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t-Intersection sets in AG(r, q2) and two-character
multisets in PG(3, q2)

A. Aguglia∗, L. Giuzzi†

Abstract

In this article we construct new minimal intersection sets in AG(r, q2)
with respect to hyperplanes, of size q2r−1 and multiplicity t, where t ∈
{q2r−3 − q(3r−5)/2, q2r−3 + q(3r−5)/2 − q(3r−3)/2}, for r odd or t ∈ {q2r−3 −
q(3r−4)/2, q2r−3 − qr−2}, for r even. As a byproduct, for any odd q we get a
new family of two-character multisets in PG(3, q2).

The essential idea is to investigate some point-sets in AG(r, q2) satisfying
the opposite of the algebraic conditions required in [1] for quasi–Hermitian
varieties.

Keywords: Hermitian variety, quadric, two-character set.

1 Introduction

All non–degenerate Hermitian varieties of PG(r, q2) are projectively equivalent;
furthermore, they sport just two intersection numbers with hyperplanes, see [6].
Quasi–Hermitian varieties V of PG(r, q2) are combinatorial objects which have
the same size and the same intersection numbers with hyperplanes as a (non–
degenerate) Hermitian variety H; see [1] for details and some constructions. In the
present paper we shall consider varieties V arising by taking algebraic conditions
opposite to those of [1] and show that these are in turn interesting geometric
objects with 3 intersection numbers. The topic is also of interest for applications,
as the projective system induced by V will determine linear codes with few weights;
see [7] for a description of this correspondence.

Fix a projective frame in PG(r, q2) and assume the space to have homogeneous
coordinates (X0, X1, . . . , Xr). Consider the affine plane AG(r, q2) whose infinite
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hyperplane Π∞ has equation X0 = 0. Then, AG(r, q2) has affine coordinates
(x1, x2, . . . , xr) where xi = Xi/X0 for i ∈ {1, . . . , r}.

Consider now the non–degenerate Hermitian variety H with affine equation of
the form

xq
r − xr = (bq − b)(xq+1

1 + . . .+ xq+1
r−1), (1)

where b ∈ GF (q2) \GF(q). The set of the points at infinity of H is

F = {(0, x1, . . . , xr)|x
q+1
1 + . . .+ xq+1

r−1 = 0}; (2)

this can be regarded as a Hermitian cone of PG(r− 1, q2), projecting a Hermitian
variety of PG(r − 2, q2) from the point P∞ := (0, . . . , 0, 1). In particular, observe
that the hyperplane Π∞ is tangent to H at P∞.

For any a ∈ GF(q2)∗ and b ∈ GF(q2) \ GF(q), let B := B(a, b) be the affine
algebraic variety of equation

xq
r−xr+aq(x2q

1 + . . .+x2q
r−1)−a(x2

1+ . . .+x2
r−1) = (bq− b)(xq+1

1 + . . .+xq+1
r−1). (3)

It is shown in [1] that B(a, b), together with the points at infinity of H, as given by
(2), is a quasi–Hermitian variety V of PG(r, q2) provided that either of the following
algebraic conditions are satisfied: for q odd, r is odd and 4aq+1 + (bq − b)2 6= 0, or
r is even and 4aq+1 + (bq − b)2 is a non–square in GF(q); for q even, r is odd, or r
is even and Tr (aq+1/(bq + b)2) = 0.

In this paper, as stated before, we shall study the variety B(a, b) when the
opposite of the previous conditions holds. More precisely our main results are the
following

Proposition 1.1. Suppose q odd, 4aq+1 + (bq − b)2 = 0 and r odd. Then B(a, b)
is a set of q2r−1 points of AG(r, q2) of characters:

• for r ≡ 1 (mod 4) or q ≡ 1 (mod 4)

q2r−3 − q(3r−5)/2, q2r−3, q2r−3 − q(3r−5)/2 + q3(r−1)/2

• for r ≡ 3 (mod 4) and q ≡ 3 (mod 4)

q2r−3 + q(3r−5)/2 − q3(r−1)/2, q2r−3, q2r−3 + q(3r−5)/2.

• for r even,

q2r−3 − q(3r−4)/2, q2r−3, q2r−3 + q(3r−4)/2.

