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In nonlinear dynamical systems, qualitatively distinct phenomena occur depending continuously on the
size of the bounded domain containing the system. For nonlinear waves, a multimode waveguide is a
bounded three-dimensional domain, allowing observation of dynamics impossible in open settings. Here
we study radiation emitted by bounded nonlinear waves: the spatiotemporal oscillations of solitons in
multimode fiber generate multimode dispersive waves over an ultrabroadband spectral range. This work
suggests routes to sources of coherent electromagnetic waves with unprecedented spectral range.
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Eigenmodes are ubiquitous tools for describing complex
wave systems. For nonlinear complex wave systems,
however, the superposition principle is not applicable. In
special cases, these systems possess solitons, which act to
some extent as nonlinear eigenmodes. Combined with
more general nonlinear attractors and insights from linear-
ized systems, researchers may build up a conceptual
understanding of complex nonlinear wave dynamics. In
optics, one-dimensional (1D) dynamics in single-mode
waveguides have been thoroughly explored, with many
advances hinging on the robust nonlinear attraction of
solitons [1–3]. In unbounded 3D systems, dynamics have
been explained largely in terms of a nonlinearly attracting
instability: spatial or spatiotemporal collapse [4]. In reality,
the collapse singularity is avoided by higher-order effects,
and the field eventually expands. In this regime, promising
results have been obtained considering conical waves,
which are the eigenmodes of the 3D linear wave equation
[5,6]. Conical wave solutions to the nonlinear wave
equation may provide deeper insight [7,8]. Given the
advantages the concepts of solitons and collapse have
provided for studying single-mode waveguides and free
space filamentation, it is natural to seek similar concepts in
multimode waveguides. Multimode waveguides include as
limiting cases single mode fiber (SMF, 1D) and free-space
(3D), so these new concepts, whether solitons, nonlinearly
attracting instabilities, guided conical waves, or something
else entirely, could help to conceptually unify nonlinear
optical dynamics across dimensions. More broadly, owing
to similar mathematical descriptions, optical soliton
dynamics in multimode waveguides should correspond
to related effects in a wide variety of systems, e.g.,
Bose-Einstein condensates [9]. Furthermore, the generation
and interaction of dispersive waves with optical solitons in
one dimension has yielded many inspiring analogies
[10–12], e.g., to Cerenkov radiation and event horizons.
MMFs will allow more powerful test beds for these

phenomena, with more controllable properties and a
variable, higher dimensionality compared to SMFs.
Solitons in SMF have been intensely researched, because

they are relatively accessible both analytically and exper-
imentally. Equally important, soliton dynamics are critical to
telecommunications, mode-locked fiber lasers, and compact
white-light sources with high spatial mode quality.
Multimode fibers (MMFs) could provide major benefits
for various applications, from spatial divisionmultiplexing in
communications [13,14], to high-power, versatile fiber lasers
and white-light sources [15]. Although wave propagation in
MMF is still experimentally and theoretically challenging,
recent theoretical advances [16–21] make it more accessible.
From a scientific perspective, MMF is an ideal environment
for studying spatiotemporal nonlinear dynamics. By judi-
cious design, or by control of the initial excitation, research-
ers may control the spatiotemporal characteristics of
dynamics, through variation of the effective dimensionality,
the coupling between modes, or their individual dispersions.
These factors have motivated recent work on nonlinear

optical waves in MMFs [15,19,20,22–26]. In particular, we
observed that launching ≈ 200-nJ and 500-fs pulses at
1550 nm into a graded-index (GRIN) MMF produces
remarkable visible light emission characterized by a series
of spectral peaks with nonuniform spacing [15]. Numerical
simulations confirm these peaks, and suggest that even more
spectacular emission occurs at long wavelengths, where
fused silica is effectively opaque (Fig. 1). These observations
are puzzling: some mysterious nonlinear optical mechanism
generates and links electromagnetic radiationover 2 orders of
magnitude in wavelength (from > 50 to < 0.5 μm).
Here we show that these remarkable spectral features

correspond to dispersive waves generated by the spatio-
temporal oscillation of multimode solitons. The process is
inherently 3D, with spatiotemporally evolving nonlinear
waves emitting spatiotemporally evolving dispersive
waves. However, we show that insights from solitons of
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the 1D nonlinear Schrödinger equation (NLSE), can prove
useful in understanding the 3D system. This understanding
suggests routes to generating ultrashort pulses in fiber at
wavelengths outside current capabilities, reaching even
outside the realm of optics.
Solitons are solutions to a conservative equation. To use

them in applications such as lasers and telecommunications
[27–38], loss must be compensated. This is accomplished by
optical amplifiers in the cavity or transmission line.However,
a periodic perturbation caused by gain and loss can desta-
bilize a soliton. The origin of the instability, and the
characteristic spectral sidebands that are its signature, is
the fact that a periodic perturbation can phase match
dispersive wave emission at particular frequencies [39,40].
For a perturbation period (spacing of amplifiers, or cavity
length) Zc, the phase-matching condition is approximately

