t-Intersection sets in $AG(r, q^2)$ and two-character multisets in $PG(3, q^2)$

A. Aguglia^{*}, L. Giuzzi[†]

Abstract

In this article we construct new minimal intersection sets in AG (r, q^2) with respect to hyperplanes, of size q^{2r-1} and multiplicity t, where $t \in \{q^{2r-3} - q^{(3r-5)/2}, q^{2r-3} + q^{(3r-5)/2} - q^{(3r-3)/2}\}$, for r odd or $t \in \{q^{2r-3} - q^{(3r-4)/2}, q^{2r-3} - q^{r-2}\}$, for r even. As a byproduct, for any odd q we get a new family of two-character multisets in PG $(3, q^2)$.

The essential idea is to investigate some point-sets in $AG(r, q^2)$ satisfying the opposite of the algebraic conditions required in [1] for quasi-Hermitian varieties.

Keywords: Hermitian variety, quadric, two-character set.

1 Introduction

All non-degenerate Hermitian varieties of $PG(r, q^2)$ are projectively equivalent; furthermore, they sport just two intersection numbers with hyperplanes, see [6]. Quasi-Hermitian varieties \mathcal{V} of $PG(r, q^2)$ are combinatorial objects which have the same size and the same intersection numbers with hyperplanes as a (nondegenerate) Hermitian variety \mathcal{H} ; see [1] for details and some constructions. In the present paper we shall consider varieties \mathcal{V} arising by taking algebraic conditions opposite to those of [1] and show that these are in turn interesting geometric objects with 3 intersection numbers. The topic is also of interest for applications, as the projective system induced by \mathcal{V} will determine linear codes with few weights; see [7] for a description of this correspondence.

Fix a projective frame in $PG(r, q^2)$ and assume the space to have homogeneous coordinates (X_0, X_1, \ldots, X_r) . Consider the affine plane $AG(r, q^2)$ whose infinite

^{*}Dipartimento di Meccanica, Matematica e MAnagement, Politecnico di Bari, Via Orabona 4, I-70126 Bari

[†]D.I.C.A.T.A.M., Università di Brescia, Via Branze 43, I-25123 Brescia

hyperplane Π_{∞} has equation $X_0 = 0$. Then, AG (r, q^2) has affine coordinates (x_1, x_2, \ldots, x_r) where $x_i = X_i/X_0$ for $i \in \{1, \ldots, r\}$.

Consider now the non–degenerate Hermitian variety ${\mathcal H}$ with affine equation of the form

$$x_r^q - x_r = (b^q - b)(x_1^{q+1} + \dots + x_{r-1}^{q+1}),$$
(1)

where $b \in GF(q^2) \setminus GF(q)$. The set of the points at infinity of \mathcal{H} is

$$\mathcal{F} = \{ (0, x_1, \dots, x_r) | x_1^{q+1} + \dots + x_{r-1}^{q+1} = 0 \};$$
(2)

this can be regarded as a Hermitian cone of $PG(r-1, q^2)$, projecting a Hermitian variety of $PG(r-2, q^2)$ from the point $P_{\infty} := (0, \ldots, 0, 1)$. In particular, observe that the hyperplane Π_{∞} is tangent to \mathcal{H} at P_{∞} .

For any $a \in \operatorname{GF}(q^2)^*$ and $b \in \operatorname{GF}(q^2) \setminus \operatorname{GF}(q)$, let $\mathcal{B} := \mathcal{B}(a, b)$ be the affine algebraic variety of equation

$$x_r^q - x_r + a^q (x_1^{2q} + \ldots + x_{r-1}^{2q}) - a(x_1^2 + \ldots + x_{r-1}^2) = (b^q - b)(x_1^{q+1} + \ldots + x_{r-1}^{q+1}).$$
 (3)

It is shown in [1] that $\mathcal{B}(a, b)$, together with the points at infinity of \mathcal{H} , as given by (2), is a quasi-Hermitian variety \mathcal{V} of $\mathrm{PG}(r, q^2)$ provided that either of the following algebraic conditions are satisfied: for q odd, r is odd and $4a^{q+1} + (b^q - b)^2 \neq 0$, or r is even and $4a^{q+1} + (b^q - b)^2$ is a non-square in $\mathrm{GF}(q)$; for q even, r is odd, or r is even and $\mathrm{Tr}(a^{q+1}/(b^q + b)^2) = 0$.

