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Abstract 

Multivariate statistics are important to determine the flood hydrograph for the design of 

hydraulic structures and for the hydraulic risk assessment. In the last decade, the copula 

approach has been investigated in hydrological practice to assess the design flood hydrograph 

in terms of flood peak, volume and duration. In this paper, the copula approach is exploited to 

perform pair analyses of these three random variables for two Italian watersheds, in the 

Apennine and the Alps respectively. The criterion to separate continuous flow series into 

independent events is discussed along with its implications on the dependence structure. The 

goodness-of-fits of the proposed copulas are then assessed by non-parametric tests. Marginal 

distributions to derive joint distributions are briefly suggested. The possibility of generating 

flood events according to the proposed model and potential applications to hydraulic structure 

design and flood management are finally examined. 
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1. Introduction  

In many practical engineering applications regarding the wet weather discharge management, 

a certain number of hydrograph features play a significant role. On one hand, the peak flow 

discharge represents the key variable in any issue involving the conveyance capacity of the 

drainage network. On the other hand, when dealing with storage facilities, the most 

important aspect is undoubtedly the flood volume (Bergman and Sackl, 1989; Bacchi et al., 

1992; Fiorentino and Margiotta, 1999; Franchini and Galeati, 2000; De Michele et al., 2005; 

Balistrocchi et al., 2013). Additionally, time pattern characteristics, such as time to peak or flood 

duration, are relevant information, for instance, in warning system implementation, in real 

time management, in hydraulic vulnerability assessment or in ecological and sediment 

transport issues. 

Nonetheless, conventional approaches to flood frequency analysis, essentially based on the 

seminal works by Gumbel (1958) and Todorovic (1978), mainly accounted for the peak flow 

discharge statistics. Unfortunately, all above mentioned hydrologic variables, though slightly 

or strongly associated, generally feature diverse return periods even within the same event, 

owing to the multivariate non stationary nature of the discharge process.  

 

 



 2 

Despite many valuable research efforts accomplished to employ the multivariate approach 

(Goel et al., 1998; Yue, 2000; Yue, 2001), inferring popular multivariate distributions by 

conventional methods showed to be complex and affected by several drawbacks. 

The most important ones consist in the necessity to utilize marginal distributions belonging to 

the same family and in the impossibility of separating the assessment of the dependence 

structure from those of the marginal distributions. As a consequence, their effectiveness has 

remained questionable and such models found scarce applications in the real world practice. 

Since then, a significant advance has been attained by introducing the copula approach (Joe, 

1997; Nelsen, 2006) in the hydrological statistical analysis (Salvadori et al., 2007), through 

which most of previous concerns are effectively overcome. By using copula functions, in fact, 

various dependence structures can be easily detected, while different and complex marginal 

distributions can be implemented into a unique probabilistic model. More recently, non-

parametric statistical tests have been made available to verify in a quantitative statistically 

rigorous manner the goodness-of-fit of the selected copulas (Genest et al., 2009). 

In the present work copula functions have been exploited to perform pair analyses of flood 

variables with regard to two Italian river stations belonging to Panàro River and Tagliamento 

River, for which long flow rate records exist. Bearing in mind potential hydraulic engineering 

applications, such as routing reservoir or safety spillway design, three variables have been 

analyzed: the peak flow discharge, the flood volume and the flood duration.  

2. Case studies 

Although analyzed watersheds both belong to northern Italy, they offer quite diverse case 

studies, thanks to their varying climatic and physiographic characteristics. Figure 1 shows 

their location while table 1 reports some key characteristics: the catchment area A, the main 

river length L, the difference between the average watershed elevation and the outlet elevation 

∆H and the time of concentration tc estimated according to the Giandotti formula (Giandotti, 

1934), a commonly applied tool in the Italian hydrologic practice, the average annual 

cumulative rainfall depth h and the average annual runoff coefficient Φ.  

As can be seen in the left-hand side of figure 1, the Panàro River is the last right-bank tributary 

to the Po River and springs from the northern edge of the Apennine chain, close to the 

watershed divide. Its course follows an almost straight north-east direction to the outlet 

located next to Ficarolo (where the first historical bank break of the Po River took place in the 

XII century). The catchment area is thus elongated and has a rather constant width because of 

two relevant left-bank tributaries. 

