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ABSTRACT

In this paper, we propose a method to integrate the results of
different cover song identification algorithms into one single
measure which, on the average, gives better results than ini-
tial algorithms. The fusion of the different distance measures
is made by projecting all the measures in a multi-dimensional
space, where the dimensionality of this space is the number
of the considered distances. In our experiments, we test two
distance measures, namely the Dynamic Time Warping and
the Qmax measure when applied in different combinations to
two features, namely a Salience feature and a Harmonic Pitch
Class Profile (HPCP). While the HPCP is meant to extract
purely harmonic descriptions, in fact, the Salience allows to
better discern melodic differences. It is shown that the combi-
nation of two or more distance measure improves the overall
performance.
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1. INTRODUCTION

Cover song identification aims at finding different versions of
the same musical piece within a large database of songs. In
the last 10 years, a lot of work has been made to try to success-
fully accomplish this task. Thanks to the MIREX evaluation
campaign for Music Information Retrieval (MIR) algorithms,
this research topic has gained attention and methods have im-
proved in accuracy. Different algorithms have been developed
in the literature and the standard approach to measuring sim-
ilarity between cover songs is to exploit music facets shared
between them. This similarity measure is computed using dif-
ferent descriptors (or features) extracted from the raw audio
file. In order for these descriptors to be effective, they have
to be relatively insensitive to the majority of musical changes
among covers, like tempo or key. Once the descriptors are
extracted, a measure of distance between song descriptions
is evaluated and a similarity score between songs is thus ob-
tained. Hence, a cover song identification algorithm usually
takes a query song as an input and, after a processing step
for the extraction of the descriptors, performs a comparison
between this song and all songs in a database, using the ex-
tracted feature. The result of this run is a ordered list of songs

ranked with a distance criteria, where the most similar song
must ideally rank first in this list.

Of course, different features and different distances over
such features can be used. The first largely used descriptor,
the so called Pitch Class Profile (PCP), was introduced in
1999 by Fujishima [1]. Over the years, PCP (sometimes also
called chromagram) was extended and modified in different
variants, some of which are still successfully used in cover
song identification (see HPCP [2]).

Among the possible techniques to compute distances be-
tween sequences of features, we can list two which are of
particular importance for the cover song identification prob-
lem. One is the Dynamic Time Warping (DTW [3, Chapter
4]), that aims to find an optimal alignment path between two
given time-dependent sequences. It gives us a warping cost
value between a song u and a song v. Another technique is
introduced in [4], which uses the Cross-Recurrence Plot [5]
and recurrence quantification analyses like Qmax [6].

Different performances are obtained when using a spe-
cific feature with a specific distance measure, and it is not al-
ways easy to understand which feature-distance combination
behaves better, since this obviously depends on the dataset
at hand, on the query etc. Moreover, even a single feature,
when extracted with different settings, can give different per-
formance. Based on this fact, for example, the system Hydra
[7] combines features and distances extracted with different
parameters which are fed to a Support Vector Machine which
output, for each pair of songs, a single bit decision of the type
cover/non-cover. A similar approach is used in [8], where
a distance is calculated over three different audio descriptor
and a classifier is trained with a subset of known cover or
non-cover songs pairs. In our work instead, we do not apply
any classification and no training is needed.

In this paper we discuss an approach to cover song identi-
fication that involves a blind combination of different features
and different distance measures without making any assump-
tion on the audio descriptor used. For the evaluation, we con-
sider two type of features, the Salience function and the HPCP
combined with two distance measure, namely Dynamic Time
Warp and a Qmax. Each feature, when used with a given
distance, allows sorting the songs in the database in order of
decreasing similarity with a given query song. In this paper,
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Fig. 1. General scheme of the method

we propose a technique to combine the lists obtained by N
feature-distance combinations into one single N -dimensional
space in order to assess a “globally informed” distance mea-
sure. As we will see in Section 4, the so obtained combined
list leads to a relative improvement in accuracy with respect
to the results obtained by the single measures separately. In
the Figure 1 we can see the general outline of the algorithm.

In the Section 2 we explain what features and what dis-
tances are involved in our test and in the Section 3 we show
how we combine them. In Section 4 and 5 we present and
discuss the accuracy results.

2. AUDIO FEATURES AND DISTANCE METRICS

2.1. Audio Features

Here we give a brief introduction of the audio descriptors used
in our test. The described features are computed for each
frame for a total of Nf frames. This leads to a huge amount
of data which would make the complexity of any distance
measure evaluation impractical. Hence, a temporal down-
sampling is applied to the sequence of features to obtain a
shorter sequence of length Nt < Nf . In our case, we use an
adaptive decimation factor that is dependent on the beat dura-
tion in order to obtain a beat-synchronous time average. This
part is based on the algorithm presented in [9]. Where not ex-
plicitly mentioned all of the feature and distance calculation
algorithms are re-implemented by the authors of this paper.