Furthermore B(a, b) is always a minimal intersection set with respect to hyper-

planes.
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Theorem 1.2. Suppose q odd and 4aq+1+ (bq − b)2 = 0. In PG(3, q2) there exists

a 2–character multiset B(a, b) containing B(a, b) and characters either q3− q2 and

2q3 − q2 if q ≡ 1 (mod 4), or q2, and q3 + q2 if q ≡ 3 (mod 4).

These results are proved respectively in Section 3 and in Section 4.
Finally, in Section 5 we prove that in the remaining cases we again get minimal

intersection sets of the same size but multiplicity q2r−3 − qr−2.

2 Preliminaries

2.1 Intersection sets with respect to hyperplanes

A set of points B in a projective or an affine space is a t-fold blocking set with

respect to hyperplanes if every hyperplane contains at least t points of B. Such a
set B is also known as a t-intersection set, or an intersection set with multiplicity

t, or a multiple intersection set.
A point P of a t-intersection set B is said to be essential if B \ {P} is not a t-

intersection set. When all points of B are essential then B is minimal. If the size of
the intersection of B with an arbitrary hyperplane takes m values, say v1, . . . , vm,
then the non-negative integers v1, . . . , vm are called the characters of B and B is
also an m-character set. We observe that if B is an m–character set consisting of
n points and spanning the projective space where it is contained, then the linear
code having as columns of its generator matrix the coordinates of the points of
B has exactly m distinct nonzero weights and length n. The dimension k of this
code is the vector dimension of the subspace spanned by B.

Quasi-Hermitian varieties are examples of 2-character sets of PG(r, q2). In
[1] a new infinite family of quasi–Hermitian varieties have been constructed by
modifying some point-hyperplane incidences in PG(r, q2). To this purpose, the
authors kept the point set of PG(r, q2) but replaced the hyperplanes with their
images under a suitable quadratic transformation, obtaining a non–standard model
Π of PG(r, q2). This model arises as follows.

Fix a non-zero element a ∈ GF(q2). For any choice m = (m1, . . . , mr−1) ∈
GF (q2)r−1 and d ∈ GF(q2) let Qa(m, d) denote the quadric of equation

xr = a(x2
1 + . . .+ x2

r−1) +m1x1 + . . .+mr−1xr−1 + d. (4)

Consider now the incidence structure Πa = (P,Σ) whose points are the points
of AG(r, q2) and whose hyperplanes are the hyperplanes of PG(r, q2) through the
infinite point P∞(0, 0, . . . , 0, 1) together with the quadrics Qa(m, d) as m and d
range as indicated above.
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Lemma 2.1. For every non-zero a ∈ GF(q2), the incidence structure Πa = (P,Σ)
is an affine space isomorphic to AG(r, q2).

Completing Πa with its points at infinity in the usual way gives a projective
space isomorphic to PG(r, q2). We shall make use of this non-standard model of
PG(r, q2) in our work.

2.2 Multisets

A multiset in a r-dimensional projective space Π is a mapping M : Π → N from
points of Π into non-negative integers. The points of a multiset are the points P
of Π with multiplicity M(P ) > 0. Assume that the number of points of M , each
of them counted with its multiplicity, is n. For any hyperplane π of Π, the non-
negative integer M(π) =

∑

P∈π M(P ) is a character of the multiset M , whereas
n−M(π) is called a weight ofM . If the set {M(π)}π∈Π consists of two non-negative
integers only, then M is a 2-character multiset.

Suppose the points of M span a projective space PG(r, q). Then, it is possible
to regard the coordinates of the points of M as the columns of a generator matrix
of a code C of length n and dimension r + 1. In this case it is straightforward to
see that the weights of M are indeed exactly the weights of C. We observe that
points with multiplicity greater than one correspond to repeated components in
C.

3 Proof of Proposition 1.1

From now on, we shall always silently assume a ∈ GF(q2)∗, b ∈ GF(q2) \ GF(q).
Recall that for any quadric Q, the radical Rad(Q) of Q is the subspace

Rad(Q) := {x ∈ Q : ∀y ∈ Q, 〈x, y〉 ⊆ Q},

where, as usual, by 〈x, y〉 we denote the line through x and y. It is well known
that Rad(Q) is a subspace of PG(r, q2).

