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Abstract

In this paper we introduce symplectic Grassmann codes, in analogy to ordinary Grassmann
codes and orthogonal Grassmann codes, as projective codes defined by symplectic Grassmannians.
Lagrangian–Grassmannian codes are a special class of symplectic Grassmann codes. We describe
all the parameters of line symplectic Grassmann codes and we provide the full weight enumerator
for the Lagrangian–Grassmannian codes of rank 2 and 3.
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1. Introduction

Grassmann codes have been introduced in [20, 21] as generalizations of first order Reed–Muller
codes and they have been extensively investigated ever since. These are projective codes arising
from the Plücker embedding of a k–Grassmannian. Their parameters, as well as some of their
higher weights have been fully determined in [17]. A further point of interest is that the weight
distribution provides some interesting insight on the geometry of the embedding itself.

Codes arising from the Plücker embedding of the k–Grassmannian of an orthogonal polar
space have been introduced in a recent series of papers [4, 5, 6]. In [4], we computed the minimum
distance for the codes arising from orthogonal dual polar spaces of rank 2 and 3 and provided a
general bound on their minimum distance. More recently, in [6], for q odd the minimum distance
for all line polar Grassmann codes of orthogonal type has been determined. In [5] an encoding
scheme, as well as strategies for decoding and error correction, has been proposed for line polar
Grassmann codes.

The aim of the present paper is to provide results analogous to those of [4, 6] for codes arising
from the Plücker embedding of k–Grassmannians of symplectic type.

More in detail, we shall denote by W(n, k), the projective code defined by the image under
the Plücker embedding of the k–symplectic Grassmannian Λn,k defined by a non–degenerate
alternating bilinear form σ on a vector space V := V (2n, q) of dimension 2n over a finite field Fq.
This will be referred as a symplectic Grassmann code.

The paper is organized as follows: in Section 2 some basic notions about projective codes
and symplectic Grassmannians are recalled; Section 3 is dedicated to line symplectic Grassmann
codes and contains our main results for k = 2; Section 4 is devoted to the case of rank k = 3.
Overall, in these sections we prove the following.
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Main Theorem. The code W(n, k) has parameters

N =

k−1∏
i=0

(q2n−2i − 1)/(qi+1 − 1), K =

(
2n

k

)
−

(
2n

k − 2

)
.

Furthermore,

• For k = 2, its minimum distance is q4n−5 − q2n−3;

• For n = k = 3, its minimum distance is q6 − q4.

Finally, in Section 5 we discuss, in the general case of symplectic Grassmann codes, some
further bounds for the minimum distance arising from higher weights of ordinary Grassmann
codes.

We point out that the code W(n, n) where k = n, corresponding to the so called dual polar
space, has already been introduced under the name of Lagrangian-Grassmannian code of rank n
in [7], where also some bounds on the parameters have been obtained.

2. Preliminaries

A [N,K, dmin] projective system Ω ⊆ PG(K − 1, q) is just a set of N distinct points in
PG(K − 1, q) whose span is PG(K − 1, q) and such that there is a hyperplane Σ of PG(K − 1, q)
with #(Ω \ Σ) = dmin and for any hyperplane Σ′ of PG(K − 1, q),

#(Ω \ Σ′) ≥ dmin.

It is well known that existence of a [N,K, dmin] projective system is equivalent to that of a
projective linear code C with the same parameters; in particular

dmin(C) = #Ω− max{#(Ω ∩ Σ): Σ hyperplane of PG(K − 1, q)}. (1)

Indeed, by taking as generator matrix G the matrix whose columns are the coordinates of the
points of Ω normalized in some way, several codes can be obtained. As the order of the points,
the choice of coordinates as well as the normalization adopted change, we obtain potentially
different codes arising from Ω, but all of these turn out to be equivalent. As such, in the following
discussion, they will be silently identified and we shall write C = C(Ω). The spectrum of the
intersections of Ω with the hyperplanes of PG(K − 1, q) provides the list of the weights of C; we
refer to [23] for further details.

