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COUPLING BEAMS: FROM RESEARCH TO PRACTICE 

 
 

G.J. Parra-Montesinos1, J.K. Wight2, C. Kopczynski3, R. Lequesne4, M. Setkit5, A. Conforti6, 
and J. Ferzli7 

 
 

ABSTRACT 
 

Results from experimental research that led to the development of a new design of coupling beams 
constructed with High-Performance Fiber Reinforced Concrete (HPFRC) and simplified 
reinforcement detailing are presented, along with information related to its implementation in a 
high-rise building in the city of Seattle, WA. The experimental program consisted of the testing, 
under large displacement reversals, of a series of large-scale HPFRC coupling beams with span-to-
height ratios ranging between 1.75 and 3.3. The main goal of the experimental program was to 
evaluate the possibility of simplifying diagonal and confinement reinforcement detailing without 
compromising seismic performance. Experimental results indicate that the use of HPFRC allows 
the complete elimination of diagonal reinforcement in beams with span-to-height ratios greater 
than or equal to approximately 2.2. Also, special confinement reinforcement, as used in regular 
reinforced concrete coupling beams, was found to only be required over a distance of half the 
beam height from each beam end. For beams with span-to-height ratios smaller than 
approximately 2.2, a 2/3 reduction in diagonal reinforcement was found to be possible, with the 
same relaxation in confinement reinforcement as for the more slender coupling beams. Drift 
capacities of the HPFRC coupling beam specimens, when subjected to shear reversals with 
amplitudes comparable to the upper shear limit allowed in the ACI Building Code, ranged 
between approximately 5% and 7% for span-to-height ratios of 1.75 and 3.3, respectively.  

 
 
 

Introduction 
 
Coupled structural walls are commonly used in medium- and high-rise buildings located in 
earthquake prone regions due to their efficiency in terms of lateral strength, stiffness, and energy 
dissipation capacity. In order to sustain the large shear stress and deformation reversals expected 
during a strong earthquake, coupling beams are typically designed with intricate diagonal and 
transverse reinforcement detailing.  
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Seismic provisions in the ACI Building Code [1] require that coupling beams with span-to-
height (aspect) ratios less than or equal to 2 and average shear stress demands greater than 

′, MPa (4 ′, psi), where f’c is the specified concrete compressive strength, be reinforced 

with diagonal bars designed to resist the entire shear demand.  Coupling beams with aspect ratios 
between 2 and 4, on the other hand, may be designed with either diagonal bars or as beams in a 
special moment-resisting frame. However, in practice, most coupling beams within this range of 
aspect ratios are designed with diagonal reinforcement. In addition to diagonal reinforcement, 
transverse reinforcement similar to that required for columns in special moment frames must be 
provided to confine either each group of diagonal bars or the entire coupling beam. While the use 
of diagonal bars together with column-type confinement has been shown to lead to adequate 
behavior under earthquake-type loading [2, 3], the construction of diagonally reinforced coupling 
beams is usually labor intensive and time consuming. Thus, significant research has been 
dedicated to the development of simpler designs for coupling beams, which include various 
reinforcement schemes, structural steel shapes, or a combination of both. To date, however, 
diagonally reinforced coupling beams are the preferred choice of structural engineers. 
 
A different coupling beam design alternative evaluated in the past few years consists of the 
addition of discontinuous fiber reinforcement to the concrete in order to provide shear resistance 
and confinement and thus reduce reliance on bar-type diagonal and transverse reinforcement for 
adequate seismic performance [4-6]. In particular, fiber reinforced concretes that exhibit a post-
cracking hardening response when subjected to direct tension, along with a compression 
behavior similar to that of well-confined concrete, offer great potential for achieving meaningful 
reductions in both diagonal and transverse reinforcement. Because of their unique tensile stress-
strain response, these materials are commonly referred to as High-Performance Fiber Reinforced 
Concrete (HPFRC).  
 
In this paper, results from large-scale tests of HPFRC coupling beams with simplified 
reinforcement detailing, as well as information related to the implementation of a newly 
developed HPFRC coupling beam design in a high-rise building in the city of Seattle, WA, are 
presented. 
 
 

Experimental Program 
 
A series of large-scale HPFRC coupling beams were tested under large displacement reversals in 
order to evaluate the possibility of simplifying reinforcement detailing through the use of an 
HPFRC material.  Main experimental variables were coupling beam span-to-height ratio and 
diagonal and transverse reinforcement detailing. These tests were conducted over the course of 
several investigations [4-7] and thus, only the tests of selected coupling beam specimens will be 
discussed herein.  
 