ðksol − kdisÞ ¼ 2mπ=Zc; ð1Þ

where m is an integer, and kdis is the wave vector of the
dispersive wave. ksol is the soliton wave vector, which in the
absence of higher-order dispersion is equal to jβ2j=2τ2 ¼
π=ð4Z0Þ, where β2 is the group velocity dispersion, τ is the
soliton duration, and Z0 ¼ π=ð4ksolÞ is the soliton period.
This quasi-phase-matching leads to resonant emission at
frequencies separated from the pump by
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[36,40,41]. This result was later refined to include the third-
order dispersion of the fiber [42–44], where resonant
frequencies were found to be roots of the equation
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where b3 ¼ −β3=ð6jβ2jτÞ (β3 is the third-order dispersion)
andΩ is the angular frequency separation from the pump (in
units of τ−1). Production of dispersive waves is the primary
limitation to the performance of soliton fiber lasers.
Although they were predicted in the 1980s [45–49],

solitons consisting of pulses within multiple spatial modes
have only recently been studied experimentally [15,22,26].
Initial work shows that solitary waves, termed MM
solitons, can be excited in multimode graded-index
(GRIN) fibers. Similar to 1D solitons, these pulses resist
group-velocity dispersion and adjust adiabiatically due to
perturbations such as Raman scattering. This behavior
makes them a useful conceptual tool for understanding
complex nonlinear processes that occur in supercontinuum
generation in MMFs [15,26]. Unlike 1D solitons, MM
solitons additionally resist modal velocity dispersion, i.e.,
the fact that each spatial mode in soliton has a different
group velocity. Fission of MM solitons is spatiotemporal: it
yields multiple MM solitons which can have many different
modal distributions (spatiotemporal shapes). This spatio-
temporal complexity makes their dynamics much richer
than 1D solitons. While they are in some sense natural
extensions of 1D NLSE solitons to MMF, they generally do
not fulfill rigorous definitions of “soliton” (some excep-
tions are known [19,20]). Questions such as their long-
range stability, how they interact with one another, and how
many modes can be involved, remain largely unanswered.
When a beam excites multiple modes of a GRIN fiber, it

propagates through the fiber with a characteristic spatial
oscillation with period (pitch) P ¼ πR=

ffiffiffiffiffiffi

2Δ
p

, where R is the
core radius and Δ is the core-cladding relative index step
[22,50]. This oscillation causes the intensity of the beam to
periodically evolve, as in a loss-managed soliton transmission
line or laser. For a pulsed beam, oscillations occur as long as
the pulses in each mode maintain colocalization and a phase
relationship [22]. Hence, a soliton containingmultiple spatial
modes experiences a periodic oscillation of its peak intensity
and, therefore, is likely to emit resonant dispersive radiation.
We consider a simulation using the generalized multi-

mode nonlinear Schrödinger equation (GMMNLSE) [16],
with the first five radially symmetric modes excited
uniformly for simplicity (Fig. 1). Experiments are con-
ducted as described in Ref. [15]. In both simulation and
experiment, we find that the soliton oscillation-induced
dispersive waves (ODWs) are observed for many different
initial spatial conditions, including without radial sym-
metry. Typically we observe more energetic ODWs with
more intense initial conditions (large pulse energy, tight
spatial localization, or both). Changing the initial noise
level or the pulse duration also results in different dynam-
ics. Nonetheless, provided sufficient pulse energy and fiber
length, and that multiple modes are excited, the radiation’s
qualitative features (including spectral positions) are sim-
ilar. In simulations, the energy of each ODW is distributed
roughly equally among the modes, with the redshifted
(blueshifted) sidebands exhibiting a slight preference for
the low-order (higher-order) modes.
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FIG. 1. Simulated (top) and example experimental (bottom)
supercontinuum in multimode GRIN fiber. The pump pulse at
1550 nm creates a spectrum with a series of redshifted and
blueshifted peaks. In the bottom panel, the y-axis reference (0 dB)
is the maximum intensity of the 1550 nm pump peak.
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Representative simulation results for a 164-nJ, 400-fs,
1550-nmMM pulse launched into a GRINMMF are shown
in Fig. 2. The results are also shown in Movies 1 and 2 of
Supplemental Material [51]. The pulse’s spatial and tem-
poral breathing are evident in Fig. 2(a). Figure 2(b) shows
the evolution of blueshifted ODWs [and Cerenkov radia-
tion near 300 THz (1000 nm)]. Redshifted ODWs are
generated simultaneously. They are remarkably outside the
transparency window of fused silica [the first appears at
roughly 72 THz (4200 nm)]. Attenuation is included in the
simulations with an assumed frequency dependence
α ¼ α1550 expf−½f − c=ð1550 nmÞ�=blg, where α1550 ¼
0.05 dB=km is the attenuation (unitsm−1) at 1550 nm,
and bl ¼ 0.0062 PHz (≈ 80 nm) models the increasing
loss into the infrared. We neglect the increasing loss on the