The Tagliamento River drains a watershed belonging to the eastern range of Carnic Alps, as 

illustrated in the right-hand side of figure 1. It is characterized by a compact mountain 

catchment area, that represents most of the total, in which the flow is directed eastward. 

Downstream of this area, the river runs in the south direction to the estuary in the northern 

coast of the Adriatic sea. Here, the additional catchment area is only given by a narrow strip 

along the river course. 

Despite the larger catchment area, the shorter main stream length and the greater elevation 

drop make the hydrologic response time of the Tagliamento watershed more rapid than that of 

the Panàro watershed, as evidenced by the times of concentration in table 1. 
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The Panaro hydrologic regime is essentially driven by the rainfall one, which features two 

maxima: the main one in autumn and the secondary one in spring (classified as sub-Apennine 

by Bandini, 1931). During summer, hydrologic losses are relevant so that null discharges can 

be often observed and, in autumn, the discharge increasing trend is delayed with respect to the 

rainfall one. 

As a consequence, major floods typically occur in November-December, when suitable soil 

moisture conditions are reestablished. The monthly runoff coefficient variability is relatively 

high, since it includes values of 0.08 in August and 0.86 in February, while the average annual 

value amounts to 0.47. 

The Tagliamento hydrologic regime is sensitive to both rainfall and snowmelt. Moreover, 

according to the classification by Bandini, the rainfall regime varies from the continental-

Alpine one in the mountain area (a maximum in summer and a minimum in winter), to the 

sub-Alpine one (two maxima in spring and autumn) in the plain area. This results in a quite 

perennial flow regime which shows two relevant maxima in May, related to snowmelt, and in 

October, related to heavy precipitations. Monthly runoff coefficients are subject to a low 

variability, ranging from 0.44 in February, up to 1.26 in May; the average annual value is 

assessed in about 0.80.  

 
Figure 1. Locations of the Panàro River (red network) and the Tagliamento River (blue network), 
evidencing corresponding stream gauge stations (redrawn from Bacchi et al., 2000). 

In addition to its higher impermeability, the Tagliamento watershed is affected by significantly 

greater precipitations. The annual cumulative rainfall depth in fact is less than 1200 mm for the 

Panàro watershed but almost 1800 mm for the Tagliamento watershed. 

Table 1. Main hydrologic characteristics of studied watersheds (Servizio Idrografico, 1980).  

WATERSHED STATION A (km2) L (km) ∆∆∆∆H (m) tc (h) h (mm) ΦΦΦΦ 

        
Panàro Bomporto 1036 106 643.6 14.2 1150 0.47 

Tagliamento Pioverno 1880 65 936.7 11.1 1780 0.80 
        

3. Data analysis 

As evidenced in table 2, several decades of discharge observations (Bacchi et al., 2000) can be 

exploited for the above described stations. Since only the first and last years of the record are 

listed and some years are missing, the number of actually available years is stated, as well. 
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To make such data suitable for the copula analysis, the continuous record had to be separated 

into independent flood events. Herein, a two-step criterion was utilized.  

Firstly, according to the partial duration series approach delineated by Todorovic (1978), a 

discharge threshold qs was set. Individual flood discharges and base flow discharges were 

accordingly discriminated. 

Secondly, the independence of such floods was verified. To do so, time periods included 

between the peak of the antecedent event and the onset of the following one were compared to 

a minimum interevent period ti: if greater, the hydrographs were assumed to be independent. 

Conversely, the complete hydrograph between the beginning of the first one and the end of the 

latter one was identified as an individual independent flood. 

Thus, the previously mentioned random variables were computed. In this formulation, the 

total discharge, not only the portion exceeding the threshold discharge qs, was accounted for. 

That is, the peak flow discharge qp and the flood volume v were calculated, respectively, as the 

maximum and the integral of the observed discharge, over the partial duration t of the 

identified flood event. Although only the flow rate above the threshold is commonly 

considered, this choice is intended to analyze the behavior of the actual discharge conveyed by 

a canal and entering, for instance, a hypothetical on-line storage facility.  

Table 2. Consistencies of the analyzed data.  

