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t-Intersection sets in AG(r, ¢*) and two-character
multisets in PG(3, ¢%)

A. Aguglia? L. Giuzzil

Abstract

In this article we construct new minimal intersection sets in AG(r,¢?)
with respect to hyperplanes, of size ¢ ~! and multiplicity ¢, where t €
{q2r—3 _ q(3r—5)/2’q2r—3 + q(37"—5)/2 _ q(37"—3)/2}, for r odd or t € {q2r—3 _
qBr—4/2 =3 _ q" 2}, for r even. As a byproduct, for any odd ¢ we get a
new family of two-character multisets in PG(3, ¢?).

The essential idea is to investigate some point-sets in AG(r, ¢?) satisfying
the opposite of the algebraic conditions required in [I] for quasi-Hermitian
varieties.

Keywords: Hermitian variety, quadric, two-character set.

1 Introduction

All non—degenerate Hermitian varieties of PG(r,¢?) are projectively equivalent;
furthermore, they sport just two intersection numbers with hyperplanes, see [6].
Quasi-Hermitian varieties V of PG(r,¢?) are combinatorial objects which have
the same size and the same intersection numbers with hyperplanes as a (non—
degenerate) Hermitian variety H; see [1] for details and some constructions. In the
present paper we shall consider varieties ) arising by taking algebraic conditions
opposite to those of [I] and show that these are in turn interesting geometric
objects with 3 intersection numbers. The topic is also of interest for applications,
as the projective system induced by V will determine linear codes with few weights;
see [7] for a description of this correspondence.

Fix a projective frame in PG(r, ¢?) and assume the space to have homogeneous
coordinates (Xo, Xi,...,X,). Consider the affine plane AG(r,q?) whose infinite
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hyperplane II,, has equation Xy = 0. Then, AG(r,¢?) has affine coordinates
(1,22, ...,x,) where x; = X; /Xy fori € {1,...,r}.
Consider now the non—degenerate Hermitian variety H with affine equation of
the form
2 — 3, = (B — D)@l 442, 1)

where b € GF(¢*) \ GF(g). The set of the points at infinity of H is
F={0,z,...,2,)z"" + ... 4+ 297 =0}; (2)

this can be regarded as a Hermitian cone of PG(r — 1, ¢?), projecting a Hermitian
variety of PG(r — 2,¢*) from the point Py, := (0,...,0,1). In particular, observe
that the hyperplane Il is tangent to H at P,..

For any a € GF(¢*)* and b € GF(¢?) \ GF(q), let B := B(a,b) be the affine
algebraic variety of equation

2=z, +al(22 . a2 )) —a(ai 4. a2k ) = =0T 20, (3)

It is shown in [I] that B(a,b), together with the points at infinity of H, as given by
(@), is a quasi-Hermitian variety V of PG(r, ¢%) provided that either of the following
algebraic conditions are satisfied: for ¢ odd, r is odd and 4a?*! + (b7 — b)? £ 0, or
r is even and 4a? + (b7 — b)? is a non-square in GF(q); for ¢ even, r is odd, or r
is even and Tr (a?"!/(b? 4 b)?) = 0.

In this paper, as stated before, we shall study the variety B(a,b) when the
opposite of the previous conditions holds. More precisely our main results are the
following

Proposition 1.1. Suppose q odd, 4a?™ + (b7 — b)> = 0 and r odd. Then B(a,b)
is a set of ¢* =1 points of AG(r,q*) of characters:

o forr =1 (mod 4) org=1 (mod 4)

2r—3 (37"—5)/2’ q2r—3

q —q q27"—3 o q(3r—5)/2 + q3(r—1)/2
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o forr=3 (mod 4) and ¢ =3 (mod 4)

q2r73 + q(3r75)/2 . q3(r71)/2 2r737q2r73 + q(3r75)/2.
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e forr even,
q2r73 . q(3r74)/2’ q2r73’ q2r73 + q(3r74)/2.

Furthermore B(a,b) is always a minimal intersection set with respect to hyper-
planes.



Theorem 1.2. Suppose q odd and 4a®"" + (b —b)*> = 0. In PG(3,q%) there exists
a 2-character multiset B(a,b) containing B(a,b) and characters either ¢* — ¢* and
2¢3 —¢* ifg=1 (mod 4), or ¢, and ¢ + ¢* if ¢ =3 (mod 4).

These results are proved respectively in Section Bl and in Section 4l
Finally, in Section [l we prove that in the remaining cases we again get minimal
intersection sets of the same size but multiplicity ¢*" =3 — ¢"~2.

