrosis
factor alpha that induces lower NKCC2 expression. Overall,
these interesting studies expand our current knowledge of
the role of UMOD suggesting that this ‘old’” molecule plays
fundamental functions in the kidney and that the variation of
its levels is associated with common diseases as hypertension
and CKD. Although the GWAS on UMOD urinary level
by Olden et al. clearly point to UMOD variants as major
determinants of its urinary levels, the same studies also iden-
tified a second associated variant within the PDILT gene,
located near UMOD, whose association seems unlikely to be
driven by LD. Moreover, variants in other genes expressed in
the TAL, as KCNJ1 (encoding ROMK), SORL1 and CAB39
were shown to be associated with urinary UMOD levels in
candidate-based analysis. These results suggest the presence
of uncharacterized regulatory networks that deserve further
investigation [62]. More studies are warranted to clarify the
role of UMOD in hypertension, CKD and possibly other
common human diseases (e.g. UTI, nephrolithiasis) and to
gain further insight into its complex biological functions.
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