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We propose and analyze a novel all-optical fiber polarization scrambler based on the transfer (via the Kerr effect) of
the intensity fluctuations of an incoherent pump beam into polarization fluctuations of a frequency-shifted signal
beam, copropagating in a randomly birefringent telecom fiber. Optimal signal polarization scrambling results when-
ever the input signal and pump beams have nearly orthogonal states of polarization. The nonlinear polarization
scrambler may operate on either cw or high-bit-rate pulsed signals. © 2014 Optical Society of America
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The capability to control the state of polarization (SOP)
of light is of vital importance in a host of applications,
ranging from optical communications to lasers and sens-
ing and imaging technologies. In the context of fiber optic
communication systems, it is often necessary to achieve
ultrafast SOP control, which has been traditionally en-
abled by using waveguide electro-optic phase modulation
techniques [1] or fiber squeezers [2]. The input polariza-
tion scrambling of telecom signals is extensively used in
light-wave communications [3]. For example, signal
depolarization within a forward error correction frame
permits the washing out of polarization mode dispersion
(PMD)-induced error bursts [4,5]. Signal polarization
scrambling also reduces noise accumulation from polari-
zation dependent gain in erbium-doped amplifiers [6].
Moreover, bit-synchronous polarization scrambling of
on–off keying signals also introduces a signal phase
modulation that mitigates nonlinear impairments [7].
The operating speed of existing polarization scram-

blers is limited by modulator driving electronics. When
aiming at 100 GHz depolarization speeds or higher, it
is thus of fundamental interest to conceive a depolarizer
based on the virtually instantaneous Kerr nonlinear
response of fibers. In this Letter, we propose and numeri-
cally demonstrate the proof-of-principle operation of a
Kerr-based ultrafast depolarizer. Thanks to Kerr cross-
polarization modulation, we show that it is possible to
efficiently convert the intensity fluctuations of an inco-
herent pump wave into polarization fluctuations of a
frequency-detuned, constant-intensity signal beam. The
proposed device is based on the same physical principles
that have recently permitted the demonstration of the ul-
trafast repolarization of an initially depolarized signal
through the polarization attraction effect [8,9].
Let us consider the evolution in a telecom fiber with

random birefringence of a polarized light field with
envelope E�z; t� � �Ex�z; t�; Ey�z; t��. We assume we are
operating in the so-called Manakov limit, which applies
for a propagation distance L ≪ Ld, where Ld is the PMD
diffusion length. In this case, wave propagation is de-
scribed by the coupled nonlinear Schrödinger (CNLS)
equations [10]

∂zEa � i
β2
2
∂ttEa � i

8γ
9
�jEaj2 � jEbj2�Ea − αEa; (1)

where fa; bg � fx; yg, a ≠ b, and γ is the scalar nonlinear
coefficient of the fiber; β2 is the group-velocity dispersion
(GVD) coefficient at a reference frequency (say, ωr); and
α is the linear loss coefficient. Let us consider first the
following approximations in Eq. (1), which permit an
analytical description of the polarization scrambler.
We set E�z; t� � Ep�z; t� � Es�z; t�, where Ep and Es
are pump and signal beams at frequencies ωp � ωr − ω
and ωs � ωr � ω, respectively. By supposing that
temporal variations of both pump and signal waves
are sufficiently slow, so that intrachannel GVD
effects may be neglected, and for relatively short fibers
so that we may set α � 0, Eq. (1) may be conveniently
expressed in terms of the dimensionless Stokes vectors
of the pump P � �P1; P2; P3� and signal S � �S1; S2; S3�
as [10]

∂ξP∓δ∂τP � 8
9
S × P; ∂ξS� δ∂τS � 8

9
P × S: (2)

Here, we introduce the dimensionless propagation dis-
tance ξ ≡ z∕LNL, where L−1

NL � γhS0i and hS0i is the
signal average power, and time τ � t∕TNL, where
TNL � �jβ2jLNL∕2�1∕2, respectively. The brackets hi de-
note temporal averaging. Moreover, in Eq. (2), upper
and lower signs hold for anomalous or normal GVD, re-
spectively, and δ � 2ωTNL denotes the group-velocity
mismatch (GVM) between pump and signal, which
are centered at the normalized frequencies ∓ δ∕2,
respectively.