Assume B := B(a, b) to have Equation (3). It is straightforward to see that
B(a, b) coincides with the affine part of the Hermitian variety H of equation (1) in
the space Πa; hence, any hyperplane πP∞

of PG(r, q2) passing through P∞ meets
B in |H ∩ πP∞

| = q2r−3 points.
Now we are interested in the possible intersection sizes of B with a generic

hyperplane
π : xr = m1x1 + · · ·+mr−1xr−1 + d,

of AG(r, q2) with coefficients m1, . . . , mr, d ∈ GF(q2). This is the same as to study
the intersection of H with the quadrics Qa(m, d). Choose ε ∈ GF(q2)\GF(q) such

4



that εq = −ε; for any z ∈ GF(q2) write z = z0 + εz1 with z1, z2 ∈ GF(q). The
number N of affine points which lie in B ∩ π is the same as the number of points
of the affine quadric Q of AG(2r − 2, q) of equation

r−1
∑

i=1

(

(b1 + a1)ε2(x1
i )

2 + 2a0x0
ix

1
i + (a1 − b1)(x0

1)
2
)

+
r−1
∑

i=1

(m0
ix

1
i +m1

ix
0
i )+d1 = 0.

(5)

Following the approach of [1], in order to compute N , we first count the number
of points of the quadric at infinity Q∞ := Q ∩ Π∞ of Q and then we determine
N = |Q| − |Q∞|. Observe that the quadric Q∞ of PG(2r − 3, q) has a matrix of
the form

A∞ =















(a1 − b1) a0

a0 (b1 + a1)ε2

. . .

(a1 − b1) a0

a0 (b1 + a1)ε2















.

Since (a0)2− ε2[(a1)2− (b1)2] = [aq+1+(bq − b)2/4] = 0, we have detA∞ = 0. This
is possible if, and only if,

det

(

(a1 − b1) a0

a0 (a1 + b1)ε2

)

= 0,

that is, each of the 2 × 2 blocks on the main diagonal of A∞ has rank 1. Conse-
quently, the rank of A∞ is exactly r − 1.

If a1 = b1, then a0 = 0, the matrix A∞ is diagonal and the quadric Q∞ is
projectively equivalent to

(x1
1)

2 + (x1
2)

2 + · · ·+ (x1
r−1)

2 = 0.

Otherwise, take

M =















1 0
−a0/(a1 − b1) 1

. . .

1 0
−a0/(a1 − b1) 1















;
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a direct computation proves that

MTA∞M =















a1 − b1 0
0 0

. . .

a1 − b1 0
0 0















.

Hence, Q∞ is projectively equivalent to the quadric of rank r − 1 with equation

(x0
1)

2 + (x0
2)

2 + · · ·+ (x0
r−1)

2 = 0.

For r odd we see that in both cases Q∞ is either

• a cone with vertex Rad(Q∞) ≃ PG(r − 2, q) and basis a hyperbolic quadric
Q+(r − 2, q) if q ≡ 1 (mod 4) or r ≡ 1 (mod 4), or

• a cone with vertex Rad(Q∞) ≃ PG(r − 2, q) and basis an elliptic quadric
Q−(r − 2, q) if q ≡ 3 (mod 4) and r ≡ 3 (mod 4).

For r even, Q∞ is a cone with vertex Rad(Q∞) ≃ PG(r−2, q) and basis a parabolic
quadric Q(r − 2, q).

We now move to investigate the quadric Q. Clearly, its rank is either r − 1 or
r. Observe that

• Q has rank r − 1 if, and only if, there exist a linear function f : GF(q) →
GF(q) such that for all i = 1, . . . , r− 1 we have m1

i = f(m0
i ); also, the value

of d1 turns out to be uniquely determined. Thus, the number of distinct
possibilities for the parameters is exactly qr.

Write now Π∞ = Σ ⊕ Rad(Q∞). As Σ is disjoint from the radical of the
quadratic form inducingQ∞, we have that Σ∩Q∞ is a nondegenerate quadric
(either hyperbolic, elliptic or parabolic according to the various conditions).
Since Q has the same rank as Q∞, we have dimRad(Q) = dimRad(Q∞)+1.
Observe that Rad(Q) ∩ Π∞ ≤ Rad(Q∞). Thus, Rad(Q) ∩ Σ = {0} and Σ
is also a direct complement of Rad(Q). It follows that Q is cone of vertex a
PG(r − 1, q) and basis a quadric of the same kind as the basis of Q∞.