HPFRC Material 
All test coupling beams discussed herein were constructed with a single HPFRC material 
containing high-strength hooked steel fibers in a 1.5% volume fraction. The fibers used were 30 
mm (1.2 in.) long and 0.38 mm (0.015 in.) in diameter, made out of a wire with minimum tensile 
strength of 2300 MPa (330 ksi). The HPFRC mixture proportions by weight were 



1:0.875:2.2:1.2:0.8:0.005:0.038 for cement:fly ash:sand:course aggregate:water:high-range water 
reducing agent:viscousity modifying agent. The course aggregate consisted of crushed limestone 
with maximum size of 13 mm (1/2 in.). This HPFRC mixture exhibited high workability and 
thus, only minimum vibration was required during casting. Detailed information about this 
mixture can be found elsewhere [8]. 
 
Test Setup 
Each specimen consisted of an isolated coupling beam of rectangular cross section connected to 
two reinforced concrete blocks. Figure 1 shows the test setup used. As can be seen, the coupling 
beam specimens were rotated 90 degrees with the two end blocks oriented horizontally. The 
bottom block was anchored to a strong floor while the top block was kept approximately parallel 
to the bottom block through the use of vertical steel links. These links also provided some degree 
of axial restraint, which was meant to simulate that provided by structural walls and floor slabs 
in a real system. 
 
Lateral displacement cycles of increasing magnitude were applied at the top block up to 
specimen failure. Lateral displacements are reported in terms of coupling beam drift, which 
corresponds to the chord rotation of the coupling beam adjusted for any relative rotation between 
the two concrete blocks. 
 
 

 
Figure 1. Test setup. 
 
Test Specimens 
In this paper, the testing of four specimens with span-to-overall height ratios of 1.75, 2.2, 2.75 
and 3.3 will be discussed. The reinforcement design for each specimen is shown in Fig. 2. Two 
designs were investigated depending on the span-to-height ratio. For beams with aspect ratios 
greater than or equal to approximately 2.2, a design that consists of longitudinal and transverse 
reinforcement only (i.e., no diagonal bars) was evaluated. For beams with lower aspect ratios, 
diagonal reinforcement designed to resist approximately 1/3 of the expected shear demand was 
used, as results from previous tests [4] had shown that some amount of diagonal reinforcement is 
needed in short coupling beams to achieve adequate drift capacity.  
 

Load Cell

Coupling Beam

Actuator

Link for restricting end rotation



 
Figure 2. Reinforcement details of test specimens. 
 
As opposed to diagonally reinforced concrete beams for which confinement similar to that 
required for columns in special moment frames is required, HPFRC coupling beams have been 
found [9] to require this type of confinement only over half the beam depth from each beam end. 
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Over the remaining beam length, fiber reinforcement provides adequate confinement.   
 
Design for shear in the HPFRC coupling beams was performed assuming that three mechanisms 
contribute to shear resistance: fiber reinforced concrete, transverse steel, and diagonal bars (if 
any). The amount of transverse reinforcement was selected such that the required contribution 

from fiber reinforced concrete would not exceed 0.42 ′, MPa (5 ′, psi). 
 
Another aspect that was investigated was the use of precast HPFRC coupling beams in order to 
further facilitate construction.  To prevent interference with the wall boundary reinforcement, the 
precast portion of the HPFRC coupling beams extended only to the wall cover (see shaded grey 
area in Fig. 2). Longitudinal bars (and diagonal bars, if any) were extended beyond the precast 
portion of the beam a full development length for anchorage. When diagonal bars were used, 
these bars were bent inside the precast portion such as to exit the beam horizontally. In  order to 
prevent damage localization at the precast beam-wall interface, and thus a premature sliding 
shear failure, U-shaped or straight dowel bar reinforcement crossing the cold joint was used to 
force most of the beam inelastic deformations to occur away from the cold joint. The ease with 
which these precast HPFRC coupling beams can be placed on the jobsite is a major improvement 
over the construction methods currently used for diagonally reinforced concrete and steel 
coupling beams. 
 
 

Experimental Results 
 
The shear stress versus drift response for the four test specimens described above is shown in 
Fig. 3. The specimens were shown to develop a stable flexural response with energy dissipation 
and stiffness retention capacities comparable to those of well detailed diagonally-reinforced 
concrete coupling beams. Although diagonal cracking was observed throughout the span of the 
coupling beams, diagonal crack growth was shown to be well controlled by the combination of 
fiber reinforcement and transverse reinforcement. The result was that a majority of deformations 
came from plastic flexural hinges that developed near the ends of the beams.  
 