2 Preliminaries

2.1 Intersection sets with respect to hyperplanes

A set of points B in a projective or an affine space is a t-fold blocking set with
respect to hyperplanes if every hyperplane contains at least ¢ points of B. Such a
set B is also known as a t-intersection set, or an intersection set with multiplicity
t, or a multiple intersection set.

A point P of a t-intersection set B is said to be essential if B\ {P} is not a t-
intersection set. When all points of BB are essential then B is minimal. If the size of
the intersection of B with an arbitrary hyperplane takes m values, say vy, ..., Uy,
then the non-negative integers vy, ..., v,, are called the characters of B and B is
also an m-character set. We observe that if B is an m—character set consisting of
n points and spanning the projective space where it is contained, then the linear
code having as columns of its generator matrix the coordinates of the points of
B has exactly m distinct nonzero weights and length n. The dimension k of this
code is the vector dimension of the subspace spanned by B.

Quasi-Hermitian varieties are examples of 2-character sets of PG(r,q¢*). In
[1] a new infinite family of quasi-Hermitian varieties have been constructed by
modifying some point-hyperplane incidences in PG(r,¢?). To this purpose, the
authors kept the point set of PG(r, ¢*) but replaced the hyperplanes with their
images under a suitable quadratic transformation, obtaining a non—standard model
II of PG(r, ¢*). This model arises as follows.

Fix a non-zero element a € GF(¢?). For any choice m = (my,...,m,_;) €
GF(¢*)"! and d € GF(¢?) let Q,(m,d) denote the quadric of equation

v, =a(z]+.. .+ ) Fmw +. A mer, g +d (4)

Consider now the incidence structure 11, = (P, %) whose points are the points
of AG(r,¢*) and whose hyperplanes are the hyperplanes of PG(r, ¢*) through the
infinite point P, (0,0,...,0,1) together with the quadrics Q,(m,d) as m and d
range as indicated above.



Lemma 2.1. For every non-zero a € GF(q?), the incidence structure 11, = (P, %)
is an affine space isomorphic to AG(r, ¢*).

Completing II, with its points at infinity in the usual way gives a projective
space isomorphic to PG(r, ¢*). We shall make use of this non-standard model of
PG(r,q*) in our work.

2.2 Multisets

A multiset in a r-dimensional projective space Il is a mapping M : II — N from
points of II into non-negative integers. The points of a multiset are the points P
of IT with multiplicity M(P) > 0. Assume that the number of points of M, each
of them counted with its multiplicity, is n. For any hyperplane 7 of II, the non-
negative integer M(m) = > p.. M(P) is a character of the multiset M, whereas
n—M (m) is called a weight of M. If the set { M (7)}ren consists of two non-negative
integers only, then M is a 2-character multiset.

Suppose the points of M span a projective space PG(r, ¢). Then, it is possible
to regard the coordinates of the points of M as the columns of a generator matrix
of a code C of length n and dimension r + 1. In this case it is straightforward to
see that the weights of M are indeed exactly the weights of C. We observe that
points with multiplicity greater than one correspond to repeated components in

C.

3 Proof of Proposition [1.1]

From now on, we shall always silently assume a € GF(¢*)*, b € GF(¢?) \ GF(q).
Recall that for any quadric Q, the radical Rad(Q) of Q is the subspace

Rad(Q) :={r € Q:Vy € Q,(r,y) C Q},

where, as usual, by (z,y) we denote the line through z and y. It is well known
that Rad(Q) is a subspace of PG(r, ¢%).

Assume B := B(a,b) to have Equation (3]). It is straightforward to see that
B(a,b) coincides with the affine part of the Hermitian variety H of equation () in
the space II,; hence, any hyperplane mp_ of PG(r, ¢*) passing through P, meets
Bin |HN7p | = ¢* 3 points.

Now we are interested in the possible intersection sizes of B with a generic
hyperplane

T Ty =1y + A+ M T+ d,

of AG(r, ¢*) with coefficients my, ..., m,,d € GF(¢?). This is the same as to study
the intersection of H with the quadrics Q,(m, d). Choose ¢ € GF(¢*)\ GF(q) such
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that ¢7 = —e; for any 2z € GF(¢?) write z = 20 + e2! with 2!, 2% € GF(q). The
number N of affine points which lie in BN 7 is the same as the number of points
of the affine quadric Q of AG(2r — 2,q) of equation

—

r—1

(0" +a")e?(z])? + 2a°2)x; + (a' — b")(2))?) +Z(m?xil+m}x?)+dl = 0.
1 i=1
()

Following the approach of [1], in order to compute N, we first count the number
of points of the quadric at infinity Q. := Q NIl of Q and then we determine
N = |9Q| — |Qw|. Observe that the quadric Q., of PG(2r — 3,¢) has a matrix of
the form

T

i

(CLl _ bl) aO
aO (bl +a1)€2

(a* — ) a’
a0 (b + a')e?