• Q has rank r in the remaining q2r − qr possibilities. Here Q is a cone of
vertex a PG(r−2, q) and basis a parabolic quadric Q(r−1, q) for r odd or Q
is a cone of vertex a PG(r−2, q) and basis a hyperbolic quadric Q+(r−1, q)
or an elliptic quadric Q−(r − 1, q) for r even.

We can now determine the complete list of sizes for r odd:
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•

|Q∞| =
q2r−3 − 1

q − 1
± q(3r−5)/2;

• in case rank(Q) = r − 1, then

|Q| =
q2r−2 − 1

q − 1
± q3(r−1)/2;

• in case rank(Q) = r,

|Q| =
q2r−2 − 1

q − 1

In particular, the possible values for |Q| − |Q∞| are

q2r−3 + q3(r−1)/2 − q(3r−5)/2, q2r−3 − q(3r−5)/2

for q ≡ 1 (mod 4) or r ≡ 1 (mod 4) and

q2r−3 − q3(r−1)/2 + q(3r−5)/2, q2r−3 + q(3r−5)/2

for q ≡ 3 (mod 4) and r ≡ 3 (mod 4).
When r is even we get:

•

|Q∞| =
q2r−3 − 1

q − 1
;

• in case rank(Q) = r − 1, then

|Q| =
q2r−2 − 1

q − 1
;

• in case rank(Q) = r,

|Q| =
q2r−2 − 1

q − 1
± q(3r−4)/2.

Thus, the possible list of cardinalities for |Q| − |Q∞| is

q2r−3, q2r−3 + q(3r−4)/2, q2r−3 − q(3r−4)/2.

Now we are going to show that B(a, b) is a minimal intersection set. First of
all, we prove that for any P ∈ B(a, b) there exists a subspace Λn(P ) ≃ AG(n, q2),
1 ≤ n ≤ r − 1 through P such that |B(a, b) ∩ Λn(P )| ≤ q2n−1 − qn−1. The
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argument is by induction on n. Assume n = 1. Then, for any P ∈ B there exists
at least one line ℓ through P such that |ℓ ∩ B| < q, otherwise B would contain
more than q2r−1 points. Suppose now that the result holds for n = 1, . . . , r − 2,
take P ∈ B and suppose that any hyperplane π through P meets B in at least
q2r−3 points. By induction, there exists a subspace π′ := Λr−2(P ) ≃ AG(r− 2, q2)
through P meeting B in at most q2r−5−qr−3 points. By considering all hyperplanes
containing π′ we get |B| ≥ (q2 + 1)(q2r−3 − q2r−5 + qr−3) + q2r−5 − qr−3 > q2r−1, a
contradiction. Thus, through any P ∈ B(a, b) there exists a hyperplane meeting
B(a, b) in (q2r−3 − q(3r−5)/2) points for r odd or (q2r−3 − q(3r−4)/2) for r even. This
implies that B(a, b) is in all cases a minimal intersection set.

Corollary 3.1. For q odd and 4aq+1 + (bq − b)2 = 0, the number of hyperplanes

Nj meeting B(a, b) in exactly j points are as follows:

(a) for r odd

Nq2r−3+q(3r−5)/2 = q2r − qr, Nq2r−3 =
q2r − 1

q2 − 1
− 1,

Nq2r−3−q3(r−1)/2+q(3r−5)/2 = qr.

(b) for r even,

Nq2r−3−q(3r−4)/2 =
1

2
(q2r − qr) Nq2r−3 = qr +

q2r − 1

q2 − 1
− 1,

Nq2r−3+q3(r−4)/2 =
1

2
(q2r − qr).