2.1.1. Pitch Salience Function

As presented in [10], a salience function for a given frequency
fi is calculated as a weighted sum of the energy at the first 8
harmonics of the fundamental frequency fi like fi, 2fi, 3fi
, . . . . The pitch salience function is calculated at each frame
using the amplitude spectrum and covers a frequency ranging
from 55 Hz to 1.76 kHz (5 octaves range from A1 to A6)
using a resolution of resolution of 1 bin/semitone.

2.1.2. HPCP

Briefly, the computation of the HPCP descriptor begins with
some pre-processing step like spectral peak detection [11].
Next, the energy of each spectral peak from about 50 Hz

to 5 kHz is represented as a vector of Pitch Classes energy.
Each Pitch Class represents a semitone in a twelve-tone equal-
tempered chromatic scale. The energy of each Pitch Class
are calculated from the correspondent spectral peak and the
weighted summation of its harmonic frequencies peak energy
up to 8 terms. The reader is referred to [2] for a complete
description.

2.2. Distance Measures

In this section we give a brief description of the distance mea-
sures used for the evaluation of our method.

2.2.1. CRP/Qmax

Basically, the Qmax distance calculates the length of the longest
time segment in which two song u and v exhibit similar fea-
ture patterns. This is done by using a cross-recurrence plot.
A cross-recurrence plot (CRP) is a binary similarity matrix C
whose elements ci,j are set to 1 when there is a recurrence
between the i-th feature vector of song u and the j-th fea-
ture vector of song v, and zero otherwise. Here, a recurrence
means that the euclidean distance between this two vectors
is below a specified threshold. For more details such as the
threshold value and the CRP algorithm see [5, 4]. When con-
secutive feature vectors are similar for a certain amount of
frames, a diagonal patterns of ones become visible in CRP.
What the Qmax algorithm does is to quantify the presence
and the length of this diagonal patterns in the CRP using an
efficient recurrence quantification analysis [4]. In a nutshell,
a cumulative matrix Q is computed over the elements of C
starting form the element c1,1 and counting the elements with
value equal to 1 that are aligned in a diagonal way. Finally,
the Qmax value is calculated as the maximum amplitude of
the elements Qi,j of the matrix Q as

Qmax = max (Qi,j) . (1)

The Qmax measure gives a similarity quantification of
two input songs. In our case we need a distance measure that
can be calculated as

du,v =

√
Nv

t

Qmax
, (2)

where Nv
t is the length of the salience function of song v and

plays the role of a normalization factor [4].

2.2.2. Dynamic Time Warping

Dynamic Time Warping [3, Chapter 4] is a technique to find
an optimal path to align two time sequences. Ideally, the two
sequences are warped in a non-linear way to reach the maxi-
mum matching between each other. DTW gives itself a mea-
sure of distance between two sequences, and it thus be used to
assess similarity between two songs [12, 13]. With DTW, we
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Fig. 2. Cloud for a given q = q0, d1 calculated using DTW on
Salience feature and d2 with Qmax over HPCP. The triangle
identifies the correct cover song. Note that in this case the
correct cover does not minimize d2.

obtain the total alignment cost DTWu,v between two features
sequences u and v. For more details, see [3, Chapter 4]. We
used the DTW implementation freely available at [14], with
only one minor modification, namely that the a normalization
similar to that of (2) is applied to obtain du,v as follows

du,v =
DTWu,v√

Nv
t

. (3)

In our tests this normalization leads to a performance im-
provement.

3. DISTANCE SELECTION

In this Section we describe the proposed technique for the
merging of two or more feature and distance measure com-
binations in order to create a single ranking with improved
performance. Independently from the used features and met-
rics, we assume that N different distance metrics dq,s =
[d1q,s, · · · , dNq,s] are computed between the query song q and
each song s ∈ [1 . . . S] in the database. In a nutshell, the pro-
posed method mixes N distances by projecting them in a N -
dimensional space in order to refine the ranked list in a more
reliable way. The process is now described in detail. Assum-
ing the cover song identification algorithm returns a square
S × S cross-distances matrix D where each element dq,s of
this matrix represents a distance between the song q and the
song s in the database, and we can calculate more than one
distance matrix using different combination of features and
metrics, we obtain N distances matrix D1, · · · ,DN . For a
fixed query song q = q0 and a fixed distance metric n = n0,
we make a normalization of the distance vector as

d̄n0
q0,s =

dn0
q0,s

max
s∈[1...S]

[dn0
q0,s]