Pump and signal average powers hP0i � hjPji and
hS0i � hjSji remain constant upon propagation. Thus,
we may set hS0i � 1. Moreover, the GVM simply leads
to a temporal translation of the power profiles with
distance—namely, P0�ξ; τ� � P0�0; τ� δξ� and S0�ξ; τ� �
S0�0; τ∓ δξ�. Similarly, the time average hΩi of the pivot
vector Ω � S� P is a conserved quantity of Eq. (2). The
analytical solution of Eq. (2) in the cw limit is [11]
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V � b1v � b2v cos�jΩjξ� � b3v sin�jΩjξ�; (3)

where V � fP; Sg, b1v � �Ω · V�0�∕jΩj2�Ω, b2v �
V�0� − b1v, and b3v � �Ω × V�0�∕jΩj�. Hence, P�z� and
S�z� rotate about the constant and known pivot Ω.
Now, we relax the cw hypothesis by allowing the input

Stokes vectors P�0; τ� and S�0; τ� to vary in time. In this
case, one may still solve Eq. (2) by the standard split-step
procedure: at each position ξ, we advance over a spatial
step h by first analytically computing the nonlinear evo-
lution from ξ to ξ� h from Eq. (3). Next, the action of the
GVM is evaluated by applying opposite linear temporal
shifts �δh to the Stokes vectors of the signal and pump.
Let us now consider the copropagation of a signal with

constant power—namely, S0�ξ; τ� � S0�0; τ − δξ� � 1 and
a pump with a time-varying Stokes vector P�ξ; τ�. The
nonlinear step of the evolution of S from ξ to ξ� h at
two points in time (say, τ1 and τ2) is obtained as a
precession on the unitary Poincaré sphere around the dif-
ferent local pivots Ω�ξ; τ1;2� � S�ξ; τ1;2� � P�ξ; τ1;2�. Thus,
one may expect that, in general, an initially fully polar-
ized signal field may become gradually depolarized upon
propagation through its cross-polarization interaction
with a time-varying pump beam.
For a cw signal that copropagates with a partially co-

herent pump beam whose instantaneous power exhibits
random temporal fluctuations (refer to Fig. 1), the ini-
tially unitary degree of polarization (DOP) of the signal
is progressively reduced along the fiber as a result of
pump-induced nonlinear SOP scrambling.
Ideal scrambling (i.e., a signal DOP � 0) could be ob-

tained if the pump power values at any position along the
fiber were fully uncorrelated in time so that the two
corresponding precessions of the signal Stokes vector
are also uncorrelated. In such a situation, after a certain
propagation distance, the temporal evolution of the
signal Stokes vector would trace a random path on the
Poincaré sphere. In practice, nearly ideal scrambling
may still be achieved by using an incoherent pump beam
with finite but short correlation time, e.g., using filtered
amplified spontaneous emission (ASE) noise.
We simulated the depolarized pump source provided

by filtered ASE noise by independently generating its
polarization components Epx�0; τ� and Epy�0; τ� through
bandpass filtering a white noise field, obtained by adding

at each frequency sample a random variable with inde-
pendent Gaussian-distributed real and imaginary compo-
nents. We used a Gaussian filter transfer function of the
form H�ν� � exp�−�ν� δ∕2�2�∕�2σ2p�, where ν is the nor-
malized frequency, whereas for simulating a fully polar-
ized input pump, we simply set Epy�0; τ� � C · Epx�0; τ�,
being C ∈ C. The degree of pump temporal coherence
is measured by the input coherence time τcoh;p�0�, where
τcoh;v�ξ� �

R
τ0 �jhEva�ξ; τ�Eva�ξ; τ� τ0��ij∕hjEva�ξ; τ�j2i�2∂τ0

(a � fx; yg; v � fp; sg).
In order to evaluate the effectiveness of the nonlinear

depolarization process depicted in Fig. 1, we computed
the evolution with distance of the signal DOP�ξ� �
jhSij � �hS1�ξ; τ�i2 �hS2�ξ;τ�i2 �hS3�ξ; τ�i2�1∕2. The DOP
does not provide any information about the time scale
of the temporal fluctuations of S�ξ; τ� at any given posi-
tion ξ along the fiber. Clearly, the faster the temporal fluc-
tuations of S�ξ; τ�, the shorter the temporal duration of
the input pump burst that is needed for efficient
signal depolarization. To quantify the scrambling speed,
we introduce the quantity sscr�ξ� � hj∂S�ξ; τ�∕∂τji, which
measures the average angular rotation speed of the
temporal trajectory of the signal Stokes vector.

