t-Intersection sets in $A G\left(r, q^{2}\right)$ and two-character multisets in $\operatorname{PG}\left(3, q^{2}\right)$

A. Aguglia* L. Giuzzi ${ }^{\dagger}$

Abstract

In this article we construct new minimal intersection sets in $\mathrm{AG}\left(r, q^{2}\right)$ with respect to hyperplanes, of size $q^{2 r-1}$ and multiplicity t, where $t \in$ $\left\{q^{2 r-3}-q^{(3 r-5) / 2}, q^{2 r-3}+q^{(3 r-5) / 2}-q^{(3 r-3) / 2}\right\}$, for r odd or $t \in\left\{q^{2 r-3}-\right.$ $\left.q^{(3 r-4) / 2}, q^{2 r-3}-q^{r-2}\right\}$, for r even. As a byproduct, for any odd q we get a new family of two-character multisets in $\operatorname{PG}\left(3, q^{2}\right)$.

The essential idea is to investigate some point-sets in $\mathrm{AG}\left(r, q^{2}\right)$ satisfying the opposite of the algebraic conditions required in (1) for quasi-Hermitian varieties.

Keywords: Hermitian variety, quadric, two-character set.

1 Introduction

All non-degenerate Hermitian varieties of $\mathrm{PG}\left(r, q^{2}\right)$ are projectively equivalent; furthermore, they sport just two intersection numbers with hyperplanes, see [6]. Quasi-Hermitian varieties \mathcal{V} of $\operatorname{PG}\left(r, q^{2}\right)$ are combinatorial objects which have the same size and the same intersection numbers with hyperplanes as a (nondegenerate) Hermitian variety \mathcal{H}; see [1] for details and some constructions. In the present paper we shall consider varieties \mathcal{V} arising by taking algebraic conditions opposite to those of [1] and show that these are in turn interesting geometric objects with 3 intersection numbers. The topic is also of interest for applications, as the projective system induced by \mathcal{V} will determine linear codes with few weights; see [7] for a description of this correspondence.

Fix a projective frame in $\operatorname{PG}\left(r, q^{2}\right)$ and assume the space to have homogeneous coordinates $\left(X_{0}, X_{1}, \ldots, X_{r}\right)$. Consider the affine plane $\mathrm{AG}\left(r, q^{2}\right)$ whose infinite

[^0]hyperplane Π_{∞} has equation $X_{0}=0$. Then, $\operatorname{AG}\left(r, q^{2}\right)$ has affine coordinates $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$ where $x_{i}=X_{i} / X_{0}$ for $i \in\{1, \ldots, r\}$.

Consider now the non-degenerate Hermitian variety \mathcal{H} with affine equation of the form

$$
\begin{equation*}
x_{r}^{q}-x_{r}=\left(b^{q}-b\right)\left(x_{1}^{q+1}+\ldots+x_{r-1}^{q+1}\right), \tag{1}
\end{equation*}
$$

where $b \in G F\left(q^{2}\right) \backslash \operatorname{GF}(q)$. The set of the points at infinity of \mathcal{H} is

$$
\begin{equation*}
\mathcal{F}=\left\{\left(0, x_{1}, \ldots, x_{r}\right) \mid x_{1}^{q+1}+\ldots+x_{r-1}^{q+1}=0\right\} ; \tag{2}
\end{equation*}
$$

this can be regarded as a Hermitian cone of $\mathrm{PG}\left(r-1, q^{2}\right)$, projecting a Hermitian variety of $P G\left(r-2, q^{2}\right)$ from the point $P_{\infty}:=(0, \ldots, 0,1)$. In particular, observe that the hyperplane Π_{∞} is tangent to \mathcal{H} at P_{∞}.

For any $a \in \operatorname{GF}\left(q^{2}\right)^{*}$ and $b \in \operatorname{GF}\left(q^{2}\right) \backslash \operatorname{GF}(q)$, let $\mathcal{B}:=\mathcal{B}(a, b)$ be the affine algebraic variety of equation

$$
\begin{equation*}
x_{r}^{q}-x_{r}+a^{q}\left(x_{1}^{2 q}+\ldots+x_{r-1}^{2 q}\right)-a\left(x_{1}^{2}+\ldots+x_{r-1}^{2}\right)=\left(b^{q}-b\right)\left(x_{1}^{q+1}+\ldots+x_{r-1}^{q+1}\right) . \tag{3}
\end{equation*}
$$

It is shown in [1] that $\mathcal{B}(a, b)$, together with the points at infinity of \mathcal{H}, as given by (2), is a quasi-Hermitian variety \mathcal{V} of $\operatorname{PG}\left(r, q^{2}\right)$ provided that either of the following algebraic conditions are satisfied: for q odd, r is odd and $4 a^{q+1}+\left(b^{q}-b\right)^{2} \neq 0$, or r is even and $4 a^{q+1}+\left(b^{q}-b\right)^{2}$ is a non-square in $\operatorname{GF}(q)$; for q even, r is odd, or r is even and $\operatorname{Tr}\left(a^{q+1} /\left(b^{q}+b\right)^{2}\right)=0$.