In this paper, as stated before, we shall study the variety $\mathcal{B}(a, b)$ when the opposite of the previous conditions holds. More precisely our main results are the following

Proposition 1.1. Suppose q odd, $4a^{q+1} + (b^q - b)^2 = 0$ and r odd. Then $\mathcal{B}(a, b)$ is a set of q^{2r-1} points of AG (r, q^2) of characters:

• for $r \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$

$$q^{2r-3} - q^{(3r-5)/2}, q^{2r-3}, q^{2r-3} - q^{(3r-5)/2} + q^{3(r-1)/2}$$

• for $r \equiv 3 \pmod{4}$ and $q \equiv 3 \pmod{4}$

$$q^{2r-3} + q^{(3r-5)/2} - q^{3(r-1)/2}, q^{2r-3}, q^{2r-3} + q^{(3r-5)/2}.$$

• for r even,

$$q^{2r-3} - q^{(3r-4)/2}, q^{2r-3}, q^{2r-3} + q^{(3r-4)/2}$$

Furthermore $\mathcal{B}(a, b)$ is always a minimal intersection set with respect to hyperplanes. **Theorem 1.2.** Suppose q odd and $4a^{q+1} + (b^q - b)^2 = 0$. In $PG(3, q^2)$ there exists a 2-character multiset $\overline{\mathcal{B}}(a, b)$ containing $\mathcal{B}(a, b)$ and characters either $q^3 - q^2$ and $2q^3 - q^2$ if $q \equiv 1 \pmod{4}$, or q^2 , and $q^3 + q^2$ if $q \equiv 3 \pmod{4}$.

These results are proved respectively in Section 3 and in Section 4.

Finally, in Section 5 we prove that in the remaining cases we again get minimal intersection sets of the same size but multiplicity $q^{2r-3} - q^{r-2}$.

2 Preliminaries

2.1 Intersection sets with respect to hyperplanes

A set of points \mathcal{B} in a projective or an affine space is a *t*-fold blocking set with respect to hyperplanes if every hyperplane contains at least *t* points of \mathcal{B} . Such a set \mathcal{B} is also known as a *t*-intersection set, or an intersection set with multiplicity *t*, or a multiple intersection set.

A point P of a *t*-intersection set \mathcal{B} is said to be *essential* if $\mathcal{B} \setminus \{P\}$ is not a *t*-intersection set. When all points of \mathcal{B} are essential then \mathcal{B} is *minimal*. If the size of the intersection of \mathcal{B} with an arbitrary hyperplane takes m values, say v_1, \ldots, v_m , then the non-negative integers v_1, \ldots, v_m are called the *characters* of \mathcal{B} and \mathcal{B} is also an *m*-character set. We observe that if \mathcal{B} is an *m*-character set consisting of n points and spanning the projective space where it is contained, then the linear code having as columns of its generator matrix the coordinates of the points of \mathcal{B} has exactly m distinct nonzero weights and length n. The dimension k of this code is the vector dimension of the subspace spanned by \mathcal{B} .

Quasi-Hermitian varieties are examples of 2-character sets of $PG(r, q^2)$. In [1] a new infinite family of quasi-Hermitian varieties have been constructed by modifying some point-hyperplane incidences in $PG(r, q^2)$. To this purpose, the authors kept the point set of $PG(r, q^2)$ but replaced the hyperplanes with their images under a suitable quadratic transformation, obtaining a non-standard model Π of $PG(r, q^2)$. This model arises as follows.

Fix a non-zero element $a \in \operatorname{GF}(q^2)$. For any choice $\mathbf{m} = (m_1, \ldots, m_{r-1}) \in \operatorname{GF}(q^2)^{r-1}$ and $d \in \operatorname{GF}(q^2)$ let $\mathcal{Q}_a(\mathbf{m}, d)$ denote the quadric of equation

$$x_r = a(x_1^2 + \ldots + x_{r-1}^2) + m_1 x_1 + \ldots + m_{r-1} x_{r-1} + d.$$
(4)

Consider now the incidence structure $\Pi_a = (\mathcal{P}, \Sigma)$ whose points are the points of AG (r, q^2) and whose hyperplanes are the hyperplanes of PG (r, q^2) through the infinite point $P_{\infty}(0, 0, \dots, 0, 1)$ together with the quadrics $\mathcal{Q}_a(\mathbf{m}, d)$ as \mathbf{m} and drange as indicated above. **Lemma 2.1.** For every non-zero $a \in GF(q^2)$, the incidence structure $\Pi_a = (\mathcal{P}, \Sigma)$ is an affine space isomorphic to $AG(r, q^2)$.