WATERSHED STATION 
OBSERVED 

YEARS 
OBSERVATION 

PERIOD 
SAMPLING 

INTERVAL 

     
Panàro Bomporto 52 1923:1983 1 h 

Tagliamento Pioverno 49 1886:1975 1 h 
     

4. Dependence structure assessment 

Thanks to the Sklar theorem (Sklar, 1959), copula functions operate in the probability space, so 

that pseudo-observations must be derived from the original ones by means of the probability 

integral transformations, as shown in the equation set written below. 

In these equations FQ, FV and FT are the Weibull standard plotting positions of the variables qp, 

v and t, while x, y and z are the corresponding pseudo-observations, uniformly and identically 

distributed. 

 )(;)(;)( tFzvFyqFx TVpQ ===  [1] 

The assessment of the overall dependence structure was dealt with by pair analyses, since 

variable sensitivities with respect to the parameter set employed to separate the independent 

events can be evaluated by association measures such as the Kendall coefficient τK (Kendall, 

1937). 

A visual comparison between bivariate theoretical copulas and empirical copulas can also 

guide the prescreening of best fitting functions. Most important, asymmetric association 

degrees can be accounted for, before the complete probabilistic model is constructed. 
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4.1 Sensitivity to discretization parameter 

The sensitivity analysis was chiefly aimed at identifying the effect of the threshold discharge 

on the association degree and the mean annual event number. In fact, the minimum interevent 

time can be reasonably set on a hydrologic or operational basis, with regard to the watershed 

time of concentration or residence time in a floodplain: in this study, the hypothesis that the 

flood recession phase must last more than the double of tc to ensure adjacent event 

independence was assumed (only major floods were herein taken into consideration). In 

consideration of diverse discharge regimes qs was varied between 10:100 m3/s in the Bomporto 

station and between 50:1200 m3/s in the Pioverno station. 

The τK coefficient trends are illustrated in figure 2a. Significant concordant associations are 

always detected for the Panàro case, as p-values, obtained from testing the no-association 

hypothesis, are definitely close to zero for every value of the threshold discharge. Increasing 

trends are related to low values of qs, whereas an almost constant association degree is reached 

for unreasonably high threshold values.  

In both cases, the flood volume - flood duration pair and the peak flow discharge-flood 

duration pair systematically feature the strongest (τK greater than 0.80) and the weakest (τK less 

than about 0.60) concordances, respectively. For the peak rate-duration pair, τK takes values in 

an intermediate range: closer to 0.80 in the Panàro watershed. Unlike studies by other authors 

(Grimaldi and Serinaldi, 2006), intersections with the flood volume – flood duration curve 

cannot be observed when the qs threshold is increased.  

Essentially akin behaviors for τK coefficients are revealed in the Pioverno station in terms of 

both trend and significance, figure 2b, even if some irregularities are shown. This could be 

partly due to a worse quality of the original data series. In this case, water stage data were 

employed to reconstruct flood hydrographs by a discharge rating curve. Observations 

collected in a downstream station, for which a broader data set was available, were used as 

well. To do so, water stages in the station of interest were obtained by a regression curve from 

downstream ones. A certain influence of an additional catchment area is expected as stations 

are not very close. In addition, difficulties arose for low flows both in rising limbs and in 

recession limbs because of the braided nature of the riverbed.  

  

Figure 2. Trend of Kendall coefficients with respect to increasing discharge thresholds for the 
Bomporto station a) (ti = 1.2 d) and the Pioverno station b) (ti = 0.9 d). 
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The behavior of the mean annual event number , which plays a relevant role in the return 

period estimation, is depicted in figure 3. Although fewer flood events are expected in the 

Tagliamento watershed, trends are qualitatively analogous since in both cases a maximum is 

shown. This can be explained by taking into account the combination of two opposite 

occurrences as qs increases: the event number augments as multi peak floods are splitted into 

distinct floods, whilst it diminishes as minor floods are suppressed when the peak flow 

discharge is less than the threshold. For low qs values the first one prevails leading to the  

rising trend, conversely for large qs values the decreasing trend is due to the predominance of 

the second one.  