Proof. Case (a) is a direct consequence of the arguments of Theorem 1.1. In Case
(b), when r is even, we need to count how often Q turns out to be elliptic rather
than hyperbolic. For any choice of the parameters m1, . . . , mr−1, d there is exactly
one quadric Q to consider. As Q∞ is always a parabolic quadric, we can assume
it to be fixed. Denote by σ0, σ+, σ− respectively the number of quadrics Q which
are parabolic, elliptic or hyperbolic. Clearly σ0 corresponds to the case in which
rank(Q) = rank(Q∞). We have

σ+ + σ0 + σ− = q2r, σ0 = qr.

Each point of B(a, b) lies on q2r−1
q2−1

hyperplanes; of these q2r−2−1
q2−1

pass through P∞

(and they must be discounted). Thus, we get

q2r−2|B| = q4r−3 = σ0q2r−3 + σ+(q2r−3 + q(3r−4)/2) + σ−(q2r−3 − q(3r−4)/2) =

q2r−3(σ0 + σ+ + σ−) + q(3r−4)/2(σ+ − σ−) = q4r−3 + (σ+ − σ−)q(3r−4)/2.

Hence, σ+ = σ− = 1
2
(q2r − qr).
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Remark 3.2. The quadric Qa(m, d) of Equation (4) shares its tangent hyperplane
at P∞ with the Hermitian variety (1).

The problem of the intersection of the Hermitian variety H with irreducible
quadrics Q having the same tangent plane at a common point P ∈ Q ∩ H has
been considered for r = 3 in [3, 4].

4 A family of two-character multisets in PG(3, q2)

In [2, Theorem 4.1] it is shown that for r = 2, q odd and 4aq+1 + (bq − b)2 6= 0 or
r = 2, q even and Tr (aq+1/(bq + b)2) = 1, the set B(a, b) can be completed to a
2–character multiset B(a, b). An analogous result holds for r = 3. In this section
we now prove Theorem 1.2.

Assume q odd and 4aq+1 + (bq − b)2 = 0. From the proof of Proposition 1.1,
the quadric Q∞ is the union of two distinct planes for q ≡ 1 (mod 4) or just a line
for q ≡ 3 (mod 4). Therefore, if q ≡ 1 (mod 4) then either

N = q3 + q2 + q + 1− (2q2 + q + 1) = q3 − q2

or
N = 2q3 + q2 + q + 1− (2q2 + q + 1) = 2q3 − q2,

according as Q is either the join of a line to a conic or a pair of solids; hence, the
list of intersection numbers of B(a, b) with affine hyperplanes is q3 − q2, q3 and
2q3 − q2.

If q ≡ 3 (mod 4) we get either

N = q3 + q2 + q + 1− q − 1 = q3 + q2,

or
N = q2 + q + 1− q − 1 = q2,

according as Q is either the join of a line to a conic or a plane; therefore, in this
case, the intersection numbers are q2, q3 and q3 + q2

Now consider the multiset B(a, b) in PG(3, q2) arising from B(a, b) by assigning
multiplicity bigger than 1 to just the point P∞.

More in detail the points of the 2–character multiset B(a, b) are exactly those
of B(a, b) ∪ {P∞} where each affine point of B(a, b) has multiplicity one, and P∞

has either multiplicity q3 − q2 for q ≡ 1 (mod 4), or multiplicity q2 when q ≡ 3
(mod 4). Our theorem follows.

Remark 4.1. Let C be the linear code associated to B(a, b). In the first case C is
a [q5 + q3 − q2, 4, q5 − q3]q2 two-weight code, while in the second it has parameters
[q5 + q2, 4, q5 − q3]q2 . In either case the non–zero weights are q5 and q5 − q3.

9



If Ai is the number of words in C of weight i then by Corollary 3.1 it follows
that

Aq5 = (q6 − q3 + 1)(q2 − 1); Aq5−q3 = (q4 + q3 + q2)(q2 − 1).

5 Intersection sets with multiplicity q2r−3 − qr−2

We keep the notation of the previous sections and examine the remaining cases.
Even though the results we obtain are a direct consequence of the construction of
[1], we provide some further technical details so that this paper can be considered
self-contained.

Proposition 5.1. Suppose r to be even and that either q is odd and 4aq+1+(bq−b)2

is a non–zero square in GF(q) or q is even and Tr (aq+1/(bq + b)2) = 1. Then,

B(a, b) is a set of q2r−1 points of AG(r, q2) with characters

q2r−3 − qr−2, q2r−3, q2r−3 − qr−2 + qr−1.