Completing Π_a with its points at infinity in the usual way gives a projective space isomorphic to $PG(r, q^2)$. We shall make use of this non-standard model of $PG(r, q^2)$ in our work.

2.2 Multisets

A multiset in a r-dimensional projective space Π is a mapping $M : \Pi \to \mathbb{N}$ from points of Π into non-negative integers. The *points* of a multiset are the points Pof Π with multiplicity M(P) > 0. Assume that the number of points of M, each of them counted with its multiplicity, is n. For any hyperplane π of Π , the nonnegative integer $M(\pi) = \sum_{P \in \pi} M(P)$ is a *character* of the multiset M, whereas $n-M(\pi)$ is called a *weight* of M. If the set $\{M(\pi)\}_{\pi \in \Pi}$ consists of two non-negative integers only, then M is a 2-character multiset.

Suppose the points of M span a projective space PG(r,q). Then, it is possible to regard the coordinates of the points of M as the columns of a generator matrix of a code C of length n and dimension r + 1. In this case it is straightforward to see that the weights of M are indeed exactly the weights of C. We observe that points with multiplicity greater than one correspond to repeated components in C.

3 Proof of Proposition 1.1

From now on, we shall always silently assume $a \in GF(q^2)^*$, $b \in GF(q^2) \setminus GF(q)$. Recall that for any quadric \mathcal{Q} , the radical $Rad(\mathcal{Q})$ of \mathcal{Q} is the subspace

$$\operatorname{Rad}(\mathcal{Q}) := \{ x \in \mathcal{Q} : \forall y \in \mathcal{Q}, \langle x, y \rangle \subseteq \mathcal{Q} \},\$$

where, as usual, by $\langle x, y \rangle$ we denote the line through x and y. It is well known that $\operatorname{Rad}(\mathcal{Q})$ is a subspace of $\operatorname{PG}(r, q^2)$.

Assume $\mathcal{B} := \mathcal{B}(a, b)$ to have Equation (3). It is straightforward to see that $\mathcal{B}(a, b)$ coincides with the affine part of the Hermitian variety \mathcal{H} of equation (1) in the space Π_a ; hence, any hyperplane $\pi_{P_{\infty}}$ of $\mathrm{PG}(r, q^2)$ passing through P_{∞} meets \mathcal{B} in $|\mathcal{H} \cap \pi_{P_{\infty}}| = q^{2r-3}$ points.

Now we are interested in the possible intersection sizes of \mathcal{B} with a generic hyperplane

$$\pi: x_r = m_1 x_1 + \dots + m_{r-1} x_{r-1} + d,$$

of AG (r, q^2) with coefficients $m_1, \ldots, m_r, d \in GF(q^2)$. This is the same as to study the intersection of \mathcal{H} with the quadrics $\mathcal{Q}_a(\mathbf{m}, d)$. Choose $\varepsilon \in GF(q^2) \setminus GF(q)$ such that $\varepsilon^q = -\varepsilon$; for any $z \in GF(q^2)$ write $z = z^0 + \varepsilon z^1$ with $z^1, z^2 \in GF(q)$. The number N of affine points which lie in $\mathcal{B} \cap \pi$ is the same as the number of points of the affine quadric \mathcal{Q} of AG(2r-2, q) of equation

$$\sum_{i=1}^{r-1} \left((b^1 + a^1) \varepsilon^2 (x_i^1)^2 + 2a^0 x_i^0 x_i^1 + (a^1 - b^1) (x_1^0)^2 \right) + \sum_{i=1}^{r-1} (m_i^0 x_i^1 + m_i^1 x_i^0) + d^1 = 0.$$
(5)

Following the approach of [1], in order to compute N, we first count the number of points of the quadric at infinity $\mathcal{Q}_{\infty} := \mathcal{Q} \cap \Pi_{\infty}$ of \mathcal{Q} and then we determine $N = |\mathcal{Q}| - |\mathcal{Q}_{\infty}|$. Observe that the quadric \mathcal{Q}_{∞} of PG(2r - 3, q) has a matrix of the form

$$A_{\infty} = \begin{pmatrix} (a^{1} - b^{1}) & a^{0} & & \\ a^{0} & (b^{1} + a^{1})\varepsilon^{2} & & \\ & \ddots & & \\ & & (a^{1} - b^{1}) & a^{0} \\ & & & a^{0} & (b^{1} + a^{1})\varepsilon^{2} \end{pmatrix}.$$

Since $(a^0)^2 - \varepsilon^2[(a^1)^2 - (b^1)^2] = [a^{q+1} + (b^q - b)^2/4] = 0$, we have det $A_{\infty} = 0$. This is possible if, and only if,

$$\det \begin{pmatrix} (a^1 - b^1) & a^0 \\ a^0 & (a^1 + b^1)\varepsilon^2 \end{pmatrix} = 0,$$

that is, each of the 2×2 blocks on the main diagonal of A_{∞} has rank 1. Consequently, the rank of A_{∞} is exactly r - 1.