In this paper, as stated before, we shall study the variety $\mathcal{B}(a, b)$ when the opposite of the previous conditions holds. More precisely our main results are the following

Proposition 1.1. Suppose q odd, $4 a^{q+1}+\left(b^{q}-b\right)^{2}=0$ and r odd. Then $\mathcal{B}(a, b)$ is a set of $q^{2 r-1}$ points of $\operatorname{AG}\left(r, q^{2}\right)$ of characters:

- for $r \equiv 1(\bmod 4)$ or $q \equiv 1(\bmod 4)$

$$
q^{2 r-3}-q^{(3 r-5) / 2}, q^{2 r-3}, q^{2 r-3}-q^{(3 r-5) / 2}+q^{3(r-1) / 2}
$$

- for $r \equiv 3(\bmod 4)$ and $q \equiv 3(\bmod 4)$

$$
q^{2 r-3}+q^{(3 r-5) / 2}-q^{3(r-1) / 2}, q^{2 r-3}, q^{2 r-3}+q^{(3 r-5) / 2}
$$

- for r even,

$$
q^{2 r-3}-q^{(3 r-4) / 2}, q^{2 r-3}, q^{2 r-3}+q^{(3 r-4) / 2} .
$$

Furthermore $\mathcal{B}(a, b)$ is always a minimal intersection set with respect to hyperplanes.

Theorem 1.2. Suppose q odd and $4 a^{q+1}+\left(b^{q}-b\right)^{2}=0$. In $P G\left(3, q^{2}\right)$ there exists a 2 -character multiset $\overline{\mathcal{B}}(a, b)$ containing $\mathcal{B}(a, b)$ and characters either $q^{3}-q^{2}$ and $2 q^{3}-q^{2}$ if $q \equiv 1(\bmod 4)$, or q^{2}, and $q^{3}+q^{2}$ if $q \equiv 3(\bmod 4)$.

These results are proved respectively in Section 3 and in Section 4 .
Finally, in Section 5 we prove that in the remaining cases we again get minimal intersection sets of the same size but multiplicity $q^{2 r-3}-q^{r-2}$.

2 Preliminaries

2.1 Intersection sets with respect to hyperplanes

A set of points \mathcal{B} in a projective or an affine space is a t-fold blocking set with respect to hyperplanes if every hyperplane contains at least t points of \mathcal{B}. Such a set \mathcal{B} is also known as a t-intersection set, or an intersection set with multiplicity t, or a multiple intersection set.

A point P of a t-intersection set \mathcal{B} is said to be essential if $\mathcal{B} \backslash\{P\}$ is not a t intersection set. When all points of \mathcal{B} are essential then \mathcal{B} is minimal. If the size of the intersection of \mathcal{B} with an arbitrary hyperplane takes m values, say v_{1}, \ldots, v_{m}, then the non-negative integers v_{1}, \ldots, v_{m} are called the characters of \mathcal{B} and \mathcal{B} is also an m-character set. We observe that if \mathcal{B} is an m-character set consisting of n points and spanning the projective space where it is contained, then the linear code having as columns of its generator matrix the coordinates of the points of \mathcal{B} has exactly m distinct nonzero weights and length n. The dimension k of this code is the vector dimension of the subspace spanned by \mathcal{B}.

Quasi-Hermitian varieties are examples of 2 -character sets of $P G\left(r, q^{2}\right)$. In [1] a new infinite family of quasi-Hermitian varieties have been constructed by modifying some point-hyperplane incidences in $\operatorname{PG}\left(r, q^{2}\right)$. To this purpose, the authors kept the point set of $\operatorname{PG}\left(r, q^{2}\right)$ but replaced the hyperplanes with their images under a suitable quadratic transformation, obtaining a non-standard model Π of $\mathrm{PG}\left(r, q^{2}\right)$. This model arises as follows.

Fix a non-zero element $a \in \operatorname{GF}\left(q^{2}\right)$. For any choice $\mathbf{m}=\left(m_{1}, \ldots, m_{r-1}\right) \in$ $G F\left(q^{2}\right)^{r-1}$ and $d \in \operatorname{GF}\left(q^{2}\right)$ let $\mathcal{Q}_{a}(\mathbf{m}, d)$ denote the quadric of equation

$$
\begin{equation*}
x_{r}=a\left(x_{1}^{2}+\ldots+x_{r-1}^{2}\right)+m_{1} x_{1}+\ldots+m_{r-1} x_{r-1}+d . \tag{4}
\end{equation*}
$$

Consider now the incidence structure $\Pi_{a}=(\mathcal{P}, \Sigma)$ whose points are the points of $\operatorname{AG}\left(r, q^{2}\right)$ and whose hyperplanes are the hyperplanes of $\operatorname{PG}\left(r, q^{2}\right)$ through the infinite point $P_{\infty}(0,0, \ldots, 0,1)$ together with the quadrics $\mathcal{Q}_{a}(\mathbf{m}, d)$ as \mathbf{m} and d range as indicated above.

Lemma 2.1. For every non-zero $a \in \operatorname{GF}\left(q^{2}\right)$, the incidence structure $\Pi_{a}=(\mathcal{P}, \Sigma)$ is an affine space isomorphic to $\mathrm{AG}\left(r, q^{2}\right)$.

