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A recent paper [J. Opt. Soc. Am. B 31, 3050 (2014)] reports the experimental observation of the generation of
stable pulse trains in a ring fiber laser. Contrary to what is stated, the theory published in that paper does not
support the claim that the generation mechanism of the pulse train is the cavity-induced modulation instability
effect. © 2015 Optical Society of America
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four-wave mixing.
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In a recent paper [1], Tang et al. describe a fiber ring laser com-
prising an erbium-doped fiber pumped by a 1480 nm, high-
power Raman fiber laser source, a span of standard single
mode fiber, a polarization controller (PC), and a polarization-
independent isolator. The average cavity dispersion is anoma-
lous and equal to about 2.8 ps/nm/km. By increasing the pump
power above 500 mW and suitably adjusting the intracavity
PC so that a low net cavity birefringence was obtained, the
CW mode of operation of the laser became unstable, and a
breakup into a train of optical pulses was observed. Given
the 13 m cavity length (65 ns cavity round-trip time), the
reported pulse train (see Fig. 7 of [1]) indicates that harmonic
mode locking at 370 MHz, or about 24 times the cavity fun-
damental repetition rate, was obtained. The repetition rates of
the pulse train could be varied, depending on the PC wave-
plates orientation. As the pump power was further increased,
significant spectral broadening was observed, and the pulse
train was destabilized into an irregular soliton bunch (see
Fig. 8 of [1]). On the other hand, for a PC configuration lead-
ing to a relatively large cavity birefringence, by increasing the
pump power, a breakup of the CW emission into a periodic
train of polarization domains with alternating state of polariza-
tion was obtained. Moreover, each polarization domain
involved a composite structure of subpulse bunches (see
Figs. 9 and 10 of [1]).

In order to explain their observed breakup of CW lasing into
pulse structures, Tang et al. invoke the mechanism of the cavity
modulation instability (CMI) effect, which was originally
described in [2,3]. In fact, the “Theoretical model” part of
Section 2 of [1] derives a cavity-averaged propagation equation
(Eq. (8) of [1]), by following the procedure that was outlined in
[2]. Note that similar experimental results and conclusions for

their interpretation have also been reported by the same group
in [4].

However, the laser cavity that was described in [2,3] is fun-
damentally different from the fiber ring laser presented in [1].
Actually, [2,3] describe a passive fiber ring cavity, coherently
pumped by an external CW laser beam. In that situation,
the CW field builds up in the cavity (of length L and with linear
refractive index n, possibly including an intensity dependent
contribution) at the same frequency of the external pump laser,
say, ω0, until a steady intracavity power level is reached.
Remarkably, the pump laser frequency ω0 does not need to
exactly match a particular resonance or longitudinal mode of
the passive fiber cavity, say, ωR [2,3]. This leads to a possibly
nonzero cavity detuning δ � �ωR − ω0�tR between the linear
phase delay at the pump laser frequency ω0tR � ω0nL∕c
[equal to ϕ in the notation of [1]; see Eq. (2)] and the linear
phase delay at a nearby cavity resonance frequency ωR, namely,
ωRtR � 2mπ, with integer m. To the contrary, in a fiber ring
laser with no externally injected pump beam, such as the laser
that is discussed in [1], the CW field is necessarily locked at a
given frequency value, say, ωL (which coincides with the cavity
frequency ωR, by supposing for simplicity that the resonance
frequency of the gain medium ωa � ωR), as is well known
from basic laser theory [5,6].

Therefore, the linear phase delay ϕ in the case of the laser
described in [1] is a fixed quantity and not a free parameter that
can be arbitrarily varied. Indeed, its value is irrelevant since an
active fiber laser without a coherently injected pump has a
trivial phase rotation symmetry. Indeed, the last term in the
left-hand side of Eq. (8) can be trivially eliminated from the
equation, which also formally proves that there is no CMI
in the laser that is considered in [1].
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As far as the possible explanation of the observed self-pulsing
behavior, we may suggest the dissipative four-wave mixing
effect, which does not rely on modulation instability and which
leads to mode locking both in the normal and in the anomalous
dispersion regime [7].
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