Because of the symmetry of Eq. (2), the spatiotemporal
evolution of P�ξ; τ� and S�ξ; τ� only depends on the
angle—say, β�τ� between P�0; τ� and S�0; τ� at the fiber
entry [11]. With no loss of generality, we may limit our-
selves to consider an input cw signal that is fully polar-
ized along the x axis so that S�0; τ� � S�0� � �0; 0; 1�.

The conservation of hΩi imposes that the signal
DOP � jhSij � jhΩi − hPij; thus, jhΩij � jhPij is a neces-
sary condition in order to achieve a full signal depolari-
zation (i.e., DOP � 0). Whenever the input pump is also
fully polarized, the input relative angle between the
Stokes vectors of the pump and the signal is independent
of time, i.e., β�τ� � β and hP0i � maxfjhPijg. Thus, the
condition jhΩij � jhPij implies that jhΩij ≤ hP0i.

Because jhΩij2 � hP0i2 � hS0i2 � 2hP0ihS0i cos�β� and
hS0i�1, the condition jhΩij ≤ hP0imeans that βc ≤ β ≤ π,
where βc � arcos�−�2hP0i�−1�. Therefore, for achieving
complete signal depolarization at the fiber output, the in-
put angle between the pump and signal Stokes vectors
must be larger than the critical value βc.

A better estimate of βc, although not rigorous, may be
based on the fact that the pump and signal Stokes vectors
experience a symmetric evolution around the randomly
varying local pivots Ω�ξ; τ�; we thus expect that, after a
sufficiently long propagation distance, the degree of
depolarization of the pump should be comparable to that
of the signal.

Our numerical simulations confirm this assumption,
which leads to the empirical relation jhP�ξ; τ�ij − hP0i ≈
jhS�ξ; τ�ij − hS0i. Therefore, the equality jhΩij � jhPij can
be rewritten as jhΩij � hP0i � jhS�ξ; τ�ij − hS0i. Accord-
ingly, in order to obtain a signal DOP � jhS�ξ; τ�ij � 0,
the pump power hP0i should be at least as large as the
signal power hS0i, and the input pump and signal Stokes
vectors should be antiparallel (βc → π). The previous
estimations of βc do not vary when propagation losses
are taken into account.

As a matter of fact, for either parallel or antiparallel
input pump and signal Stokes vectors, the input SOP
and DOP of both beams remain, in principle, unchanged
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Fig. 1. Schematic of a nonlinear SOP scrambler: fully polar-
ized incoherent pump (black and blue online) and orthogonal
cw signal (gray and red online) are injected in a randomly bi-
refringent fiber. Temporal fluctuations of the input pump power
P0 lead to a depolarized signal; signal power is unaffected.
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in propagation, as Eq. (2) leads to P�ξ; τ� � P�0; τ� δξ�
and S�ξ; τ� � S�0; τ∓δξ� � �0; 0; 1� in both cases. Yet in
the antiparallel case, the fixed point solutions of
Eq. (2) are unstable with respect to small perturbations.
Therefore, in the presence of weak input background
ASE noise, one obtains an effective diffusion of the signal
Stokes vector S over the entire Poincaré sphere, which
ultimately leads to the most efficient configuration for
scrambling the signal SOP (refer to Figs. 1 and 2). Clearly,
even if S�0; τ� and P�0; τ� are antiparallel, the Stokes
vectors of the depolarized signal and pump noise
components—say, ηp�0; τ� and ηs�0; τ�—generate instan-
taneous input Stokes vectors S�0; τ� � ηs�0; τ� and
P�0; τ� � ηp�0; τ� that are no longer strictly antiparallel.
Whenever the input incoherent pump is almost fully

depolarized so that hP�0; τ�i ≈ �0; 0; 0�, its depolarization
will be preserved upon propagation. More precisely,
for a cw input depolarized pump, i.e., with a temporally
constant magnitude of the Stokes vector, one observes
its repolarization toward the input signal SOP [11]. How-
ever, random temporal fluctuations of the intensity of the
incoherent pump compromise such a possibility. Conse-
quently, at each position ξ along the fiber, one has
hP�ξ; τ�i ≈ �0; 0; 0�; moreover, the conservation of hΩi
implies that hS�ξ; τ�i ≈ �0; 0; 1�, i.e., the signal remains
nearly fully polarized upon propagation (Fig. 2).
Let us now present some examples of the numerical