Completing Π_{a} with its points at infinity in the usual way gives a projective space isomorphic to $\operatorname{PG}\left(r, q^{2}\right)$. We shall make use of this non-standard model of $P G\left(r, q^{2}\right)$ in our work.

2.2 Multisets

A multiset in a r-dimensional projective space Π is a mapping $M: \Pi \rightarrow \mathbb{N}$ from points of Π into non-negative integers. The points of a multiset are the points P of Π with multiplicity $M(P)>0$. Assume that the number of points of M, each of them counted with its multiplicity, is n. For any hyperplane π of Π, the nonnegative integer $M(\pi)=\sum_{P \in \pi} M(P)$ is a character of the multiset M, whereas $n-M(\pi)$ is called a weight of M. If the set $\{M(\pi)\}_{\pi \in \Pi}$ consists of two non-negative integers only, then M is a 2 -character multiset.

Suppose the points of M span a projective space $\operatorname{PG}(r, q)$. Then, it is possible to regard the coordinates of the points of M as the columns of a generator matrix of a code \mathcal{C} of length n and dimension $r+1$. In this case it is straightforward to see that the weights of M are indeed exactly the weights of \mathcal{C}. We observe that points with multiplicity greater than one correspond to repeated components in \mathcal{C}.

3 Proof of Proposition 1.1

From now on, we shall always silently assume $a \in \operatorname{GF}\left(q^{2}\right)^{*}, b \in \operatorname{GF}\left(q^{2}\right) \backslash \operatorname{GF}(q)$. Recall that for any quadric \mathcal{Q}, the radical $\operatorname{Rad}(\mathcal{Q})$ of \mathcal{Q} is the subspace

$$
\operatorname{Rad}(\mathcal{Q}):=\{x \in \mathcal{Q}: \forall y \in \mathcal{Q},\langle x, y\rangle \subseteq \mathcal{Q}\}
$$

where, as usual, by $\langle x, y\rangle$ we denote the line through x and y. It is well known that $\operatorname{Rad}(\mathcal{Q})$ is a subspace of $\operatorname{PG}\left(r, q^{2}\right)$.

Assume $\mathcal{B}:=\mathcal{B}(a, b)$ to have Equation (3). It is straightforward to see that $\mathcal{B}(a, b)$ coincides with the affine part of the Hermitian variety \mathcal{H} of equation (1) in the space Π_{a}; hence, any hyperplane $\pi_{P_{\infty}}$ of $\mathrm{PG}\left(r, q^{2}\right)$ passing through P_{∞} meets \mathcal{B} in $\left|\mathcal{H} \cap \pi_{P_{\infty}}\right|=q^{2 r-3}$ points.

Now we are interested in the possible intersection sizes of \mathcal{B} with a generic hyperplane

$$
\pi: x_{r}=m_{1} x_{1}+\cdots+m_{r-1} x_{r-1}+d,
$$

of $\operatorname{AG}\left(r, q^{2}\right)$ with coefficients $m_{1}, \ldots, m_{r}, d \in \operatorname{GF}\left(q^{2}\right)$. This is the same as to study the intersection of \mathcal{H} with the quadrics $\mathcal{Q}_{a}(\mathbf{m}, d)$. Choose $\varepsilon \in \mathrm{GF}\left(q^{2}\right) \backslash \mathrm{GF}(q)$ such
that $\varepsilon^{q}=-\varepsilon$; for any $z \in \operatorname{GF}\left(q^{2}\right)$ write $z=z^{0}+\varepsilon z^{1}$ with $z^{1}, z^{2} \in \operatorname{GF}(q)$. The number N of affine points which lie in $\mathcal{B} \cap \pi$ is the same as the number of points of the affine quadric \mathcal{Q} of $\mathrm{AG}(2 r-2, q)$ of equation

$$
\begin{equation*}
\sum_{i=1}^{r-1}\left(\left(b^{1}+a^{1}\right) \varepsilon^{2}\left(x_{i}^{1}\right)^{2}+2 a^{0} x_{i}^{0} x_{i}^{1}+\left(a^{1}-b^{1}\right)\left(x_{1}^{0}\right)^{2}\right)+\sum_{i=1}^{r-1}\left(m_{i}^{0} x_{i}^{1}+m_{i}^{1} x_{i}^{0}\right)+d^{1}=0 \tag{5}
\end{equation*}
$$

Following the approach of [1], in order to compute N, we first count the number of points of the quadric at infinity $\mathcal{Q}_{\infty}:=\mathcal{Q} \cap \Pi_{\infty}$ of \mathcal{Q} and then we determine $N=|\mathcal{Q}|-\left|\mathcal{Q}_{\infty}\right|$. Observe that the quadric \mathcal{Q}_{∞} of $\operatorname{PG}(2 r-3, q)$ has a matrix of the form

$$
A_{\infty}=\left(\begin{array}{ccccc}
\left(a^{1}-b^{1}\right) & a^{0} & & & \\
a^{0} & \left(b^{1}+a^{1}\right) \varepsilon^{2} & & & \\
& & \ddots & & \\
& & & \left(a^{1}-b^{1}\right) & a^{0} \\
& & & a^{0} & \left(b^{1}+a^{1}\right) \varepsilon^{2}
\end{array}\right)
$$

Since $\left(a^{0}\right)^{2}-\varepsilon^{2}\left[\left(a^{1}\right)^{2}-\left(b^{1}\right)^{2}\right]=\left[a^{q+1}+\left(b^{q}-b\right)^{2} / 4\right]=0$, we have $\operatorname{det} A_{\infty}=0$. This is possible if, and only if,

$$
\operatorname{det}\left(\begin{array}{cc}
\left(a^{1}-b^{1}\right) & a^{0} \\
a^{0} & \left(a^{1}+b^{1}\right) \varepsilon^{2}
\end{array}\right)=0
$$

that is, each of the 2×2 blocks on the main diagonal of A_{∞} has rank 1 . Consequently, the rank of A_{∞} is exactly $r-1$.