If $a^1 = b^1$, then $a^0 = 0$, the matrix A_{∞} is diagonal and the quadric \mathcal{Q}_{∞} is projectively equivalent to

$$(x_1^1)^2 + (x_2^1)^2 + \dots + (x_{r-1}^1)^2 = 0.$$

Otherwise, take

$$M = \begin{pmatrix} 1 & 0 & & & \\ -a^0/(a^1 - b^1) & 1 & & & \\ & & \ddots & & & \\ & & & 1 & 0 \\ & & & -a^0/(a^1 - b^1) & 1 \end{pmatrix};$$

a direct computation proves that

$$M^T A_{\infty} M = \begin{pmatrix} a^1 - b^1 & 0 & & & \\ 0 & 0 & & & \\ & & \ddots & & \\ & & & a^1 - b^1 & 0 \\ & & & & 0 & 0 \end{pmatrix}.$$

Hence, \mathcal{Q}_{∞} is projectively equivalent to the quadric of rank r-1 with equation

$$(x_1^0)^2 + (x_2^0)^2 + \dots + (x_{r-1}^0)^2 = 0.$$

For r odd we see that in both cases \mathcal{Q}_{∞} is either

- a cone with vertex $\operatorname{Rad}(\mathcal{Q}_{\infty}) \simeq \operatorname{PG}(r-2,q)$ and basis a hyperbolic quadric $Q^+(r-2,q)$ if $q \equiv 1 \pmod{4}$ or $r \equiv 1 \pmod{4}$, or
- a cone with vertex $\operatorname{Rad}(\mathcal{Q}_{\infty}) \simeq \operatorname{PG}(r-2,q)$ and basis an elliptic quadric $Q^{-}(r-2,q)$ if $q \equiv 3 \pmod{4}$ and $r \equiv 3 \pmod{4}$.

For r even, \mathcal{Q}_{∞} is a cone with vertex $\operatorname{Rad}(\mathcal{Q}_{\infty}) \simeq \operatorname{PG}(r-2,q)$ and basis a parabolic quadric Q(r-2,q).

We now move to investigate the quadric Q. Clearly, its rank is either r-1 or r. Observe that

• \mathcal{Q} has rank r-1 if, and only if, there exist a linear function $f : \mathrm{GF}(q) \to \mathrm{GF}(q)$ such that for all $i = 1, \ldots, r-1$ we have $m_i^1 = f(m_i^0)$; also, the value of d_1 turns out to be uniquely determined. Thus, the number of distinct possibilities for the parameters is exactly q^r .

Write now $\Pi_{\infty} = \Sigma \oplus \operatorname{Rad}(\mathcal{Q}_{\infty})$. As Σ is disjoint from the radical of the quadratic form inducing \mathcal{Q}_{∞} , we have that $\Sigma \cap \mathcal{Q}_{\infty}$ is a nondegenerate quadric (either hyperbolic, elliptic or parabolic according to the various conditions). Since \mathcal{Q} has the same rank as \mathcal{Q}_{∞} , we have dim $\operatorname{Rad}(\mathcal{Q}) = \operatorname{dim} \operatorname{Rad}(\mathcal{Q}_{\infty}) + 1$. Observe that $\operatorname{Rad}(\mathcal{Q}) \cap \Pi_{\infty} \leq \operatorname{Rad}(\mathcal{Q}_{\infty})$. Thus, $\operatorname{Rad}(\mathcal{Q}) \cap \Sigma = \{\mathbf{0}\}$ and Σ is also a direct complement of $\operatorname{Rad}(\mathcal{Q})$. It follows that \mathcal{Q} is cone of vertex a $\operatorname{PG}(r-1,q)$ and basis a quadric of the same kind as the basis of \mathcal{Q}_{∞} .

• \mathcal{Q} has rank r in the remaining $q^{2r} - q^r$ possibilities. Here \mathcal{Q} is a cone of vertex a $\operatorname{PG}(r-2,q)$ and basis a parabolic quadric Q(r-1,q) for r odd or \mathcal{Q} is a cone of vertex a $\operatorname{PG}(r-2,q)$ and basis a hyperbolic quadric $Q^+(r-1,q)$ or an elliptic quadric $Q^-(r-1,q)$ for r even.