In view of the variability evidenced by  in figure 3, an accurate parameter selection during 

the identification of independent floods seems to be crucial in developing reliable probabilistic 

models mainly in consideration of this second aspect. In fact, small variations of the mean 

annual event number results in huge variations of the return period estimates. The use of the 

minimum inter event time ti however contributes to the reduction of  variability. 

  

Figure 3. Variability of the mean annual event number θ with respect to increasing discharge 
thresholds for the Bomporto station a) (ti = 1.2 d) and the Pioverno station b) (ti = 0.9 d). 

4.2 Copula selection and testing 

The pair analysis strategy was exploited for selecting the most suitable copula functions, as 

well. Despite climatic and hydrologic diversities, very similar dependence structures were 

detected in both case studies. Herein, the ability of the Gumbel-Hougaard copula to suit pair 

data samples was tested.  

Copulas belonging to this family model dependence structures characterized by concordant 

association and by upper tail dependence. As already noticed by other authors (De Michele et 

al., 2005), who exploited the same copula in multivariate flood analysis, the stronger 

association of extreme events accords well with the empirical evidence. Indeed, occurrences of 

random variables related to the most severe floods are likely to have the same frequency. 

Considering a generic couple of random variables  ξ and η uniformly distributed in I = [0,1], 

the expression of the bivariate Gumbel-Hougaard theoretical copula Cα can be written in the 

terms of equation [2], where α ≥ 1 is the dependence parameter.  
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Figure 4. Contours of fitted Gumbel-Hougaard copulas (blue thick line) compared to those of 
empirical copulas (black thin line) for the Bomporto station a), and for the Pioverno station b). 



 8 

The sample counterpart is instead represent by the empirical copula Cn, whose expression is 

provided by the sum in [3], in which N is the sample size, 1(.) is the indicator function and 

ii ηξ ˆ,ˆ  are pseudo-observations (i = 1 … N). 

 ( ) ( )∑
=

≤≤=
N

i
iin

N
C

1

ˆ,ˆ1
, ηηξξηξ 1  [3] 

In figure 4 contour lines of the empirical copulas and fitted Gumbel-Hougaard copulas are 

drawn for the three pairs giving a visual evaluation of the goodness-of-fit. In this example the 

identification of independent floods was performed by assuming qs = 40 m3/s ti = 1.2 d in the 

Panàro case and qs = 250 m3/s ti = 0.9 d in the Tagliamento case. Bearing in mind the 

discussion in previous subsection, such values were considered to be suitable for a meaningful 

evaluation in the selected cases studies. The calibration of the Gumbel-Hougaard copulas was 

carried out by exploiting the relationship between the dependence parameter α and the 

Kendall coefficient τk [4]. Calibration parameters are listed in table 3. 

 ( )kτα −= 11  [4] 

Despite the good agreement evidenced by the contour overlaps shown in figure 4, test statistics 

are however mandatory to quantitatively assess the goodness-of-fit of the selected functions. 

Particular attention has been recently paid to blanket tests (Genest et al., 2006), because they 

can be applied to every copula family and do not require any subjective choice for their 

implementation, such as those regarding smoothing parameters, weight functions or arbitrary 

data categorizations. An effective blanket test proposed by Genest et al. (2009) is based on the 

Cramer-Von Mises statistics Sn, whose expression in a bivariate case can be written as in the 

sum [5]. 

 [ ]∑
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1

2
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If a large number m of data samples is generated by copula simulations (Salvadori et al., 2007) 

under the hypothesis that the selected copula is the underlying copula (null hypothesis H0), an 

appropriate estimate of the p-value is given by expression [6]. In this sum Sn,k are Cramer-Von 

Mises statistics evaluated for simulated samples. 
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Table 3. Copula calibration parameters and p-values testing the 
null hypothesis H0.  

STATION θθθθ PAIR ττττk    αααα    p-value (%) 

      

Bomporto 2.12 

x-y 0.78 4.55 96.74 

y-z 0.83 5.88 99.50 

x-z 0.63 2.70 76.99 

Pioverno 1.14 

x-y 0.60 2.50 98.88 

y-z 0.76 4.17 99.95 

x-z 0.40 1.67 98.45 
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The H0 hypothesis was tested by using m = 10000 and p-values reported in table 3 were 

obtained. It is evident that H0 cannot be rejected for very large levels of significance. Despite 

this suitability, a comparative analysis should be conducted to evaluate whether other copula 

functions featuring different dependence structure, namely symmetric tail dependence (t-

Student), no tail dependence (Frank or Gaussian copulas) or lower tail dependence (Clayton 

copula), are more representative. 