If $a^{1}=b^{1}$, then $a^{0}=0$, the matrix A_{∞} is diagonal and the quadric \mathcal{Q}_{∞} is projectively equivalent to

$$
\left(x_{1}^{1}\right)^{2}+\left(x_{2}^{1}\right)^{2}+\cdots+\left(x_{r-1}^{1}\right)^{2}=0 .
$$

Otherwise, take

$$
M=\left(\begin{array}{ccccc}
1 & 0 & & & \\
-a^{0} /\left(a^{1}-b^{1}\right) & 1 & & & \\
& & \ddots & & \\
& & & 1 & 0 \\
& & & -a^{0} /\left(a^{1}-b^{1}\right) & 1
\end{array}\right)
$$

a direct computation proves that

$$
M^{T} A_{\infty} M=\left(\begin{array}{ccccc}
a^{1}-b^{1} & 0 & & & \\
0 & 0 & & & \\
& & \ddots & & \\
& & & a^{1}-b^{1} & 0 \\
& & & 0 & 0
\end{array}\right)
$$

Hence, \mathcal{Q}_{∞} is projectively equivalent to the quadric of rank $r-1$ with equation

$$
\left(x_{1}^{0}\right)^{2}+\left(x_{2}^{0}\right)^{2}+\cdots+\left(x_{r-1}^{0}\right)^{2}=0
$$

For r odd we see that in both cases \mathcal{Q}_{∞} is either

- a cone with vertex $\operatorname{Rad}\left(\mathcal{Q}_{\infty}\right) \simeq \mathrm{PG}(r-2, q)$ and basis a hyperbolic quadric $Q^{+}(r-2, q)$ if $q \equiv 1(\bmod 4)$ or $r \equiv 1(\bmod 4)$, or
- a cone with vertex $\operatorname{Rad}\left(\mathcal{Q}_{\infty}\right) \simeq \operatorname{PG}(r-2, q)$ and basis an elliptic quadric $Q^{-}(r-2, q)$ if $q \equiv 3(\bmod 4)$ and $r \equiv 3(\bmod 4)$.

For r even, \mathcal{Q}_{∞} is a cone with vertex $\operatorname{Rad}\left(\mathcal{Q}_{\infty}\right) \simeq \mathrm{PG}(r-2, q)$ and basis a parabolic quadric $Q(r-2, q)$.

We now move to investigate the quadric \mathcal{Q}. Clearly, its rank is either $r-1$ or r. Observe that

- \mathcal{Q} has rank $r-1$ if, and only if, there exist a linear function $f: \operatorname{GF}(q) \rightarrow$ $\mathrm{GF}(q)$ such that for all $i=1, \ldots, r-1$ we have $m_{i}^{1}=f\left(m_{i}^{0}\right)$; also, the value of d_{1} turns out to be uniquely determined. Thus, the number of distinct possibilities for the parameters is exactly q^{r}.
Write now $\Pi_{\infty}=\Sigma \oplus \operatorname{Rad}\left(\mathcal{Q}_{\infty}\right)$. As Σ is disjoint from the radical of the quadratic form inducing \mathcal{Q}_{∞}, we have that $\Sigma \cap \mathcal{Q}_{\infty}$ is a nondegenerate quadric (either hyperbolic, elliptic or parabolic according to the various conditions). Since \mathcal{Q} has the same rank as \mathcal{Q}_{∞}, we have $\operatorname{dim} \operatorname{Rad}(\mathcal{Q})=\operatorname{dim} \operatorname{Rad}\left(\mathcal{Q}_{\infty}\right)+1$. Observe that $\operatorname{Rad}(\mathcal{Q}) \cap \Pi_{\infty} \leq \operatorname{Rad}\left(\mathcal{Q}_{\infty}\right)$. Thus, $\operatorname{Rad}(\mathcal{Q}) \cap \Sigma=\{\mathbf{0}\}$ and Σ is also a direct complement of $\operatorname{Rad}(\mathcal{Q})$. It follows that \mathcal{Q} is cone of vertex a $\operatorname{PG}(r-1, q)$ and basis a quadric of the same kind as the basis of \mathcal{Q}_{∞}.
- \mathcal{Q} has rank r in the remaining $q^{2 r}-q^{r}$ possibilities. Here \mathcal{Q} is a cone of vertex a $\mathrm{PG}(r-2, q)$ and basis a parabolic quadric $Q(r-1, q)$ for r odd or \mathcal{Q} is a cone of vertex a $\mathrm{PG}(r-2, q)$ and basis a hyperbolic quadric $Q^{+}(r-1, q)$ or an elliptic quadric $Q^{-}(r-1, q)$ for r even.