Let now and throughout the paper V := V (2n, q) be a 2n-dimensional vector space equipped
with a non–degenerate bilinear alternating form σ. Denote by G2n,k the k-Grassmannian of the
projective space PG(V ), that is the point–line geometry whose points are the k-dimensional
subspaces of V and whose lines are the sets

`W,T := {X : W ≤ X ≤ T, dimX = k}

with dimW = k − 1 and dimT = k + 1. A projective embedding of G2n,k is a function
e : G2n,k → PG(U) such that 〈e(G2n,k)〉 = PG(U) and each line of G2n,k is mapped onto a line
of PG(U). The dimension of U is called dimension of the embedding. It is well known that the
geometry G2n,k affords a projective embedding egrk : G2n,k → PG(

∧k
V ) by means of Plücker

coordinates. In particular, egrk maps an arbitrary k–dimensional subspace 〈v1, v2, . . . , vk〉 of
V to the point 〈v1 ∧ v2 ∧ · · · ∧ vk〉 of PG(

∧k
V ). The image egrk (G2n,k) is a projective variety
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of PG(
∧k

V ), usually denoted by the symbol G(2n − 1, k − 1), see [14, Lecture 6], called the
Grassmann variety.

The symplectic Grassmannian Λn,k induced by σ, is defined for k = 1, . . . , n as the subgeometry
of G2n,k having as points the totally σ–isotropic subspaces of V of dimension k and as lines

• for k < n, the sets of the form

`W,T := {X : W ≤ X ≤ T, dimX = k}

with T totally isotropic and dimW = k − 1, dimT = k + 1.

• for k = n, the sets of the form

`W := {X : W ≤ X, dimX = n}

with dimW = n− 1, W totally isotropic.

For k = n, Λn,n is usually called dual polar space of rank n or Lagrangian Grassmannian.
The image of Λn,k under the Plücker embedding egrk is a subvariety L(n − 1, k − 1) of the

Grassmann variety G(2n− 1, k − 1).
Let Σ = 〈L(n− 1, k − 1)〉 < PG(

∧k
V ). It is well known, see [9, 19], that

dimΣ =

(
2n

k

)
−
(

2n

k − 2

)
;

indeed, the variety L(n − 1, k − 1) is the full intersection of G(2n − 1, k − 1) with a suitable
subspace of

∧k
V of codimension

(
2n
k−2

)
.

The following formula provides the length of W(n, k):

#L(n− 1, k − 1) = #Λn,k =

k−1∏
i=0

(q2n−2i − 1)/(qi+1 − 1). (2)

As pointed out before, the pointset of L(n− 1, k − 1) is a projective system of PG(Σ); this
determines a projective code which we shall denote by W(n, k) and call it a symplectic Grassmann
code. A straightforward consequence of the remarks presented above is the following lemma.

Lemma 2.1. The code W(n, k) has length N = #L(n− 1, k − 1) and dimension K = dim(Σ).

3. Line Symplectic Grassmann Codes

Throughout this section S := W (2n− 1, q) denotes the non-degenerate symplectic polar space
of rank n defined by a fixed non–degenerate alternating bilinear form σ on V . By θ we shall
denote a different (possibly degenerate) alternating bilinear form on V . We shall also write ⊥σ

and ⊥θ for the orthogonality relations induced by σ and θ respectively. Recall that the radical of
θ is the set

Rad θ := {x ∈ S : x⊥θ = PG(V )} = {x ∈ S : ∀y ∈ S, θ(x, y) = 0}.

For k = 2, Expression (2) and K = dim(Σ) become

N := #Λn,2 =
(q2n − 1)(q2n−2 − 1)

(q − 1)(q2 − 1)
; K := 2n2 − n− 1.
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It is well known that any bilinear alternating form θ determines a hyperplane of
∧2

V and
conversely; hence, the minimum distance of W(n, 2) can be deduced from the maximum number of
lines which are simultaneously totally isotropic for both the forms θ and σ, under the assumption
θ 6= σ. In order to determine this number we follow an approach similar to that of [6, Lemma 3.2].

Lemma 3.1. Suppose M is the matrix representing σ and S the matrix representing θ with
respect to a given reference system. For any p ∈ S we have p⊥σ ⊆ p⊥θ if, and only if, p is an
eigenvector of the matrix M−1S.

Proof. Since M is non–singular, if M−1Sp = 0, then Sp = 0, that is to say p ∈ Rad θ, i.e.
p⊥θ = PG(V ). In this case, obviously, p⊥σ ⊆ p⊥θ .

When p 6∈ Rad θ, we have dim p⊥σ = dim p⊥θ . Thus, p⊥σ ⊆ p⊥θ if, and only if, p⊥σ = p⊥θ ,
that is to say the systems of equations xTMp = 0 and xTSp = 0 are equivalent. This yields
Sp = λMp for some λ 6= 0, whence p is an eigenvector of eigenvalue λ for M−1S.