5. Marginal distributions  

To derive bivariate joint distributions by means of the Sklar theorem, marginal distributions 

must be defined. Indeed, a number of studies has already been conducted with regard to the 

peak flow discharge statistics by this time, see for example Cunanne (1987) and references 

therein. Popular solutions usually rely on the log-normal distribution (LN), the Gumbel 

distribution (EV1) and the Generalized Extreme Value distribution (GEV).  

Nevertheless, none of these functions usually suits upper outlier occurrences. In such a case, 

two component models, namely Two Component Extreme Value distribution (TCEV), should 

be adopted. Owing to the greater number of calibration parameters, samples of adequate size 

are however needed to achieve a reasonable model reliability.  

Referring to selected case studies, LN distribution and EV1 distributions were found to be the 

best models in the Bomporto station and in the Pioverno station, respectively. In addition to 

such distributions, the Weibull function can be suggested as an alternative solution in order to 

represent flood volume and, especially, flood duration distributions.  

6. Conclusions 

Pair statistical analyses of three flood variables, peak flow, flood volume and flood duration, 

were herein performed by means of the copula approach with reference to two Italian 

watersheds. Despite the relevant climatic and geo-morphological diversities, the Gumbel-

Hougaard copula demonstrated to yield very similar fits for each of the analyzed pairs. Good 

agreements  have been shown as p-values, that is “empirical significances”, higher than 95% for 

5 out of 6 investigated pairs and equal to 77% for the peak and duration pair in the Panàro 

River case were estimated.  

At the same time, if proper ranges are chosen, comparable sensitivities with respect to 

thresholds employed to extract the independent events from the continuous discharge series 

are evidenced. Nonetheless, the possibility of expressing such dependence structures by 

copulas other than the Gumbel-Hougaard remains to be investigated in more detail. 

Practical applications of multivariate distributions may be addressed towards their 

implementation into stochastic processes devoted to the generation of extended discharge time 

series. Thus, continuous simulations of storage capacities, spillway devices or, in general, flood 

control structures could be utilized for planning, design or management purposes.  

Firstly, a hydrograph shape depending on three variables must be chosen; secondly the 

trivariate copula can be constructed by means of the bivariate ones. In fact, as made clear by 

association trends in figure 2, such a trivariate copula needs to take into account different 

association degrees among the three pairs.  



 10 

However, popular shapes of flood hydrographs are expressed by two parameter functions: the 

Gamma distribution function by Ranzi (2005), the triangular shape introduced by Wycoff and 

Singh (1976). On the other hand, given the very strong association demonstrated by the flood 

volume - flood duration pair, a first attempt could be undertaken by using only the peak rate 

and the flood volume and expressing the duration as a function of the volume by an analytical 

relationship.  

Finally, since the initial condition always play a key role in any device performance 

assessment, the interevent period variability must be accounted for. To do so, this additional 

random variable can be correctly assumed as independent of the others and distributed 

according to a lower bounded Weibull function (Balistrocchi and Bacchi, 2011). 

References 

Bacchi B, Brath A, Kottegoda N T, 1992. ‘Analysis of the relationship between flood peaks and 

flood volumes based on crossing properties of river flow processes’, Water Resour Res, 28, 

10, 2773-2782. 

Bacchi B, Franchini M, Galeati G, Ranzi R, 2000. ‘Parametrizzazione e regionalizzazione della 

curva di riduzione dei massimi annuali delle portate medie su assegnata durata’, Proc. 

XXVII Convegno di Idraulica e Costruzioni Idrauliche, 12-15 September, Genova. 

Balistrocchi M, Bacchi B, 2011. ‘Modelling the statistical dependence of rainfall event variables 

through copula functions’, Hydrol Earth Syst Sci, 15, 1959–1977. 