We can now determine the complete list of sizes for r odd:

$$|\mathcal{Q}_{\infty}| = \frac{q^{2r-3}-1}{q-1} \pm q^{(3r-5)/2};$$

• in case $\operatorname{rank}(\mathcal{Q}) = r - 1$, then

$$|\mathcal{Q}| = \frac{q^{2r-2}-1}{q-1} \pm q^{3(r-1)/2};$$

• in case $\operatorname{rank}(\mathcal{Q}) = r$,

$$|\mathcal{Q}| = \frac{q^{2r-2} - 1}{q-1}$$

In particular, the possible values for $|\mathcal{Q}| - |\mathcal{Q}_{\infty}|$ are

$$q^{2r-3} + q^{3(r-1)/2} - q^{(3r-5)/2}, q^{2r-3} - q^{(3r-5)/2}$$

for $q \equiv 1 \pmod{4}$ or $r \equiv 1 \pmod{4}$ and

$$q^{2r-3} - q^{3(r-1)/2} + q^{(3r-5)/2}, q^{2r-3} + q^{(3r-5)/2}$$

for $q \equiv 3 \pmod{4}$ and $r \equiv 3 \pmod{4}$.

When r is even we get:

•

$$|\mathcal{Q}_{\infty}| = \frac{q^{2r-3}-1}{q-1};$$

• in case $\operatorname{rank}(\mathcal{Q}) = r - 1$, then

$$|\mathcal{Q}| = \frac{q^{2r-2}-1}{q-1};$$

• in case $\operatorname{rank}(\mathcal{Q}) = r$,

$$|\mathcal{Q}| = \frac{q^{2r-2}-1}{q-1} \pm q^{(3r-4)/2}.$$

Thus, the possible list of cardinalities for $|\mathcal{Q}| - |\mathcal{Q}_{\infty}|$ is

$$q^{2r-3}, q^{2r-3} + q^{(3r-4)/2}, q^{2r-3} - q^{(3r-4)/2}.$$

Now we are going to show that $\mathcal{B}(a, b)$ is a minimal intersection set. First of all, we prove that for any $P \in \mathcal{B}(a, b)$ there exists a subspace $\Lambda_n(P) \simeq \mathrm{AG}(n, q^2)$, $1 \leq n \leq r-1$ through P such that $|\mathcal{B}(a, b) \cap \Lambda_n(P)| \leq q^{2n-1} - q^{n-1}$. The argument is by induction on n. Assume n = 1. Then, for any $P \in \mathcal{B}$ there exists at least one line ℓ through P such that $|\ell \cap \mathcal{B}| < q$, otherwise \mathcal{B} would contain more than q^{2r-1} points. Suppose now that the result holds for $n = 1, \ldots, r-2$, take $P \in \mathcal{B}$ and suppose that any hyperplane π through P meets \mathcal{B} in at least q^{2r-3} points. By induction, there exists a subspace $\pi' := \Lambda_{r-2}(P) \simeq \operatorname{AG}(r-2,q^2)$ through P meeting \mathcal{B} in at most $q^{2r-5}-q^{r-3}$ points. By considering all hyperplanes containing π' we get $|\mathcal{B}| \ge (q^2+1)(q^{2r-3}-q^{2r-5}+q^{r-3})+q^{2r-5}-q^{r-3} > q^{2r-1}$, a contradiction. Thus, through any $P \in \mathcal{B}(a,b)$ there exists a hyperplane meeting $\mathcal{B}(a,b)$ in $(q^{2r-3}-q^{(3r-5)/2})$ points for r odd or $(q^{2r-3}-q^{(3r-4)/2})$ for r even. This implies that $\mathcal{B}(a,b)$ is in all cases a minimal intersection set.