Write now

N0 := #{p ∈ S : p⊥σ 6⊆ p⊥θ}, N1 := #{p ∈ S : p⊥σ ⊆ p⊥θ}.

Clearly, N0 = q2n−1
q−1 −N1.

For any p ∈ S, a line ` through p is both totally σ–isotropic and θ–isotropic if, and only if,
` ∈ p⊥σ ∩ p⊥θ . In particular,

• if p⊥σ ⊆ p⊥θ , then q2n−2−1
q−1 lines through p are both σ– and θ–isotropic;

• if p⊥σ 6⊆ p⊥θ , then p⊥σ ∩ p⊥θ is a subspace of codimension 2 in PG(V ) and the number of
lines which are both σ– and θ–isotropic is q2n−3−1

q−1 .

Denote now by η the number of lines of S which are simultaneously totally σ– and θ–isotropic.
As each line contains (q + 1) points, we have

(q + 1)η = N0
q2n−3 − 1

q − 1
+N1

q2n−2 − 1

q − 1
= q2n−3N1 +

(q2n − 1)(q2n−3 − 1)

(q − 1)2
. (3)

Clearly, η is maximum when N1 is maximum. In the remainder of this section we shall determine
exactly how large N1 can be.

Lemma 3.2. Let M and S be as in Lemma 3.1. If the matrix M−1S has just two eigenspaces,
one of dimension 2n− 2, the other of dimension 2, then the number of eigenvectors of M−1S is
maximum.

Proof. It is straightforward to see that, in order for the number of eigenvectors of M−1S to be
maximum, we need M−1S to be diagonalizable.

Observe that since S is antisymmetric, its rank is necessarily even; in particular, the rank of
M−1S is also even. Suppose first that M−1S has just two eigenvalues, λ 6= 0 is one of them and
the corresponding eigenspace is maximum and has dimension g. The number of simultaneously
σ– and θ–isotropic lines ` = 〈v1, v2〉 is the same as the number of lines which are simultaneously
σ– and (θ− λσ)–isotropic, as σ(v1, v2) = 0 and θ(v1, v2) = 0 yields (θ− λσ)(v1, v2) = θ(v1, v2)−
λσ(v1, v2) = 0. The latter alternating form, say θ′ = θ − λσ is represented by the matrix
S′ = S − λM . In particular, we can replace S with S′ and we get

M−1S′ = M−1(S − λM) = M−1S − λI.
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For this new matrix, 0 is an eigenvalue with eigenspace of dimension g. Thus, g must be even.
We conclude that the maximum number of eigenvectors occurs when g = 2n− 2 and there is a
further eigenspace of dimension 2, that is

#Vλ + #Vµ − 2 = q2n−2 + q2 − 2.

Suppose now that there are at least 3 distinct eigenspaces for M−1S, say Vα, Vβ and Vγ of
dimensions respectively a, b, c with a ≤ b ≤ c. Then, the number ζ of eigenvectors is

#Vα + #Vβ + #Vγ − 3 ≤ ζ ≤ qa + qb + q2n−a−b − 3.

Clearly a, b ≥ 1 and 2n − a − b ≥ c ≥ a, b. In particular, the upper bound is maximum for
a = b = 1, in which case we get

ζ ≤ 2q + q2n−2 − 3 < q2 + q2n−2 − 2.

Thus, the maximum number of eigenvectors which can be obtained with just 2 eigenspaces, say
Vα and Vβ is larger than what is possible with at least 3 distinct eigenspaces. This completes the
proof.

The previous lemma gives

N1 ≤ q2n−2 − 1

q − 1
+

q2 − 1

q − 1
.

Plugging in this value in (3) we obtain

η ≤ q4n−3 + q4n−4 − q4n−5 − q2n−1 − 2q2n−2 + q2n−3 + 1

(q − 1)(q2 − 1)
. (4)

whence we get the following lemma.

Lemma 3.3.
dmin(W(n, 2)) ≥ q4n−5 − q2n−3.

Proof. By Equation (1), we have dmin ≥ N − η. The estimate follows from (4).

We are now ready to prove our main theorem for line symplectic Grassmann codes.

Theorem 3.4. The minimum distance of the code W(n, 2) is dmin(W(n, 2)) = q4n−5 − q2n−3.