Since (a")? —?[(a')? — (b1)?] = [a?™! + (b7 — b)? /4] = 0, we have det A, = 0. This
is possible if, and only if,

@-0 a0 )
det< a® (a* +bh)e? =0,

that is, each of the 2 x 2 blocks on the main diagonal of A, has rank 1. Conse-
quently, the rank of A, is exactly r — 1.

If a* = b', then a = 0, the matrix A, is diagonal and the quadric Q. is
projectively equivalent to

(21)* 4 (23)* + - + (2,_,)* = 0.

Otherwise, take



a direct computation proves that

a' —b' 0
0 0
MTA M =
a'—b' 0
0 0

Hence, Q. is projectively equivalent to the quadric of rank » — 1 with equation
(21)* + (@3)" + -+ (271)* = 0.
For r odd we see that in both cases O is either

e a cone with vertex Rad(Q.) ~ PG(r — 2, ¢q) and basis a hyperbolic quadric
Qt(r—2,9)if ¢g=1 (mod 4) or r =1 (mod 4), or

e a cone with vertex Rad(Q,,) ~ PG(r — 2,¢) and basis an elliptic quadric
Q (r—2,q)if ¢g=3 (mod 4) and r = 3 (mod 4).

For r even, Q, is a cone with vertex Rad(Q.,) ~ PG(r—2, ¢q) and basis a parabolic
quadric Q(r — 2, q).

We now move to investigate the quadric Q. Clearly, its rank is either » — 1 or
r. Observe that

e Q has rank r — 1 if, and only if, there exist a linear function f : GF(q) —
GF(q) such that for all i = 1,...,7 — 1 we have m; = f(m?); also, the value
of d; turns out to be uniquely determined. Thus, the number of distinct

possibilities for the parameters is exactly ¢".

Write now Il,, = ¥ @& Rad(Qw). As X is disjoint from the radical of the
quadratic form inducing Q., we have that ¥NQ,, is a nondegenerate quadric
(either hyperbolic, elliptic or parabolic according to the various conditions).
Since Q has the same rank as Q,, we have dim Rad(Q) = dim Rad(Q..,)+ 1.
Observe that Rad(Q) NIl < Rad(Q.). Thus, Rad(Q) N'Y¥ = {0} and X
is also a direct complement of Rad(Q). It follows that Q is cone of vertex a
PG(r — 1, ¢) and basis a quadric of the same kind as the basis of Q.

e O has rank r in the remaining ¢*" — ¢" possibilities. Here Q is a cone of
vertex a PG(r — 2, ¢) and basis a parabolic quadric Q(r —1, q) for r odd or Q
is a cone of vertex a PG(r — 2, ¢) and basis a hyperbolic quadric Q*(r —1, q)
or an elliptic quadric Q@ (r — 1, ¢) for r even.

We can now determine the complete list of sizes for r odd:
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2r—3
Quf = Tt g
q—1 ’
e in case rank(Q) = r — 1, then
2r—2
|Q‘ _ q —1 :l:q3(7"—1)/2,
q—1 ’
e in case rank(Q) =r,
q2r72 -1
Q===

In particular, the possible values for |Q| — |Q| are

e q3(r—1)/2 _ q(3r—5)/2’ 23— q(3r—5)/2

forg=1 (mod 4) or r =1 (mod 4) and

2r=3 _ 3(r=1)/2 4 q(3r—5)/2’q2r—3 + q(3r—5)/2

q q

for ¢ =3 (mod 4) and r = 3 (mod 4).
When r is even we get:

¢ 2r—3
_e -1
|QOO| - _ 1 Y
e in case rank(Q) = r — 1, then
2r—2
_ -1
e in case rank(Q) =r,
2r—2
0 = ¢ -1 L g2,
qg—1

Thus, the possible list of cardinalities for |Q| — | Qx| is

2r—3 2r—3+q(3r—4)/2’ 2r—3 _

q .q (37’—4)/2.