blue side of the spectrum. For these parameters, attenuation
is ≈ 0.1 MdB=km at 4200 nm. Despite this tremendous
loss, redshifted and blueshifted ODWs have comparable
energy. This is due to the relatively short length of the fiber
(150 periods correspond to only ≈ 6 cm), and to the
enormous gain the ODWs experience: from the initial
noise, the first blueshifted (redshifted) ODWexhibits 70 dB
(50 dB) net gain in 1 cm [Fig. 2(c)]. After about 100
oscillation periods, the ODWs’ energies saturate. The
observed superexponential growth and subsequent satura-
tion of the ODWenergy is in qualitative agreement with the
analytical prediction of the soliton perturbation theory that
was developed to describe large-amplitude soliton intensity
oscillations in periodically amplified transmission links
[52,53]. On the other hand, for small amplitude oscillations
of the soliton, the theory only predicts a linear growth of the
ODW with distance [54].
To verify that the oscillations underlie the ODWs, we add

oscillations artificially to a 1D NLSE by making the non-
linear coefficient a periodic function of the longitudinal
coordinate,

∂Aðz; tÞ
∂z ¼ −i

β2
2

∂2Aðz; tÞ
∂t2 þ β3

6

∂3Aðz; tÞ
∂t3

þ iγðzÞjAðz; tÞj2Aðz; tÞ; ð4Þ

where Aðz; tÞ is the pulse envelope, and γðzÞ is the
z-dependent nonlinear coefficient. Figure 3 compares the
result of solving this equation to the results above found
using the GMMNLSE, and experiment. Figure 3(a)
shows the solution of Eq. (4) with the indicated form
of γðzÞ. Because of the sinusoidal oscillation of the
beam radius, one expects γðzÞ to be of the form
γðzÞ ¼ γ0=f½rmax − rmean� þ rmean sin ð2πz=PÞg2. We use
the rms widths for rmax and rmean here, and rescale γ0
appropriately, since simpler measures (e.g., mode-field
diameter) are not well defined for the complex
spatiotemporal fields that occur. At the onset of ODW
generation (≈ 145–155 periods), rmax ¼ 14.5 μm and
rmin ¼ 5.2 μm, so that γðzÞ ¼ γ0=½9.8þ 4.6 sin ð2πz=PÞ�2
[Typ. Oscillation, Fig. 3(b)]. The observed intensity oscil-
lations of the MM field [GMMNLSE, Fig. 3(b)] are
approximated better by γ0=½9.8þ 6.9 sin ð2πz=PÞ�2
[Spaceþ Time Fit, Fig. 3(b)]. This is because the MM
soliton’s duration also oscillates: solitons lengthen when
their spatial width increases and shorten when their spatial
width decreases [Fig. 2(a) and inset, and Movie 1 of the
Supplemental Material [51]]. It is this spatiotemporal oscil-
lation that generates the ODWs.
The experimental peak locations are consistent with

simulation and analytic theory. Figure 3(c) shows the
results of fitting the measured and simulated peak locations
with the roots of Eq. (3) for variousm. For the experimental
(simulated) peaks, fitting yields β2 ¼ −26 ð−25Þ fs2=mm,
and β3 ¼ 118 ð143Þ fs3=mm. In both cases, the peaks are
fit by the approximate model well. Given the uncertainties
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FIG. 2 (color online). Dynamics of dispersive wave formation
in GRIN fiber. (a) Temporal and spatial breathing of the field
(inset: zoom in near the onset of dispersive wave generation).
(b) Evolution of the spectral intensity of the whole field through
the same distance. (c) Energy in each dispersive wave band. The
x-axis scales are normalized to the linear spatial oscillation period
of the GRIN fiber, equal to 407 μm. These dynamics are also
shown in Movies 1 and 2 of Supplemental Material [51], which
provide a considerably more complete representation of the
complex spatiotemporal evolution.
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on the experimental index profile, mode dispersions, and
the modes involved in the oscillation, the agreement is
excellent.
Although the measured ODW positions are well