We can now determine the complete list of sizes for r odd:

$$
\left|\mathcal{Q}_{\infty}\right|=\frac{q^{2 r-3}-1}{q-1} \pm q^{(3 r-5) / 2}
$$

- in case $\operatorname{rank}(\mathcal{Q})=r-1$, then

$$
|\mathcal{Q}|=\frac{q^{2 r-2}-1}{q-1} \pm q^{3(r-1) / 2}
$$

- in case $\operatorname{rank}(\mathcal{Q})=r$,

$$
|\mathcal{Q}|=\frac{q^{2 r-2}-1}{q-1}
$$

In particular, the possible values for $|\mathcal{Q}|-\left|\mathcal{Q}_{\infty}\right|$ are

$$
q^{2 r-3}+q^{3(r-1) / 2}-q^{(3 r-5) / 2}, q^{2 r-3}-q^{(3 r-5) / 2}
$$

for $q \equiv 1(\bmod 4)$ or $r \equiv 1(\bmod 4)$ and

$$
q^{2 r-3}-q^{3(r-1) / 2}+q^{(3 r-5) / 2}, q^{2 r-3}+q^{(3 r-5) / 2}
$$

for $q \equiv 3(\bmod 4)$ and $r \equiv 3(\bmod 4)$.
When r is even we get:

$$
\left|\mathcal{Q}_{\infty}\right|=\frac{q^{2 r-3}-1}{q-1}
$$

- in case $\operatorname{rank}(\mathcal{Q})=r-1$, then

$$
|\mathcal{Q}|=\frac{q^{2 r-2}-1}{q-1} ;
$$

- in case $\operatorname{rank}(\mathcal{Q})=r$,

$$
|\mathcal{Q}|=\frac{q^{2 r-2}-1}{q-1} \pm q^{(3 r-4) / 2}
$$

Thus, the possible list of cardinalities for $|\mathcal{Q}|-\left|\mathcal{Q}_{\infty}\right|$ is

$$
q^{2 r-3}, q^{2 r-3}+q^{(3 r-4) / 2}, q^{2 r-3}-q^{(3 r-4) / 2}
$$

Now we are going to show that $\mathcal{B}(a, b)$ is a minimal intersection set. First of all, we prove that for any $P \in \mathcal{B}(a, b)$ there exists a subspace $\Lambda_{n}(P) \simeq \operatorname{AG}\left(n, q^{2}\right)$, $1 \leq n \leq r-1$ through P such that $\left|\mathcal{B}(a, b) \cap \Lambda_{n}(P)\right| \leq q^{2 n-1}-q^{n-1}$. The
argument is by induction on n. Assume $n=1$. Then, for any $P \in \mathcal{B}$ there exists at least one line ℓ through P such that $|\ell \cap \mathcal{B}|<q$, otherwise \mathcal{B} would contain more than $q^{2 r-1}$ points. Suppose now that the result holds for $n=1, \ldots, r-2$, take $P \in \mathcal{B}$ and suppose that any hyperplane π through P meets \mathcal{B} in at least $q^{2 r-3}$ points. By induction, there exists a subspace $\pi^{\prime}:=\Lambda_{r-2}(P) \simeq \operatorname{AG}\left(r-2, q^{2}\right)$ through P meeting \mathcal{B} in at most $q^{2 r-5}-q^{r-3}$ points. By considering all hyperplanes containing π^{\prime} we get $|\mathcal{B}| \geq\left(q^{2}+1\right)\left(q^{2 r-3}-q^{2 r-5}+q^{r-3}\right)+q^{2 r-5}-q^{r-3}>q^{2 r-1}$, a contradiction. Thus, through any $P \in \mathcal{B}(a, b)$ there exists a hyperplane meeting $\mathcal{B}(a, b)$ in $\left(q^{2 r-3}-q^{(3 r-5) / 2}\right)$ points for r odd or $\left(q^{2 r-3}-q^{(3 r-4) / 2}\right)$ for r even. This implies that $\mathcal{B}(a, b)$ is in all cases a minimal intersection set.
Corollary 3.1. For q odd and $4 a^{q+1}+\left(b^{q}-b\right)^{2}=0$, the number of hyperplanes N_{j} meeting $\mathcal{B}(a, b)$ in exactly j points are as follows:
(a) for r odd

$$
\begin{gathered}
N_{q^{2 r-3}+q^{(3 r-5) / 2}}=q^{2 r}-q^{r}, \quad N_{q^{2 r-3}}=\frac{q^{2 r}-1}{q^{2}-1}-1, \\
N_{q^{2 r-3}-q^{3(r-1) / 2}+q^{(3 r-5) / 2}}=q^{r} .
\end{gathered}
$$

(b) for r even,

$$
\begin{gathered}
N_{q^{2 r-3}-q^{(3 r-4) / 2}}=\frac{1}{2}\left(q^{2 r}-q^{r}\right) \quad N_{q^{2 r-3}}=q^{r}+\frac{q^{2 r}-1}{q^{2}-1}-1, \\
N_{q^{2 r-3}+q^{3(r-4) / 2}}=\frac{1}{2}\left(q^{2 r}-q^{r}\right) .
\end{gathered}
$$