q q

Now we are going to show that B(a,b) is a minimal intersection set. First of
all, we prove that for any P € B(a,b) there exists a subspace A, (P) ~ AG(n, ¢°),
1 < n < r—1 through P such that |B(a,b) N A, (P)] < ¢* ' — ¢*'. The
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argument is by induction on n. Assume n = 1. Then, for any P € B there exists
at least one line ¢ through P such that |[¢ N B| < ¢, otherwise B would contain
more than ¢ ~! points. Suppose now that the result holds for n = 1,...,r — 2,
take P € B and suppose that any hyperplane 7 through P meets B in at least
¢*"~3 points. By induction, there exists a subspace 7’ := A, _»(P) ~ AG(r — 2, ¢?)
through P meeting B in at most ¢*"~° —¢"~3 points. By considering all hyperplanes
containing 7 we get |B| > (> + D)(¢* 32— ¢+ ¢ )+ ¢ —q¢ 3> ¢} a
contradiction. Thus, through any P € B(a,b) there exists a hyperplane meeting
B(a,b) in (g3 — ¢®=5/2) points for r odd or (¢> 3 — ¢®~4/2) for r even. This
implies that B(a, b) is in all cases a minimal intersection set.

Corollary 3.1. For q odd and 4a7™ + (b9 — b)?> = 0, the number of hyperplanes
N; meeting B(a,b) in exactly j points are as follows:

(a) forr odd

, q2r -1
ngr-_3+q(37‘—5)/2 — q T __ qT” NqQT—S = 2 1 - 1’
q

Nq2r73_q3(7‘*1)/2+q(37‘*5)/2 = qr'

(b) forr even,
1 r T T q2r —1
Npr—s_gr-/2 = §(q2 —q") Npr—s =q" + 21 1,
1 2r T
Npar—s i gsr-0/2 = 5((1 —q").

Proof. Case (@) is a direct consequence of the arguments of Theorem [Tl In Case
(b)), when r is even, we need to count how often Q turns out to be elliptic rather
than hyperbolic. For any choice of the parameters myq, ..., m,_1,d there is exactly
one quadric Q to consider. As Q. is always a parabolic quadric, we can assume
it to be fixed. Denote by ¢°, 0", 0~ respectively the number of quadrics Q which
are parabolic, elliptic or hyperbolic. Clearly oy corresponds to the case in which

rank(Q) = rank(Q.). We have
O_—l— +0_0 +0_— — q27"’ 0_0 — qr.

q2r7271
-1

I pass through P,

(and they must be discounted). Thus, we get

Each point of B(a,b) lies on q:Ll hyperplanes; of these

q2r—2|8| _ q4r—3 — O_Oq2r—3 + O_+(q27"—3 + q(3r—4)/2) + O_—(q27"—3 . q(3r—4)/2) —
q2r—3(00 + ot + 0_—) + q(3r—4)/2(0_+ o 0—) _ q4r—3 + ((7+ . O—)q(Br—4)/2.

Hence, 0" =0~ = L(¢* — ¢"). O



Remark 3.2. The quadric Q,(m, d) of Equation () shares its tangent hyperplane
at P, with the Hermitian variety (II).

The problem of the intersection of the Hermitian variety H with irreducible
quadrics @ having the same tangent plane at a common point P € O NH has
been considered for r = 3 in [3] 4].

4 A family of two-character multisets in PG(3, ¢%)

In [2, Theorem 4.1] it is shown that for r = 2, ¢ odd and 4a?™ + (b7 — b)? # 0 or
r =2, g even and Tr (a?™ /(b7 + b)?) = 1, the set B(a,b) can be completed to a
2-character multiset B(a,b). An analogous result holds for = 3. In this section
we now prove Theorem

Assume ¢ odd and 4a%™ + (b7 — b)?> = 0. From the proof of Proposition [T,
the quadric Q. is the union of two distinct planes for ¢ =1 (mod 4) or just a line
for ¢ =3 (mod 4). Therefore, if ¢ =1 (mod 4) then either

N=¢@+¢@+q+1-2¢+q+1)=¢"—¢

or
N=2¢+¢+q+1—-(2¢*+q+1)=2¢— ¢,

according as Q is either the join of a line to a conic or a pair of solids; hence, the
list of intersection numbers of B(a,b) with affine hyperplanes is ¢* — ¢%, ¢* and
2¢° — ¢°.

If g =3 (mod 4) we get either

N=¢@+¢+q+1-q-1=¢+¢,

or
N=¢+q+1-q—1=¢,

according as @ is either the join of a line to a conic or a plane; therefore, in this
case, the intersection numbers are ¢%, ¢* and ¢ + ¢°

Now consider the multiset B(a, b) in PG(3, ¢?) arising from B(a, b) by assigning
multiplicity bigger than 1 to just the point P.

More in detail the points of the 2-character multiset B(a, b) are exactly those
of B(a,b) U{P} where each affine point of B(a,b) has multiplicity one, and P,
has either multiplicity ¢®> — ¢* for ¢ = 1 (mod 4), or multiplicity ¢*> when ¢ = 3
(mod 4). Our theorem follows.