,∀s ∈ [1 . . . S] (4)

in order to ensure that d̄n0
q0,s ∈ [0, 1]. Now, for a fixed query

q = q0 and a fixed song s = s0 in the database, we define
a point in a N -dimensional space that uniquely identifies the
position of the pair (q0, s0) in the distances space

d̄q0,s0 = [d1q0,s0 , · · · , d
N
q0,s0 ] ∈ [0, 1]N . (5)

At this point we are able to compute d̄q,s ∈ [0, 1]N for
each q, s ∈ [1 . . . S]. The points d̄q,s form an N -dimensional
cloud. An example of one such cloud with N = 2 for a given
query q is shown in Fig. 2. We now compute a new S × S
refined distance matrixR whose elements rq,s are defined as

rq,s = ||1|| − ||d̄q,s − 1||, (6)

where || · || is the l2 norm and 1 = [1, · · · , 1] is the N -
dimensional “one” vector. Since the vector 1 represent the
point in our space where all the distances are maximum, the
terms ||d̄q,s − 1|| in (6) expresses how far the pair (q, s) is
from to be a non-cover pair. It follows that (6) can be seen as
a measure of how likely the pair is a cover pair. The origin of
the N -dimensional space is the ideal place where a cover pair
(q, s) should be placed, so intuitively, one may think that each
element of R can be calculated as rq,s = ||d̄q,s||. Though
this approach does work in practice, however, in our tests this
strategy leads to worse results compared to (6).

4. RESULTS

The evaluation task is performed using the well known cover
song dataset named covers80 [15]. We perform a comparison
of the performances between the basic algorithms that use one
distance metric over a single feature type, and a number of
combinations of choices of features and distance metrics. The
used performance indicators are some of the commonly used
indicators in Music Information Retrieval: Precision, Mean
Rank of First Correctly Identified Cover (MR1st) and Mean
Average Precision (MAP). The total virtual score T is calcu-
lated by counting the total unique correct identified cover for
all of the method in the combination and normalizing by S.
As we stated in Section 2, for our evaluation we use two fea-
tures type: the HPCP (H) and the Salience function (S). For
the distance metrics we use the Qmax measure (Q) and the
dynamic Time Warping (D). Table 1 reports the accuracy in-
dicator for different combination of feature/distance. For the
HPCP with Qmax approach, the accuracy indicators may be
different from the original implementation of the algorithm
by J. Serrà [4] since it has been completely rewritten by the
authors. As we can see in Table 1, all the accuracy results with
N > 1 bring an improvement with respect to the simple dis-
tance measure. Although the best results are obtained using
all (N = 4) of the possible combination of basic distances, we
can see that using (S,D)+(H,Q) we obtain a comparable result
but with a lower dimensionality N = 2. Furthermore, we can
see that the indicator T is proportional to the MAP. Higher T
means higher MAP and consequently better precision.



Combination N Prec. MR1st MAP T
(S,D) 1 0.47 12 0.55 -
(S,Q) 1 0.52 15 0.60 -
(H,D) 1 0.35 17 0.43 -
(H,Q) 1 0.59 9 0.65 -

(S,D)+(S,Q) 2 0.61 12 0.66 0.61
(S,D)+(H,D) 2 0.46 12 0.53 0.55
(S,D)+(H,Q) 2 0.65 7 0.71 0.66
(S,Q)+(H,D) 2 0.56 13 0.63 0.60
(S,Q)+(H,Q) 2 0.64 10 0.69 0.69
(H,D)+(H,Q) 2 0.60 9 0.66 0.60

(S,D)+(S,Q)+(H,D) 3 0.60 11 0.66 0.66
(S,D)+(S,Q)+(H,Q) 3 0.65 9 0.71 0.74
(S,Q)+(H,D)+(H,Q) 3 0.66 9 0.70 0.70
(S,D)+(H,D)+(H,Q) 3 0.60 7 0.67 0.68

(ALL) 4 0.66 8 0.72 0.75

Table 1. Accuracy results.

5. CONCLUSIONS

In this paper we presented a method to merge N combination
of feature and distance measures to increase the accuracy re-
sults of a cover song identification algorithm. This method is
based uniquely on a geometric N -dimensional distance mea-
sure that has a very low computational cost of the overall dis-
tance refinement. A particularly useful combination has been
obtained by using a Salience Feature with a Dynamic Time
Warp similarity measure and a HPCP with a Qmax measure.
This combination, in our tests, proved to give excellent per-
formance with a low dimensionality N . The percentage T of
the virtual total unique correct identified cover plays a fun-
damental role for the accuracy performances of the distance
fusion process. The most important property of the method,
however, is that it can be used to combine any set of different
distance metrics, regardless of what they measure and with-
out making any assumption on the specific audio features in-
volved.
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