described, their amplitudes varydue to several effects beyond
both the simulations and analytic model. First, we neglect all
but 5 of the fiber’s hundreds of guided modes. Currently,
simulations with all the modes are impractical, and further-
more precise replication of experimental initial conditions is
not possible. Neglected modes may allow phase matching of
intramodal four-wavemixing (FWM) involving the1550-nm
pump, various dispersive waves, and Raman-shifted MM
solitons. FWM could amplify redshifted ODWs at the
expense of specific blueshifted ODWs. In the presence of
many modes, intramodal FWM can be a complex process
[55], particularly when cascades are considered [56].
Intramodal FWM is likely why, for certain initial spatial
conditions, various low-order blueshifted ODWs are attenu-
ated experimentally (several energy-conserving FWM proc-
esses exist for these spectral positions).We obtained the peak
locations in Fig. 3(c) from experiments with multiple initial
conditions, in order to account for ODWs attenuated in any
particular condition. Second, because the spacing of the

ODWs is quite close to the Raman bandwidth of fused silica,
certain ODWsmay experience Raman gain from one another
and from the third-harmonic light (TH). Last, the dynamic
range and spectral resolution of the spectrometer limits the
visibility of low-amplitude features, and broadens narrow
spectral features.
Another remaining mystery is the relatively high

amplitude of the ODWs observed in experiments, compared
to simulations. Intramodal FWMmayplay some role, aswell
as larger oscillations and TH generation. Figure 3(a) shows
the spectrum obtained by solving the 1D nonlinear envelope
equation (NEE) with γðzÞ ¼ γ0=½15.5þ 14.5 sin ð2πz=PÞ�2,
[Large Oscillation, Fig. 3(b)], including self-steepening and
assuming averaging of the oscillating Raman integral [57].
Larger oscillations produce relatively more intense disper-
sive waves, because the soliton is more strongly perturbed.
Larger oscillations occur when more modes are coherently
locked together [26], and as the experiment contains much
more than 5 modes, we choose a functional form of γðzÞ to
model this. The dynamics of TH generation are complex,
but ultimately TH causes higher amplitudes at nearby
wavelengths.
The ODWs generated in MMF have relevance to appli-

cations. For example, by filtering particular ODWs, one
may generate pulses in wavelength regions well outside the
gain spectrum of available fiber dopants. Tuning may be
achieved by changing the pump wavelength or fiber pitch.
The modulation instability gain spectrum of a cw field at the
pump wavelength overlaps with the soliton sidebands [37].
Therefore, filtered ODWs could be parametrically amplified
(by the circulating pump pulse or an injected cw field) if the
chromatic walk-off between the pump and ODW fields was
compensated. The inclusion of realistic loss in our simu-
lations suggests that, remarkably, midinfrared radiation
should be emitted from short silica fibers. However, future
GRIN waveguides in chalcogenide or fluoride glasses,
sapphire, or silicon would serve better. For the broadest
operation, a hollow core, MM photonic crystal fiber would
be the ultimate solution where spatiotemporal soliton
oscillation may provide a means of generating mutually
coherent, synchronized ultrashort pulses in different regions
of the electromagnetic spectrum: e.g., a source of intense
microwave, deep ultraviolet, and optical pulses.
In summary, we have shown that the spatiotemporal

oscillation of nonlinear waves in GRIN multimode fiber
causes the generation of spatiotemporal dispersive waves.
These dispersive waves can be described relatively well by
simulations using the GMMNLSE, and insight can be
gained by approximating the dynamics with a quasi-1D
model of longitudinally varying nonlinearity. Future work,
involving more advanced models and experimental meth-
ods, can answer a few of the open mysteries about this
process, the spatiotemporal dynamics leading to the multi-
mode supercontinuum, and the spatiotemporal structure of
the dispersive waves. This work provides a route to fiber-
based ultrashort pulse sources with tunable wavelengths
outside the range of any current fiber-optic technique.

FIG. 3 (color online). (a) ODW from GMMNLSE simulations
(GMMNLSE), Eq. (4) with γðzÞ as in text, 1D NEE simulations,
and an experimental example spectrum. (b) Functions used in the
quasi-1D approximation, along with the peak intensity variation
of the field in GMMNLSE simulation. (c) Comparison of the
periodic 1D phase-matching model with multimode simulations
by the GMMNLSE and experiments in GRIN MMFs. Continu-
ous curves are values of m in Eq. (3), plotted with the best-fit
parameter values.
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