Remark 4.1. Let C be the linear code associated to B(a,b). In the first case C is
al®+q¢* — ¢ 4,¢° — ¢*] 2 two-weight code, while in the second it has parameters

1° +¢*,4,¢° — ¢°] 2. In either case the non—zero weights are ¢° and ¢° — ¢°.

9



If A; is the number of words in C of weight ¢ then by Corollary B.1] it follows
that

Ap =" =@+ —1); Ap_p=("++) (@ -1).

5 Intersection sets with multiplicity ¢* 3 — ¢~

We keep the notation of the previous sections and examine the remaining cases.
Even though the results we obtain are a direct consequence of the construction of
[1], we provide some further technical details so that this paper can be considered
self-contained.

Proposition 5.1. Suppose r to be even and that either q is odd and 4a® '+ (b9—b)?
is a non—zero square in GF(q) or q is even and Tr (a®/(b? + b)?) = 1. Then,
B(a,b) is a set of ¢* = points of AG(r,q?) with characters

q27"—3 _ qr—Z’ q2r—3’ q2r—3 _ qr—2 + qr—l.

This is also a minimal intersection set with respect to hyperplanes.

Proof. We first discuss the nature of Q.. Observe that, under our assumptions,
for ¢ odd (—1)""!det A, is always a square; hence, Q. is a hyperbolic quadric.

For ¢ even choose € € GF(¢?) \ GF(q) such that €2 + & + v = 0, for some v €
GF(¢)\{1} with Tr (v) = 1. Then, e2/+£%4v = 0. Therefore, (c7+¢)?+(cl+¢) = 0,
whence €?+¢e+41 = 0. With this choice of €, the system given by (B]) and (4) reads
as

(a1 + bl)(:c?)2 [(a® + at) + v(at +0Y)](zD)? + o' 2%t + mix? + (ml + mi)xd
+(al+ )@9V+Kf+a5+wd+MMx D 0N
+m7" 1Ty + (m)_y +my )z +d =0
(6)
The discussion of the (possibly degenerate) quadric @ of Equation (@) may be
carried out in close analogy to what has been done before.
Observe however that, as also pointed out in the remark before [5, Theorem
22.2.1], some caution is needed when quadrics and their classifications are studied
in even characteristic. Indeed let A., be the formal matrix associated to the

quadric Q. of equation
(a' 4+ M) (2D)? + [(a® + a') + v(a' +bY)](27)* + bafz] + . ..
+a! + 1) (2)_1)? + [(@° + a') +v(a" + 0| (z,_y)? + 0l = 0.

Its determinant is equal to
det Auy = [4(a" + B')(a® + o + v(a + 1)) + (1))
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In order to encompass the case q even, det A,, needs to be regarded as a formal
function in the polynomial ring GF(q)[zo, 21, 22, 23] evaluated in (a°, a', 8%, b'). This
gives det Ao, = b?. Here b; # 0, by our assumption »? # b. From [5, Theorem
22.2.1 (i)], the quadric Q. must be non-degenerate. Furthermore, by [5, Theorem
22.2.1 (ii)] and the successive Lemma 22.2.2 the nature of Q.. can be ascertained
as follows. Let B the matrix obtained from A., by omitting all the entries on its
main diagonal, and define

_det B—(—1)"""det A
B 4 det B
A straightforward computation shows that
(b1)2(r—1) + (4(&1 +bl)(a0+a1 +I/(al +bl)) + (61)2)r—1
4 (bH)20r=1) :

o =

Regard « also as a function in the polynomial ring GF(q)|[z0, 21, 22, 23] evaluated
in (a®,a',0° b'). Hence we get

(@' +0")(a” +a' +v(a' +0"))

(b1) '

Arguing as in [I, p. 439], we see that Tr qp(g)ar@)() = 0 and, hence, Q is
hyperbolic also for ¢ even.

Now, in both cases ¢ odd or ¢ even we investigate the possible nature of Q.
Suppose Q to be non-singular; then

@'+ '-1) (@ '+ >-1)
q—1 q—1

If Q is singular, then

g+ D@ =D (T + D)

q—1 q—1

This gives the possible intersection numbers.

Finally, in order to show that B(a,b) is a minimal (¢* % — ¢"~?)~fold blocking
set we can use the same techniques as those adopted to prove that B(a,b) is a
minimal blocking set in Section ] for ¢ odd and 4a?™! + (b7 — b)? = 0

N = =q¢ (¢ +1).

N = +1= qr—2(qr—1 + 1) _ qr—l.

O
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