Corollary 3.1. For q odd and $4a^{q+1} + (b^q - b)^2 = 0$, the number of hyperplanes N_j meeting $\mathcal{B}(a, b)$ in exactly j points are as follows:

(a) for r odd

$$N_{q^{2r-3}+q^{(3r-5)/2}} = q^{2r} - q^r, \qquad N_{q^{2r-3}} = \frac{q^{2r} - 1}{q^2 - 1} - 1$$
$$N_{q^{2r-3}-q^{3(r-1)/2}+q^{(3r-5)/2}} = q^r.$$

(b) for r even,

$$N_{q^{2r-3}-q^{(3r-4)/2}} = \frac{1}{2}(q^{2r}-q^r) \qquad N_{q^{2r-3}} = q^r + \frac{q^{2r}-1}{q^2-1} - 1,$$
$$N_{q^{2r-3}+q^{3(r-4)/2}} = \frac{1}{2}(q^{2r}-q^r).$$

Proof. Case (a) is a direct consequence of the arguments of Theorem 1.1. In Case (b), when r is even, we need to count how often \mathcal{Q} turns out to be elliptic rather than hyperbolic. For any choice of the parameters m_1, \ldots, m_{r-1}, d there is exactly one quadric \mathcal{Q} to consider. As \mathcal{Q}_{∞} is always a parabolic quadric, we can assume it to be fixed. Denote by $\sigma^0, \sigma^+, \sigma^-$ respectively the number of quadrics \mathcal{Q} which are parabolic, elliptic or hyperbolic. Clearly σ_0 corresponds to the case in which rank(\mathcal{Q}) = rank(\mathcal{Q}_{∞}). We have

$$\sigma^+ + \sigma^0 + \sigma^- = q^{2r}, \qquad \sigma^0 = q^r.$$

Each point of $\mathcal{B}(a, b)$ lies on $\frac{q^{2r}-1}{q^2-1}$ hyperplanes; of these $\frac{q^{2r-2}-1}{q^2-1}$ pass through P_{∞} (and they must be discounted). Thus, we get

$$q^{2r-2}|\mathcal{B}| = q^{4r-3} = \sigma^0 q^{2r-3} + \sigma^+ (q^{2r-3} + q^{(3r-4)/2}) + \sigma^- (q^{2r-3} - q^{(3r-4)/2}) = q^{2r-3}(\sigma^0 + \sigma^+ + \sigma^-) + q^{(3r-4)/2}(\sigma^+ - \sigma^-) = q^{4r-3} + (\sigma^+ - \sigma^-)q^{(3r-4)/2}.$$

Hence, $\sigma^+ = \sigma^- = \frac{1}{2}(q^{2r} - q^r).$

Remark 3.2. The quadric $\mathcal{Q}_a(\mathbf{m}, d)$ of Equation (4) shares its tangent hyperplane at P_{∞} with the Hermitian variety (1).

The problem of the intersection of the Hermitian variety \mathcal{H} with irreducible quadrics \mathcal{Q} having the same tangent plane at a common point $P \in \mathcal{Q} \cap \mathcal{H}$ has been considered for r = 3 in [3, 4].

4 A family of two-character multisets in $PG(3, q^2)$

In [2, Theorem 4.1] it is shown that for r = 2, q odd and $4a^{q+1} + (b^q - b)^2 \neq 0$ or r = 2, q even and $\text{Tr}(a^{q+1}/(b^q + b)^2) = 1$, the set $\mathcal{B}(a, b)$ can be completed to a 2-character multiset $\overline{\mathcal{B}}(a, b)$. An analogous result holds for r = 3. In this section we now prove Theorem 1.2.

Assume q odd and $4a^{q+1} + (b^q - b)^2 = 0$. From the proof of Proposition 1.1, the quadric \mathcal{Q}_{∞} is the union of two distinct planes for $q \equiv 1 \pmod{4}$ or just a line for $q \equiv 3 \pmod{4}$. Therefore, if $q \equiv 1 \pmod{4}$ then either

$$N = q^{3} + q^{2} + q + 1 - (2q^{2} + q + 1) = q^{3} - q^{2}$$

or

$$N = 2q^{3} + q^{2} + q + 1 - (2q^{2} + q + 1) = 2q^{3} - q^{2},$$

according as Q is either the join of a line to a conic or a pair of solids; hence, the list of intersection numbers of $\mathcal{B}(a,b)$ with affine hyperplanes is $q^3 - q^2$, q^3 and $2q^3 - q^2$.

If $q \equiv 3 \pmod{4}$ we get either

$$N = q^{3} + q^{2} + q + 1 - q - 1 = q^{3} + q^{2},$$

or

$$N = q^2 + q + 1 - q - 1 = q^2,$$

according as Q is either the join of a line to a conic or a plane; therefore, in this case, the intersection numbers are q^2 , q^3 and $q^3 + q^2$

Now consider the multiset $\overline{\mathcal{B}}(a, b)$ in $PG(3, q^2)$ arising from $\mathcal{B}(a, b)$ by assigning multiplicity bigger than 1 to just the point P_{∞} .