Proof. Case (回) is a direct consequence of the arguments of Theorem 1.1. In Case (b), when r is even, we need to count how often \mathcal{Q} turns out to be elliptic rather than hyperbolic. For any choice of the parameters $m_{1}, \ldots, m_{r-1}, d$ there is exactly one quadric \mathcal{Q} to consider. As \mathcal{Q}_{∞} is always a parabolic quadric, we can assume it to be fixed. Denote by $\sigma^{0}, \sigma^{+}, \sigma^{-}$respectively the number of quadrics \mathcal{Q} which are parabolic, elliptic or hyperbolic. Clearly σ_{0} corresponds to the case in which $\operatorname{rank}(\mathcal{Q})=\operatorname{rank}\left(\mathcal{Q}_{\infty}\right)$. We have

$$
\sigma^{+}+\sigma^{0}+\sigma^{-}=q^{2 r}, \quad \sigma^{0}=q^{r} .
$$

Each point of $\mathcal{B}(a, b)$ lies on $\frac{q^{2 r}-1}{q^{2}-1}$ hyperplanes; of these $\frac{q^{2 r-2}-1}{q^{2}-1}$ pass through P_{∞} (and they must be discounted). Thus, we get

$$
\begin{aligned}
& q^{2 r-2}|\mathcal{B}|=q^{4 r-3}=\sigma^{0} q^{2 r-3}+\sigma^{+}\left(q^{2 r-3}+q^{(3 r-4) / 2}\right)+\sigma^{-}\left(q^{2 r-3}-q^{(3 r-4) / 2}\right)= \\
& q^{2 r-3}\left(\sigma^{0}+\sigma^{+}+\sigma^{-}\right)+q^{(3 r-4) / 2}\left(\sigma^{+}-\sigma^{-}\right)=q^{4 r-3}+\left(\sigma^{+}-\sigma^{-}\right) q^{(3 r-4) / 2}
\end{aligned}
$$

Hence, $\sigma^{+}=\sigma^{-}=\frac{1}{2}\left(q^{2 r}-q^{r}\right)$.

Remark 3.2. The quadric $\mathcal{Q}_{a}(\mathbf{m}, d)$ of Equation (4) shares its tangent hyperplane at P_{∞} with the Hermitian variety (1).

The problem of the intersection of the Hermitian variety \mathcal{H} with irreducible quadrics \mathcal{Q} having the same tangent plane at a common point $P \in \mathcal{Q} \cap \mathcal{H}$ has been considered for $r=3$ in [3, 4].

4 A family of two-character multisets in $P G\left(3, q^{2}\right)$

In [2, Theorem 4.1] it is shown that for $r=2, q$ odd and $4 a^{q+1}+\left(b^{q}-b\right)^{2} \neq 0$ or $r=2, q$ even and $\operatorname{Tr}\left(a^{q+1} /\left(b^{q}+b\right)^{2}\right)=1$, the set $\mathcal{B}(a, b)$ can be completed to a 2 -character multiset $\overline{\mathcal{B}}(a, b)$. An analogous result holds for $r=3$. In this section we now prove Theorem 1.2 ,

Assume q odd and $4 a^{q+1}+\left(b^{q}-b\right)^{2}=0$. From the proof of Proposition 1.1, the quadric \mathcal{Q}_{∞} is the union of two distinct planes for $q \equiv 1(\bmod 4)$ or just a line for $q \equiv 3(\bmod 4)$. Therefore, if $q \equiv 1(\bmod 4)$ then either

$$
N=q^{3}+q^{2}+q+1-\left(2 q^{2}+q+1\right)=q^{3}-q^{2}
$$

or

$$
N=2 q^{3}+q^{2}+q+1-\left(2 q^{2}+q+1\right)=2 q^{3}-q^{2}
$$

according as \mathcal{Q} is either the join of a line to a conic or a pair of solids; hence, the list of intersection numbers of $\mathcal{B}(a, b)$ with affine hyperplanes is $q^{3}-q^{2}, q^{3}$ and $2 q^{3}-q^{2}$.

If $q \equiv 3(\bmod 4)$ we get either

$$
N=q^{3}+q^{2}+q+1-q-1=q^{3}+q^{2},
$$

or

$$
N=q^{2}+q+1-q-1=q^{2},
$$

according as \mathcal{Q} is either the join of a line to a conic or a plane; therefore, in this case, the intersection numbers are q^{2}, q^{3} and $q^{3}+q^{2}$

Now consider the multiset $\overline{\mathcal{B}}(a, b)$ in $P G\left(3, q^{2}\right)$ arising from $\mathcal{B}(a, b)$ by assigning multiplicity bigger than 1 to just the point P_{∞}.

More in detail the points of the 2 -character multiset $\overline{\mathcal{B}}(a, b)$ are exactly those of $\mathcal{B}(a, b) \cup\left\{P_{\infty}\right\}$ where each affine point of $\mathcal{B}(a, b)$ has multiplicity one, and P_{∞} has either multiplicity $q^{3}-q^{2}$ for $q \equiv 1(\bmod 4)$, or multiplicity q^{2} when $q \equiv 3$ $(\bmod 4)$. Our theorem follows.