Proof. We shall show that, given a non-degenerate alternating form σ represented by a matrix M ,
it is always possible to define an alternating form θ represented by a matrix S such that M−1S
has only two eigenspaces, one of dimension 2n− 2 and the other of dimension 2.

In order to prove this, let ` = 〈v1, v2〉 be a line of PG(2n− 1, q) which is not σ–isotropic and
define an alternating form θ such that θ(v1, v2) = σ(v1, v2) and Rad θ = `⊥σ .

Take B = B1 ∪B2 to be an ordered basis of V where B1 = (v1, v2) and B2 is an ordered basis
of `⊥σ .

Let M be the matrix representing σ with respect to B. We can suppose θ(v1, v2) = σ(v1, v2) =
1; thus M = diag(M11,M22) is a block diagonal matrix where

M11 =

(
0 1

−1 0

)
and M22 =

(
On−1 In−1

−In−1 On−1

)
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with On−1 the null (n − 1) × (n − 1)–matrix and In−1 the (n − 1) × (n − 1)–identity matrix.
By construction, the matrix S representing θ with respect to B is also block diagonal S =

diag(S11, O2n−2) with S11 =

(
0 1

−1 0

)
and O2n−2 the null (2n− 2)× (2n− 2)–matrix.

Hence M−1S is the block diagonal matrix M−1S = diag(I2, O2n−2). Clearly, M−1S has only
two eigenspaces, one of dimension 2n− 2 and the other of dimension 2. The thesis now follows
from Lemma 3.2 and Lemma 3.3.

The proof of Theorem 3.4 holds also for the code W(2, 2) arising from the dual polar space
Λ2,2. However, in this case we can easily provide the full weight enumerator.

Proposition 3.5. The code W(2, 2) has exactly 3 nonzero weights, namely q3 + q, q3 − q and q3

and the following weight enumerator

Weight # Codewords
q3 − q q2(q2 + 1)(q − 1)/2
q3 q4 − 1
q3 + q q2(q2 − 1)(q − 1)/2

Proof. The Lagrangian-Grassmmannian L(1, 1) is a non–singular hyperplane section of the
ordinary line–Grassmannian G(3, 1) of PG(3, q). In particular L(1, 1) = G(3, 1) ∩ Σ = Q(4, q),
where Σ is a suitable hyperplane of PG(4, q), depending only on σ and Q(4, q) is a non-singular
parabolic quadric. Thus, the code W(2, 2) is the same as the code determined by the projective
system of Q(4, q) in a PG(4, q). The 3 weights of this code correspond to hyperplanes which meet
Q(4, q) in either a quadratic cone, an elliptic quadric Q−(3, q) or an hyperbolic quadric Q+(3, q).
In particular, the hyperplanes of PG(4, q) lie in 3 orbits under the action of the orthogonal group
O(4, q). The tangent hyperplanes to Q(4, q) are q3 + q2 + q + 1, and each of them determines
a cone consisting of q2 + q + 1 points; thus the associated weight is q3. As for the remaining
two orbits, the one determining elliptic quadrics, (having an elliptic quadric cardinality q2 + 1),
consists of q2(q2 − 1)/2 elements, while that inducing hyperbolic quadrics, (having a hyperbolic
quadric cardinality (q + 1)2), has size q2(q2 + 1)/2; see [15, Chapter 22]. The corresponding
weights are q3 + q and q3 − q. As each hyperplane corresponds to (q− 1) words, this provides the
complete enumerator.

4. Lagrangian-Grassmannian codes of rank 3

In this section we shall provide the full weight enumerator for the Lagrangian–Grassmannian
code W(3, 3), and discuss some codes arising from different embeddings of the symplectic
Grassmannian Λ3,3.

Theorem 4.1. For k = n = 3, the minimum distance of the code W(3, 3) is q6 − q4. The
enumerator is as follows

Weight # Codewords
q6 − q4 1

2q
2(q2 + 1)(q2 + q + 1)(q3 + 1)(q − 1)

q6 (q + 1)2(q2 − q + 1)(q2 + 1)(q6 − q3 + 1)(q − 1)
q6 + q3 q9(q4 − 1)(q − 1)
q6 + q4 1

2q
2(q + 1)(q6 − 1)(q − 1).