More in detail the points of the 2-character multiset $\overline{\mathcal{B}}(a,b)$ are exactly those of $\mathcal{B}(a,b) \cup \{P_{\infty}\}$ where each affine point of $\mathcal{B}(a,b)$ has multiplicity one, and P_{∞} has either multiplicity $q^3 - q^2$ for $q \equiv 1 \pmod{4}$, or multiplicity q^2 when $q \equiv 3 \pmod{4}$. Our theorem follows.

Remark 4.1. Let C be the linear code associated to $\overline{\mathcal{B}}(a, b)$. In the first case C is a $[q^5 + q^3 - q^2, 4, q^5 - q^3]_{q^2}$ two-weight code, while in the second it has parameters $[q^5 + q^2, 4, q^5 - q^3]_{q^2}$. In either case the non-zero weights are q^5 and $q^5 - q^3$.

If A_i is the number of words in \mathcal{C} of weight *i* then by Corollary 3.1 it follows that

$$A_{q^5} = (q^6 - q^3 + 1)(q^2 - 1);$$
 $A_{q^5 - q^3} = (q^4 + q^3 + q^2)(q^2 - 1).$

5 Intersection sets with multiplicity $q^{2r-3} - q^{r-2}$

We keep the notation of the previous sections and examine the remaining cases. Even though the results we obtain are a direct consequence of the construction of [1], we provide some further technical details so that this paper can be considered self-contained.

Proposition 5.1. Suppose r to be even and that either q is odd and $4a^{q+1}+(b^q-b)^2$ is a non-zero square in GF(q) or q is even and Tr $(a^{q+1}/(b^q+b)^2) = 1$. Then, $\mathcal{B}(a,b)$ is a set of q^{2r-1} points of AG(r, q²) with characters

$$q^{2r-3} - q^{r-2}, q^{2r-3}, q^{2r-3} - q^{r-2} + q^{r-1}$$

This is also a minimal intersection set with respect to hyperplanes.

Proof. We first discuss the nature of \mathcal{Q}_{∞} . Observe that, under our assumptions, for q odd $(-1)^{r-1} \det A_{\infty}$ is always a square; hence, \mathcal{Q}_{∞} is a hyperbolic quadric.

For q even choose $\varepsilon \in GF(q^2) \setminus GF(q)$ such that $\varepsilon^2 + \varepsilon + \nu = 0$, for some $\nu \in GF(q) \setminus \{1\}$ with $Tr(\nu) = 1$. Then, $\varepsilon^{2q} + \varepsilon^q + \nu = 0$. Therefore, $(\varepsilon^q + \varepsilon)^2 + (\varepsilon^q + \varepsilon) = 0$, whence $\varepsilon^q + \varepsilon + 1 = 0$. With this choice of ε , the system given by (3) and (4) reads as

$$\begin{aligned} &(a^{1}+b^{1})(x_{1}^{0})^{2}+[(a^{0}+a^{1})+\nu(a^{1}+b^{1})](x_{1}^{1})^{2}+b^{1}x_{1}^{0}x_{1}^{1}+m_{1}^{1}x_{1}^{0}+(m_{1}^{0}+m_{1}^{1})x_{1}^{1}\\ &+\ldots+(a^{1}+b^{1})(x_{r-1}^{0})^{2}+[(a^{0}+a^{1})+\nu(a^{1}+b^{1})](x_{r-1}^{1})^{2}+b^{1}x_{r-1}^{0}x_{r-1}^{1}\\ &+m_{r-1}^{1}x_{r-1}^{0}+(m_{r-1}^{0}+m_{r-1}^{1})x_{r-1}^{1}+d^{1}=0. \end{aligned}$$

$$(6)$$

The discussion of the (possibly degenerate) quadric Q of Equation (6) may be carried out in close analogy to what has been done before.

Observe however that, as also pointed out in the remark before [5, Theorem 22.2.1], some caution is needed when quadrics and their classifications are studied in even characteristic. Indeed let A_{∞} be the formal matrix associated to the quadric Q_{∞} of equation

$$(a^{1} + b^{1})(x_{1}^{0})^{2} + [(a^{0} + a^{1}) + \nu(a^{1} + b^{1})](x_{1}^{1})^{2} + b^{1}x_{1}^{0}x_{1}^{1} + \dots + (a^{1} + b^{1})(x_{r-1}^{0})^{2} + [(a^{0} + a^{1}) + \nu(a^{1} + b^{1})](x_{r-1}^{1})^{2} + b^{1}x_{r-1}^{0}x_{r-1}^{1} = 0.$$

Its determinant is equal to

det
$$A_{\infty} = [4(a^1 + b^1)(a^0 + a^1 + \nu(a^1 + b^1)) + (b^1)^2]^{r-1}$$
.