Remark 4.1. Let \mathcal{C} be the linear code associated to $\overline{\mathcal{B}}(a, b)$. In the first case \mathcal{C} is a $\left[q^{5}+q^{3}-q^{2}, 4, q^{5}-q^{3}\right]_{q^{2}}$ two-weight code, while in the second it has parameters $\left[q^{5}+q^{2}, 4, q^{5}-q^{3}\right]_{q^{2}}$. In either case the non-zero weights are q^{5} and $q^{5}-q^{3}$.

If A_{i} is the number of words in \mathcal{C} of weight i then by Corollary 3.1 it follows that

$$
A_{q^{5}}=\left(q^{6}-q^{3}+1\right)\left(q^{2}-1\right) ; \quad A_{q^{5}-q^{3}}=\left(q^{4}+q^{3}+q^{2}\right)\left(q^{2}-1\right) .
$$

5 Intersection sets with multiplicity $q^{2 r-3}-q^{r-2}$

We keep the notation of the previous sections and examine the remaining cases. Even though the results we obtain are a direct consequence of the construction of [1], we provide some further technical details so that this paper can be considered self-contained.

Proposition 5.1. Supposer to be even and that either q is odd and $4 a^{q+1}+\left(b^{q}-b\right)^{2}$ is a non-zero square in $\mathrm{GF}(q)$ or q is even and $\operatorname{Tr}\left(a^{q+1} /\left(b^{q}+b\right)^{2}\right)=1$. Then, $\mathcal{B}(a, b)$ is a set of $q^{2 r-1}$ points of $\mathrm{AG}\left(r, q^{2}\right)$ with characters

$$
q^{2 r-3}-q^{r-2}, q^{2 r-3}, q^{2 r-3}-q^{r-2}+q^{r-1}
$$

This is also a minimal intersection set with respect to hyperplanes.
Proof. We first discuss the nature of \mathcal{Q}_{∞}. Observe that, under our assumptions, for q odd $(-1)^{r-1} \operatorname{det} A_{\infty}$ is always a square; hence, \mathcal{Q}_{∞} is a hyperbolic quadric.

For q even choose $\varepsilon \in \operatorname{GF}\left(q^{2}\right) \backslash \operatorname{GF}(q)$ such that $\varepsilon^{2}+\varepsilon+\nu=0$, for some $\nu \in$ $\mathrm{GF}(q) \backslash\{1\}$ with $\operatorname{Tr}(\nu)=1$. Then, $\varepsilon^{2 q}+\varepsilon^{q}+\nu=0$. Therefore, $\left(\varepsilon^{q}+\varepsilon\right)^{2}+\left(\varepsilon^{q}+\varepsilon\right)=0$, whence $\varepsilon^{q}+\varepsilon+1=0$. With this choice of ε, the system given by (3) and (4) reads as

$$
\begin{align*}
& \left(a^{1}+b^{1}\right)\left(x_{1}^{0}\right)^{2}+\left[\left(a^{0}+a^{1}\right)+\nu\left(a^{1}+b^{1}\right)\right]\left(x_{1}^{1}\right)^{2}+b^{1} x_{1}^{0} x_{1}^{1}+m_{1}^{1} x_{1}^{0}+\left(m_{1}^{0}+m_{1}^{1}\right) x_{1}^{1} \\
& +\ldots+\left(a^{1}+b^{1}\right)\left(x_{r-1}^{0}\right)^{2}+\left[\left(a^{0}+a^{1}\right)+\nu\left(a^{1}+b^{1}\right)\right]\left(x_{r-1}^{1}\right)^{2}+b^{1} x_{r-1}^{0} x_{r-1}^{1} \\
& +m_{r-1}^{1} x_{r-1}^{0}+\left(m_{r-1}^{0}+m_{r-1}^{1}\right) x_{r-1}^{1}+d^{1}=0 . \tag{6}
\end{align*}
$$

The discussion of the (possibly degenerate) quadric \mathcal{Q} of Equation (6) may be carried out in close analogy to what has been done before.

Observe however that, as also pointed out in the remark before [5, Theorem 22.2.1], some caution is needed when quadrics and their classifications are studied in even characteristic. Indeed let A_{∞} be the formal matrix associated to the quadric \mathcal{Q}_{∞} of equation

$$
\begin{gathered}
\left(a^{1}+b^{1}\right)\left(x_{1}^{0}\right)^{2}+\left[\left(a^{0}+a^{1}\right)+\nu\left(a^{1}+b^{1}\right)\right]\left(x_{1}^{1}\right)^{2}+b^{1} x_{1}^{0} x_{1}^{1}+\ldots \\
+\left(a^{1}+b^{1}\right)\left(x_{r-1}^{0}\right)^{2}+\left[\left(a^{0}+a^{1}\right)+\nu\left(a^{1}+b^{1}\right)\right]\left(x_{r-1}^{1}\right)^{2}+b^{1} x_{r-1}^{0} x_{r-1}^{1}=0 .
\end{gathered}
$$

Its determinant is equal to

$$
\operatorname{det} A_{\infty}=\left[4\left(a^{1}+b^{1}\right)\left(a^{0}+a^{1}+\nu\left(a^{1}+b^{1}\right)\right)+\left(b^{1}\right)^{2}\right]^{r-1} .
$$