resolution of Eq. (1) in order to validate our analytical
predictions. Consider the nonlinear evolution along the
fiber of an input cw signal along with an incoherent pump
with hP0i � 1.5. In order to avoid a significant nonlinear
spectral broadening of the pump, which may even lead to
its overlap with the signal band, a sufficiently large intra-
band dispersion should be introduced within the pump
bandwidth. According to [12], the intraband dispersion
length of the pump, which in normalized units reads as
LD � τ2coh;p, should be no more than a few nonlinear
lengths. We thus set τcoh;p ≈ 1. The pump-signal GVMwas
set to δ � 3, and propagation losses were set to α � 0.
In Fig. 2, we analyze different configurations involving

a linearly polarized input pump with β � fπ∕2; 0.94π; πg.
We also consider the case of a depolarized input pump.
We numerically solved the full model Eq. (1) and filtered
the output spectra around their respective central
frequencies in order to detect the signal and pump fields
Esx;sy�ξ; τ� and Epx;py�ξ; τ�. A background wideband noise

was applied with an optical pump-to-noise power ratio in
the pump band of 67 dB.

For each configuration, the computed evolution with
distance of the DOP and the scrambling speed of the sig-
nal are shown in Fig. 2. As expected, a depolarized input
pump does not provide effective signal SOP scrambling.
To the contrary, whenever the input pump is orthogo-
nally polarized with respect to the input signal (i.e., their
Stokes vectors are antiparallel), one obtains a strong
signal depolarization. In this case, the signal DOP reaches
a first minimum of approximately 0.1 at the dis-
tance ξ ≈ 12.

It can also be seen in Fig. 2 that the antiparallel case,
even though it ultimately leads to efficient scrambling, is
also characterized by the lowest scrambling speed in the
first stages of the signal propagation. In fact, as previ-
ously discussed, Eq. (2) predicts that in the absence of
a background depolarized noise, the signal scrambling
speed would remain strictly equal to zero so that no
scrambling results. However, input noise leads to a
weakly depolarized signal, whose SOP slowly moves
(i.e., with an initial scrambling speed close to zero) away
from the antiparallel condition.

For increasing the initial scrambling speed, thus de-
creasing the fiber length at which effective depolarization
is first observed, it proves useful to slightly reduce below
π the input relative angle β. Figure 2 shows that, when-
ever β � 0.94π, one reduces down to ξ ≈ 6 the position of
the first minimum of the signal DOP. Figure 2 also shows
that a too-strong reduction of the input angle β leads to a
significant drop of the scrambling efficiency, e.g.,
for β � π∕2, the signal DOP remains above 0.6 at all
distances.

Note in Fig. 2 that, for β � 0.94π and β � π, the first
minimum of the DOP is followed by some oscillations,
indicating a sequence of partial repolarizations and depo-
larizations of the signal, whereas for ξ > 25 the signal
DOP remains below 0.2, corresponding to an effective
scrambling over the Poincaré sphere. The spatial evolu-
tion of the DOP oscillations strictly depends on the par-
ticular realization of the input random background noise
and incoherent pump. In fact, the oscillations disappear if
the evolution of the signal DOP is averaged over a num-
ber of independent random noise and pump realizations.

Figure 3(a) shows the average DOP over 50 such real-
izations, where hP0i is randomly chosen between 1.5 and
2, δ is between 2 and 4, τcoh;p�0� is between 0.5 and 2, and
β is between 0.89π and π. Although the DOP oscillations
are largely washed out in Fig. 3(a), one still obtains a min-
imum of the average DOP at ξ ≈ 6. The reason is that, for
this range of parameters, a minimum of the DOP is al-
ways observed near ξ � 6 for each individual noise
and pump realization. A typical distribution of the output
tips of the signal Stokes vector S�ξ � 6; τ� on the Poin-
caré sphere is shown in the inset of Fig. 3(a), demonstrat-
ing the occurrence of effective signal SOP scrambling
over the entire sphere.