In order to encompass the case q even, det A_{∞} needs to be regarded as a formal function in the polynomial ring $GF(q)[z_0, z_1, z_2, z_3]$ evaluated in (a^0, a^1, b^0, b^1) . This gives det $A_{\infty} = b_1^2$. Here $b_1 \neq 0$, by our assumption $b^q \neq b$. From [5, Theorem 22.2.1 (i)], the quadric \mathcal{Q}_{∞} must be non-degenerate. Furthermore, by [5, Theorem 22.2.1 (ii)] and the successive Lemma 22.2.2 the nature of \mathcal{Q}_{∞} can be ascertained as follows. Let *B* the matrix obtained from A_{∞} by omitting all the entries on its main diagonal, and define

$$\alpha = \frac{\det B - (-1)^{r-1} \det A_{\infty}}{4 \det B}$$

A straightforward computation shows that

$$\alpha = \frac{(b^1)^{2(r-1)} + (4(a^1 + b^1)(a^0 + a^1 + \nu(a^1 + b^1)) + (b^1)^2)^{r-1}}{4(b^1)^{2(r-1)}}.$$

Regard α also as a function in the polynomial ring $GF(q)[z_0, z_1, z_2, z_3]$ evaluated in (a^0, a^1, b^0, b^1) . Hence we get

$$\alpha = \frac{(a^1 + b^1)(a^0 + a^1 + \nu(a^1 + b^1))}{(b^1)^2}.$$

Arguing as in [1, p. 439], we see that $\operatorname{Tr}_{\mathrm{GF}(q)|\mathrm{GF}(2)}(\alpha) = 0$ and, hence, \mathcal{Q}_{∞} is hyperbolic also for q even.

Now, in both cases q odd or q even we investigate the possible nature of Q. Suppose Q to be non-singular; then

$$N = \frac{(q^{r-1}+1)(q^{r-1}-1)}{q-1} - \frac{(q^{r-1}+1)(q^{r-2}-1)}{q-1} = q^{r-2}(q^{r-1}+1).$$

If \mathcal{Q} is singular, then

$$N = \frac{q(q^{r-1}+1)(q^{r-2}-1)}{q-1} - \frac{(q^{r-1}+1)(q^{r-2}-1)}{q-1} + 1 = q^{r-2}(q^{r-1}+1) - q^{r-1}.$$

This gives the possible intersection numbers.

Finally, in order to show that $\mathcal{B}(a, b)$ is a minimal $(q^{2r-3} - q^{r-2})$ -fold blocking set we can use the same techniques as those adopted to prove that $\mathcal{B}(a, b)$ is a minimal blocking set in Section 3 for q odd and $4a^{q+1} + (b^q - b)^2 = 0$

References

 A. Aguglia, A. Cossidente, G. Korchmáros, On quasi-Hermitian varieties, J. Combin. Des. 20 (2012), no. 10, 433–447.

- [2] A. Aguglia, G. Korchmáros, Multiple blocking sets and multisets in Desarguesian planes, Des. Codes Cryptogr. 56, 177–181 (2010).
- [3] A. Aguglia, L. Giuzzi, Intersections of the Hermitian surface with irreducible quadrics in $PG(3, q^2)$, q odd, Finite Fields Appl. **30** 1–13 (2014).
- [4] A. Aguglia, L. Giuzzi, Intersections of the Hermitian surface with irreducible quadrics in even characteristic, preprint (arXiv:1407.8498)
- [5] J.W.P. Hirschfeld, J. A. Thas, *General Galois Geometries*, Oxford University Press, (1992).
- [6] B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finito, Ann. Mat. Pura Appl. (4) 70, 1–201 (1965).
- [7] M.A. Tsfasman, S.G. Vlăduţ, D.Yu. Nogin, Algebraic geometric codes: basic notions, Mathematical Surveys and Monographs 139, American Mathematical Society (2007).

Authors' addresses:

Angela Aguglia Department of Mechanics, Mathematics and Management Politecnico di Bari Via Orabona 4, I-70126 Bari (Italy) angela.aguglia@poliba.it Luca Giuzzi D.I.C.A.T.A.M. Section of Mathematics Università di Brescia Via Branze 53, I-25123, Brescia (Italy) luca.giuzzi@unibs.it