Furthermore, all codewords of minimum weight lie in the same orbit.
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Proof. The theorem is a direct consequence of the classification of the classical (geometric)
hyperplanes of the dual polar space Λ3,3 of rank 3 arising from the Grassmann embedding, as
provided in [8, 10]. We refer, in particular, to [8, Tables 1,2,3] for the exact number of hyperplanes
of each type and the cardinalities of their intersection.

Remark 4.2. We point out that for q = 2h, the Lagrangian-Grassmannian Λn,n always affords
the spin embedding in PG(2n − 1, q); see [2] for a description. In particular, Λ3,3 can also be
embedded in PG(7, q). Such an embedding gives rise to a projective system with parameters
N = q6 + q5 + q4 + 2q3 + q2 + q + 1 and K = 8. The corresponding code has just two weights,
see [10], namely

Weight # Codewords
q6 (q2 − 1)(q2 + 1)(q3 + 1)
q6 + q3 (q7 − q3)(q − 1).

We observe that for q = 2, this determines a [135, 8, 64] code, and the best known code with
length N = 135 and dimension K = 8 has minimum distance d = 65 (see [13]).

Likewise, Λ4,4 can be embedded in PG(15, q) and there it also determines a 2–weight code of
parameters [N,K] = [(q4 + 1)(q3 + 1)(q2 + 1)(q + 1), 16] and weights q10 and q10 + q7; see [3].

Remark 4.3. For q = 2, the universal embedding of Λ3,3 is different from the Grassmann
embedding and it spans a PG(14, 2); see [1, 16]. As such it determines a code of length N = 135
and dimension K = 15 with weight enumerator as follows, see [10, 18]:

Weight # Codewords
30 36
48 630
54 1120
62 3780
64 7695

Weight # Codewords
70 10368
72 7680
78 1080
80 378.

In particular, the minimum distance in this case is 30.

5. Further bounds on the minimum distance

As L(n− 1, k − 1) is a section of G(2n− 1, k − 1) with a subspace of codimension
(

2n
k−2

)
, it is

possible to provide a bound on the minimum distance of W(n, k) in terms of higher weights of
the projective Grassmann code induced by the projective system G(n− 1, k − 1). Recall that the
r–th higher weight of a code C induced by a projective system Ω consisting of N points is

dr := N − max{#(Ω ∩Π) : Π projective subspace of codimension r in 〈Ω〉};

see [24] for the definition and some properties, as well as [22] for its geometric interpretation; in
the case of Grassmann codes they have been extensively studied in [11, 12, 17]. As W(n, k) can
be regarded as the intersection of the Grassmannian G(2n− 1, k − 1) with a suitable subspace Σ
of codimension

(
2n
k−2

)
, we have

dmin(W(n, k)) = #W(n, k)− max{#(G(2n− 1, k − 1) ∩Π) : Π ≤ Σ,dim(Σ/Π) = 1} ≥

#W(n, k)− max{#(G(2n− 1, k − 1) ∩Π) : codim ∧kV (Π) =

(
2n

k − 2

)
+ 1} =

#W(n, k)− #G(2n− 1, k − 1) + ds,
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where s =
(

2n
k−2

)
+ 1 and ds is the s-th higher weight of the Grassmann code arising from G2n,k.

In general, this bound is not sharp. This can be seen directly by considering the case of the code
W(n, 2). Indeed, using the the second highest weight of the Grassmann code, see [17], we see that

dmin(W(n, 2)) ≥ (q2n − 1)(q2n−2 − 1)

(q − 1)(q2 − 1)
−
[
2n

2

]
q

+ q2(2n−2)−1(q + 1) =

(q2n − 1)(q2n−2 − q2n−1)

(q − 1)(q2 − 1)
+ q2(2n−2)−1(q + 1) =

q4n−2 − 2q4n−3 + q4n−5 + q2n−1 − q2n−2

(q − 1)(q2 − 1)
≈

q4n−5 − q4n−6.

This, however, is quite far away from the correct value for line symplectic Grassmann codes,
namely dmin(W(n, 2)) = q4n−5 − q2n−3, as we have determined in Section 3.

We point out that in [7, Proposition 5], an upper bound on the minimum distance for
Lagrangian-Grassmannian codes is given in terms of the dimension of the Lagrangian-Grassmannian
variety, that is

dmin(W(n, n)) ≤ qn(n+1)/2.

By Section 4, we see that this bound is not sharp for n = 2 and n = 3.
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