As shown in Table 1, the specimens exhibited drift capacities between 4.9% and 6.8% (drift 
capacity is defined as the largest drift reached in both loading directions with a strength retention 
of at least 80%), with the larger drift capacities being associated with increased coupling beam 
aspect ratio. These large drift capacities are comparable to those observed for well detailed 
diagonally reinforced coupling beams with similar aspect ratios. Furthermore, these large drift 
capacities were observed despite the fact that these HPFRC coupling beam specimens were 

subjected to shear stresses approximately equal to 0.83 ′, MPa (10 ′, psi), the maximum 
nominal shear stress permitted by the ACI Building Code [1] for design.  
 
It was observed that plastic deformations concentrated within the beam span away from the cold-
joint between the precast HPFRC beam and the cast-in-place wall concrete. The reinforcement 
detailing provided across this joint, in the form of either U-shaped or straight dowel-bar 
reinforcement, effectively protected the joint and forced deformations into the more damage 
tolerant HPFRC section.  
 



 

 
 

a) Aspect ratio of 1.75 
 

 

 
 

b) Aspect ratio of 2.2 

 
 

c) Aspect ratio of 2.75 
 

 
 

d) Aspect ratio of 3.3 

Figure 3.  Shear stress versus drift response for test coupling beams. 
 

Table 1. Summary of test results. 

ln/h 
 

b, mm 
(in.) 

 
h, mm (in.)

Test Day 
fc’, MPa 

(psi) 

Measured 
Vmax, kN 

(kips) 

Vmax / 
(bh√fc’), 

MPa (psi) 

Drift 
Capacity*

1.75 150 (6) 600 (24) 52 (7550) 650 (146) 0.97 (11.6) 4.9 % 
2.2 150 (6) 475 (18.75) 63 (9140) 570 (128) 1.00 (12.0) 5.8 % 
2.75 150 (6) 600 (24) 68 (9870) 540 (121) 0.73 (8.76) 5.8 % 
3.3 150 (6) 500 (20) 68 (9870) 500 (112) 0.81 (9.72) 6.8 % 

* Largest drift achieved in both directions with less than 20% strength loss 
b: thickness; h: overall depth; Vmax: maximum shear 
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Ready mix fiber reinforced concrete was used, with the fibers added at the concrete plant. The 
fibers were of the same type (high-strength hooked steel fibers) and used in the same dosage 
(1.5% volume fraction) as in the test specimens. Prior to addition of fibers, the mixture used 
exhibited self-consolidating properties. To verify that adequate fiber distribution could be 
achieved, small samples were cast and cut after hardening of concrete for visual inspection. 
Rather than using a precast operation as in the experimental program, the coupling beams were 
cast-in-place, using a crane and bucket operation (Fig. 5). Given the fact that the HPFRC 
material did not penetrate into the core of the wall boundary region, intermediate reinforcement 
was used as in the precast coupling beams to force most of the inelastic deformations to occur 
away from the cold joint and thus prevent a premature sliding shear failure. Overall, the 
construction of cast-in-place HPFRC coupling beams proved to be a very practical and 
successful operation. 
 
 

Conclusions 
 
Experimental evidence indicates that the use of a high-performance fiber reinforced concrete 
containing a 1.5% volume fraction of high-strength hooked steel fibers allows a substantial 
simplification of reinforcement detailing in coupling beams. In coupling beams with span-to-
overall height ratios greater than or equal to approximately 2.2, a complete elimination of 
diagonal reinforcement is possible. In coupling beams with lower aspect ratios, an approximately 
2/3 reduction in diagonal reinforcement was found to be possible. In all cases, special column-
type confinement reinforcement is only needed at the beam ends due to the confinement 
provided by the fiber reinforcement. For further construction simplification, the proposed 
HPFRC coupling beams can be precast, eliminating the need for cast-in-place HPFRC. Drift 
capacities of the HPFRC coupling beam specimens with the proposed reinforcement detailing, 
when subjected to shear reversals with amplitudes comparable to the upper shear limit allowed in 
the ACI Building Code, ranged between approximately 5% and 7% for span-to-height ratios of 
1.75 and 3.3, respectively.  
 
The HPFRC coupling beam design was implemented into a high-rise building in the city of 
Seattle, WA. Construction of the HPFRC coupling beams, without diagonal bars and using a 
crane and bucket operation, proved very practical. 
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