Although the average pump and signal powers, hP0i
and hS0i, are truly conserved, Fig. 3(b) shows that the
output temporal profile S0�ξ � 6; τ�, which results from
the numerical solution of Eq. (1), exhibits weak and
relatively short-scale fluctuations. We point out that
the numerical solution of Eq. (2) provides the same
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Fig. 2. Different relative pump-signal polarization configura-
tions (see text for details). (a) Signal degree of polarization
(DOP). (b) Scrambling speed. Antiparallel case β � π (black
solid line); β � 0.94π (red-dashed line); β � π∕2 (blue-dotted
line); depolarized pump (green-dashed line). In order to express
the scrambling speeds in rad/s, the values in (b) should be nor-
malized with respect to the nonlinear time TNL.
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DOP and scrambling speeds shown in Figs. 2 and 3, but it
does not capture such power fluctuations. We thus as-
cribe these fluctuations to the interplay of intraband
dispersion and cross-phase modulation. Figure 3(b)
shows the output temporal profile S0�ξ � 6; τ� for a
selected realization of the combined random noise and
incoherent pump. Although, in this case, the fluctuations
are bound in the narrow range (0.95–1.05), they may be
considerably enhanced when increasing the mean pump
power hP0i. This places an upper bound to the admissible
pump power.
Because of the pump-signal GVM δ, the signal does not

respond to the instantaneous pump variations but, rather,
to their average over a time window that grows larger
with δ. Therefore, a reduction of the parasitic signal
power fluctuations can be simply achieved by increasing
the pump-signal frequency shift.
In addition to the parasitic signal power fluctuations,

the speed sscr also grows larger with hP0i∕δ. In fact, the
larger the pump power and its associated fluctuations,
the faster the signal scrambling speed. However, the
speed may be reduced by increasing the signal-pump fre-
quency detuning, which leads to an effective averaging of
the pump power fluctuations.
Because of the resulting nonlocal nonlinear response,

generally, the coherence time of the output signal is far
greater than that of the input pump. For example, at
ξ � 6, the average value over the 50 realizations of
the signal coherence (or depolarization) time is
τcoh;s�ξ � 6� ≈ 75. This aspect opens up two interesting
depolarization scenarios for a fiber of length L, which
are tied to the output coherence time τcoh;s−cw�ξ � L�
of a cw signal that is affected by the depolarization proc-
ess. First, it is possible to depolarize even a fully polar-
ized input signal pulse of width T , provided that
T ≫ τcoh;s−cw�ξ � L�. Second, if a sufficiently long train
of fully copolarized signal pulses with width T ≪
τcoh;s−cw�ξ � L� is injected at the input, the entire signal
pulse train can still be efficiently depolarized while pre-
serving a nearly constant SOP within each individual
pulse. Actually, the output DOP of the whole signal
may be reduced to zero, while the DOP calculated for
any individual pulse remains close to unity.
In real units, for hS0i � 1 W, γ � 1 W−1 km−1, and a

GVD of 20.4 ps2 km−1 (D� −16 psnm−1 km−1 at 1550 nm),
one obtains LNL � 1 km and TNL ≈ 3.2 ps. Moreover, the

detuning between the pump and signal is 1.2 nm, so that
for a PMD coefficient Dp < 0.25 ps km−1∕2, one has Ld >
55 km ≫ L [10]. The device bandwidth is mainly limited
by PMD: with Dp � 0.06 ps km−1∕2, a detuning up to 5 nm
is possible. Thus, a few kilometers of standard single-
mode fiber are sufficient to achieve effective signal
depolarization. The corresponding typical temporal dura-
tion of the output signal SOP fluctuations will be of the
order of 200 ps and the scrambling speed of approxi-
mately 20 Grad/s (Fig. 3). When introducing small propa-
gation losses α of approximately 0.2 dB/km, all the main
results discussed in our work do not change.

In conclusion, we proposed and demonstrated the
proof-of-principle concept of a novel all-optical and ultra-
fast SOP scrambler based on the nonlinear copropaga-
tion and Kerr–nonlinearity mediated interaction of a
signal and an incoherent pump beam in a randomly bire-
fringent telecom fiber. Whenever the input signal and
pump beams have nearly orthogonal SOPs, the fast tem-
poral oscillations of the pump power lead to an effective
SOP scrambling of the signal. At the same time, the signal
power remains virtually unchanged. The nonlinear depo-
larizer may operate on either cw or pulsed signals and on
high-bit-rate ultrashort pulse trains.
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