This is also a minimal intersection set with respect to hyperplanes.

Proof. We first discuss the nature of Q∞. Observe that, under our assumptions,
for q odd (−1)r−1 detA∞ is always a square; hence, Q∞ is a hyperbolic quadric.

For q even choose ε ∈ GF(q2) \ GF(q) such that ε2 + ε + ν = 0, for some ν ∈
GF(q)\{1} with Tr (ν) = 1. Then, ε2q+εq+ν = 0. Therefore, (εq+ε)2+(εq+ε) = 0,
whence εq+ε+1 = 0. With this choice of ε, the system given by (3) and (4) reads
as

(a1 + b1)(x0
1)

2 + [(a0 + a1) + ν(a1 + b1)](x1
1)

2 + b1x0
1x

1
1 +m1

1x
0
1 + (m0

1 +m1
1)x

1
1

+ . . .+ (a1 + b1)(x0
r−1)

2 + [(a0 + a1) + ν(a1 + b1)](x1
r−1)

2 + b1x0
r−1x

1
r−1

+m1
r−1x

0
r−1 + (m0

r−1 +m1
r−1)x

1
r−1 + d1 = 0.

(6)
The discussion of the (possibly degenerate) quadric Q of Equation (6) may be
carried out in close analogy to what has been done before.

Observe however that, as also pointed out in the remark before [5, Theorem
22.2.1], some caution is needed when quadrics and their classifications are studied
in even characteristic. Indeed let A∞ be the formal matrix associated to the
quadric Q∞ of equation

(a1 + b1)(x0
1)

2 + [(a0 + a1) + ν(a1 + b1)](x1
1)

2 + b1x0
1x

1
1 + . . .

+(a1 + b1)(x0
r−1)

2 + [(a0 + a1) + ν(a1 + b1)](x1
r−1)

2 + b1x0
r−1x

1
r−1 = 0.

Its determinant is equal to

detA∞ = [4(a1 + b1)(a0 + a1 + ν(a1 + b1)) + (b1)2]r−1.
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In order to encompass the case q even, detA∞ needs to be regarded as a formal
function in the polynomial ring GF(q)[z0, z1, z2, z3] evaluated in (a0, a1, b0, b1). This
gives detA∞ = b21. Here b1 6= 0, by our assumption bq 6= b. From [5, Theorem
22.2.1 (i)], the quadric Q∞ must be non-degenerate. Furthermore, by [5, Theorem
22.2.1 (ii)] and the successive Lemma 22.2.2 the nature of Q∞ can be ascertained
as follows. Let B the matrix obtained from A∞ by omitting all the entries on its
main diagonal, and define

α =
detB − (−1)r−1 detA∞

4 detB

A straightforward computation shows that

α =
(b1)2(r−1) + (4(a1 + b1)(a0 + a1 + ν(a1 + b1)) + (b1)2)r−1

4 (b1)2(r−1)
.

Regard α also as a function in the polynomial ring GF (q)[z0, z1, z2, z3] evaluated
in (a0, a1, b0, b1). Hence we get

α =
(a1 + b1)(a0 + a1 + ν(a1 + b1))

(b1)2
.

Arguing as in [1, p. 439], we see that Tr GF(q)|GF(2)(α) = 0 and, hence, Q∞ is
hyperbolic also for q even.

Now, in both cases q odd or q even we investigate the possible nature of Q.
Suppose Q to be non-singular; then

N =
(qr−1 + 1)(qr−1 − 1)

q − 1
−

(qr−1 + 1)(qr−2 − 1)

q − 1
= qr−2(qr−1 + 1).

If Q is singular, then

N =
q(qr−1 + 1)(qr−2 − 1)

q − 1
−

(qr−1 + 1)(qr−2 − 1)

q − 1
+ 1 = qr−2(qr−1 + 1)− qr−1.

This gives the possible intersection numbers.
Finally, in order to show that B(a, b) is a minimal (q2r−3 − qr−2)–fold blocking

set we can use the same techniques as those adopted to prove that B(a, b) is a
minimal blocking set in Section 3 for q odd and 4aq+1 + (bq − b)2 = 0
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