Balistrocchi M, Grossi G, Bacchi B, 2013. ‘Deriving a practical analytic-probabilistic method to 

size routing reservoirs’, Adv Water Resour, 62, 37–46. 

Bandini A, 1931. ‘Tipi pluviometrici dominanti sulle regioni italiane’, Servizio Idrografico 

Italiano, Roma, IT. 

Bergman H, Sackl B, 1989. ‘Determination of design flood hydrographs based on regional 

hydrological data’, Proc. Symp. on New Directions for Surface Water Modelling, IAHS pub. 

181, Baltimora, May, 261-269. 

Cunanne C, 1987. ‘Review of statistical model for flood frequency estimation’, Hydrologic 

frequency modelling, Singh VP ed., Reidel, Dordrecht, NR, 49-95. 

De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R, 2005. ‘Bivariate statistical 

approach to check adequacy of dam spillway’, J Hydrol Eng, 10, 1, 50–57. 

Fiorentino M, Margiotta MR, 1999. ‘La valutazione dei volumi di piena e il calcolo semplificato 

dell'effetto di laminazione dei grandi invasi’, In Tecniche per la difesa dall’inquinamento, 

Frega G (ed.), Bios, Cosenza, IT, 203-222. 

Franchini M, Galeati G, 2000. ‘Comparative analysis of some methods for deriving the 

expected flood reduction curve in the frequency domain’, Hydrol Earth Syst Sc, 4, 1, 155-172. 

Genest C, Quessy JF, Rémillard B, 2006. ‘Goodness-of-fit procedures for copula models based 

on the probability integral transformation’, Scand J Stat, 32, 2, 337–366. 

Genest C, Rémilland B, Beaudoin D, 2009. ‘Goodness-of-fit tests for copulas: a review and a 

power study’, Insur Math Econ, 44, 2, 199–213. 

Giandotti M, 1934. ‘Previsione delle piene e delle magre dei corsi d’acqua’, Servizio Idrografico 

Italiano, Rome, IT. 

Goel NK, Seth SM, Chandra S, 1998. ‘Multivariate modeling of flood flows’, J Hydraul Eng-

ASCE, 124, 2, 146–155. 

Grimaldi S, Serinaldi F, 2006. ‘Asymmetric copula in multivariate flood frequency analysis’, 

Adv Water Resour, 29, 8, 1115–1167. 



11 

Gumbel EJ, 1958. ‘Statistics of extremes’, Columbia University Press, New York.  

Kendall MG, 1938. ‘A new measure of the rank correlation’, Biometrika, 30, 81–93. 

Joe H, 1997. ‘Multivariate models and dependence concepts’, Chapman & Hall, London, UK. 

Nelsen RB, 2006. ‘An introduction to copulas. Second edition’, Springer, New York, NY. 

Ranzi R, 2005. ‘Structural and non-structural methods for flood hazard mitigation’, Proc. 

Workshop on Natural Environment, Sustainable Protection and Conservation: Italy-

Vietnam Cooperation perspectives, 15-17 November 2004, Hanoi, Viet-Nam, 108-118. 

Salvadori G, De Michele C, Kottegoda NT, Rosso R, 2007. ‘Extremes in nature: an approach 

using copulas’, Springer, Dordrecht, NL. 

Servizio Idrografico, 1980. ‘Dati caratteristici dei corsi d’acqua italiani. Pubblicazione 17. V 

edizione aggiornata al 1970’, Istituto Poligrafico dello Stato, Roma, IT. 

Sklar A, 1959. ‘Fonctions de répartition à n dimensions et leures marges’, Publ. Inst. Statist. 

Univ. Paris 8, 229–231. 

Todorovic P, 1978. ‘Stochastic models of floods’, Water Resour Res, 14, 2, 345–356. 

Wycoff RL, Singh UP, 1976. ‘Preliminary hydrologic design of small flood detention 

reservoirs’, Water Resour Bull, 12, 2, 337-349. 

Yue S, 2000. ‘The bivariate lognormal distribution to model a multivariate flood episode’, 

Hydrol Process, 14, 14, 575–588. 

Yue S, 2001. ‘A bivariate lognormal distribution to model a multivariate flood episode’, Hydrol 

Process, 15, 6, 1033–1045. 

 

 

 