In order to encompass the case q even, $\operatorname{det} A_{\infty}$ needs to be regarded as a formal function in the polynomial ring $\operatorname{GF}(q)\left[z_{0}, z_{1}, z_{2}, z_{3}\right]$ evaluated in $\left(a^{0}, a^{1}, b^{0}, b^{1}\right)$. This gives $\operatorname{det} A_{\infty}=b_{1}^{2}$. Here $b_{1} \neq 0$, by our assumption $b^{q} \neq b$. From [5, Theorem 22.2.1 (i)], the quadric \mathcal{Q}_{∞} must be non-degenerate. Furthermore, by [5, Theorem 22.2 .1 (ii)] and the successive Lemma 22.2 .2 the nature of \mathcal{Q}_{∞} can be ascertained as follows. Let B the matrix obtained from A_{∞} by omitting all the entries on its main diagonal, and define

$$
\alpha=\frac{\operatorname{det} B-(-1)^{r-1} \operatorname{det} A_{\infty}}{4 \operatorname{det} B}
$$

A straightforward computation shows that

$$
\alpha=\frac{\left(b^{1}\right)^{2(r-1)}+\left(4\left(a^{1}+b^{1}\right)\left(a^{0}+a^{1}+\nu\left(a^{1}+b^{1}\right)\right)+\left(b^{1}\right)^{2}\right)^{r-1}}{4\left(b^{1}\right)^{2(r-1)}} .
$$

Regard α also as a function in the polynomial ring $G F(q)\left[z_{0}, z_{1}, z_{2}, z_{3}\right]$ evaluated in $\left(a^{0}, a^{1}, b^{0}, b^{1}\right)$. Hence we get

$$
\alpha=\frac{\left(a^{1}+b^{1}\right)\left(a^{0}+a^{1}+\nu\left(a^{1}+b^{1}\right)\right)}{\left(b^{1}\right)^{2}} .
$$

Arguing as in [1, p. 439], we see that $\operatorname{Tr}_{\operatorname{GF}(q) \mid \operatorname{GF}(2)}(\alpha)=0$ and, hence, \mathcal{Q}_{∞} is hyperbolic also for q even.

Now, in both cases q odd or q even we investigate the possible nature of \mathcal{Q}. Suppose \mathcal{Q} to be non-singular; then

$$
N=\frac{\left(q^{r-1}+1\right)\left(q^{r-1}-1\right)}{q-1}-\frac{\left(q^{r-1}+1\right)\left(q^{r-2}-1\right)}{q-1}=q^{r-2}\left(q^{r-1}+1\right) .
$$

If \mathcal{Q} is singular, then

$$
N=\frac{q\left(q^{r-1}+1\right)\left(q^{r-2}-1\right)}{q-1}-\frac{\left(q^{r-1}+1\right)\left(q^{r-2}-1\right)}{q-1}+1=q^{r-2}\left(q^{r-1}+1\right)-q^{r-1} .
$$

This gives the possible intersection numbers.
Finally, in order to show that $\mathcal{B}(a, b)$ is a minimal $\left(q^{2 r-3}-q^{r-2}\right)$-fold blocking set we can use the same techniques as those adopted to prove that $\mathcal{B}(a, b)$ is a minimal blocking set in Section 3 for q odd and $4 a^{q+1}+\left(b^{q}-b\right)^{2}=0$

References

[1] A. Aguglia, A. Cossidente, G. Korchmáros, On quasi-Hermitian varieties, J. Combin. Des. 20 (2012), no. 10, 433-447.
[2] A. Aguglia, G. Korchmáros, Multiple blocking sets and multisets in Desarguesian planes, Des. Codes Cryptogr. 56, 177-181 (2010).
[3] A. Aguglia, L. Giuzzi, Intersections of the Hermitian surface with irreducible quadrics in $\mathrm{PG}\left(3, q^{2}\right)$, q odd, Finite Fields Appl. 30 1-13 (2014).
[4] A. Aguglia, L. Giuzzi, Intersections of the Hermitian surface with irreducible quadrics in even characteristic, preprint (arXiv:1407.8498)
[5] J.W.P. Hirschfeld, J. A. Thas, General Galois Geometries, Oxford University Press, (1992).
[6] B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finito, Ann. Mat. Pura Appl. (4) 70, 1-201 (1965).
[7] M.A. Tsfasman, S.G. Vlăduţ, D.Yu. Nogin, Algebraic geometric codes: basic notions, Mathematical Surveys and Monographs 139, American Mathematical Society (2007).

Authors' addresses:
Angela Aguglia
Department of Mechanics, Mathematics
Luca Giuzzi
D.I.C.A.T.A.M.
and Management
Politecnico di Bari
Via Orabona 4, I-70126 Bari (Italy)
angela.aguglia@poliba.it

Università di Brescia
Via Branze 53, I-25123, Brescia (Italy) luca.giuzzi@unibs.it

[^0]: *Dipartimento di Meccanica, Matematica e MAnagement, Politecnico di Bari, Via Orabona 4, I-70126 Bari
 ${ }^{\dagger}$ D.I.C.A.T.A.M., Università di Brescia, Via Branze 43, I-25123 Brescia

