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An analytical approach for obtaining linear and nonlinear design parameters of microresonators is presented. The
eigenmode/eigenfrequency problem of planar resonators is considered in detail, with an analytical closed-form
approximation derived for resonators possessing a large radius to width ratio. The analysis permits the resonant
frequencies and mode profiles to be determined together with the dispersion properties. The dependence of the
effective nonlinear Kerr coefficient on the mode volume is further considered, and also the waveguide coupling
together with estimates of the Q-value. Examples, which are in good agreement with numerical simulations, are
presented for silicon resonators. The approach can be used for designing planar microring resonators for nonlinear
four-wave mixing applications, such as optical Kerr frequency comb generation. © 2014 Optical Society of
America
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1. INTRODUCTION
Microring resonators show potential for revolutionizing the
generation of Kerr frequency combs [1–3]. Optical frequency
combs have a number of current and emerging applications
for which they are attractive. These include, e.g., optical
clocks, spectroscopy, gas sensing, arbitrary waveform gener-
ation, and precision frequency metrology [4,5]. Some of the
most common types of resonators are planar [6–8], toroidal
or spherical crystalline [9–11]. They have in common that they
rely on the parametric four-wave mixing (FWM) [1,12] process
for the nonlinear generation of frequency components from a
continuous wave (CW) pump source. Resonators confine the
light within a small volume and recirculate it within the cavity,
which enhances the intensity and lowers the threshold for
multi-wave mixing processes. Planar resonators are particu-
larly interesting for application purposes since they have a
small footprint and can be integrated on a chip. Planar reso-
nators can also be folded to have virtually any shape, although
they usually take the form of either rings or racetracks [13,14].
Different material platforms are additionally possible, depend-
ing on the operating range of wavelengths. Silica can, e.g., be
used for telecommunication wavelengths while other materi-
als, such as silicon, can be used for longer wavelengths in the
near- and mid-infrared. However, it can be challenging to
extend resonator technology from the telecommunication
range to new wavelength regimes [15]. Most frequency combs
to date have consequently been demonstrated in the near-
infrared using, e.g., crystalline whispering-gallery-mode reso-
nators. These have the advantage over planar resonators of
having very high Q-factors (e.g., Q ≈ 109).

To design either a ring, racetrack, or other type of planar
resonator for nonlinear applications, such as frequency comb

generation, it is necessary to tailor the cavity dispersion prop-
erties. For soft excitation of a frequency comb utilizing modu-
lation instability of the CW pump mode, one should preferably
be in the anomalous dispersion regime. Soft comb excitations
are also possible in the normal dispersion regime, but require
both a large dispersion and detuning [16]. The dispersion pro-
file can be controlled by suitably designing the resonator
cross section such that the sum of material and geometric dis-
persions has the desired properties. It is furthermore impor-
tant to account for the magnitude of nonlinear and coupling
parameters. These can be determined using knowledge of the
resonator eigenmodes. The strength of the nonlinearity de-
pends on the effective nonlinear Kerr coefficient, which is
inversely related to the mode volume. Although the mode
volume, or the related mode area, is usually assumed to be
constant, it does have a frequency dependence, which may
also be important to consider for ultrabroadband frequency
combs, such as octave spanning combs.

In this article, we apply an analytical approach to planar
microring resonators. The width of the ring waveguide is
an important design parameter for dispersion engineering,
and we will particularly focus on resonators that have a large
radius to width ratio and that are not well described using
whispering-gallery-modes [17,18]. The analytics can help pro-
vide additional insight over numerical simulations and should
be seen as a complement to more precise numerical methods.
We aim to present a guide for determining all mode-dependent
linear parameters, c.f. [19–23], and nonlinear parameters that
are of interest for designing microresonators for nonlinear
FWM applications, such as frequency comb generation.
This includes dispersion, nonlinear and coupling coefficients,
as well as resonance frequencies, free-spectral range (FSR)
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and Q-factor. The dynamical evolution of the intracavity
field can then be described using either the formalism
of the driven and damped nonlinear Schrödinger equation
[16,24,25] (Lugiato–Lefever equation), or the coupled mode
model [26,27].

We begin the next section by deriving an analytical solution
for the eigenmode/eigenvalue problem of a planar ring reso-
nator in a cylindrical geometry. We consider examples of sil-
icon resonators with the material refractive index determined
by a Sellmeier formula. We also derive an approximate rectan-
gular solution of the eigenmode/eigenvalue problem for the
important case when the width of the resonator is small in
comparison to the radius, and develop an explicit analytical
approximation for this case. Finally, we demonstrate how
the FSR and dispersion properties can be determined using
knowledge of the resonance frequencies. Next, in Section 3,
we consider the influence of the mode profile on the effective
nonlinear Kerr coefficient, and present an expression for
estimating the mode area. Waveguide coupling is treated in
Section 4. We use a quasi-TE/TM approximation to derive cou-
pling coefficients, with examples given for ring and racetrack
geometries. We additionally consider estimates for the reso-
nator Q-factor. The final section contains conclusions and a
discussion of the applicability of the analytical model.

2. EIGENMODE ANALYSIS
In this section, we begin by deriving an analytical solution for
the eigenmode/eigenvalue problem of a ring resonator with an
axisymmetric cylindrical geometry, assuming that the in-plane
and perpendicular components of the fields are separable
[28]. This allows for implicit analytical expressions for the
electric and magnetic fields of the modes, as well as their
resonance frequencies, to be found. An accurate knowledge
of the resonance frequencies can be used to determine the
complete dispersion profile, including both material and
geometric contributions.

Using the assumption of separable fields, we employ the
effective index method and introduce an auxiliary refractive
index ne to separate the in-plane and perpendicular field
dependence. The auxiliary refractive index is a quantity,
which lies in between the material refractive index n1 and
the effective index neff of the core, and that is useful on its
own for numerical simulations (e.g., Finite Element Method
or Finite Difference Time Domain) of resonator and wave-
guide structures, since it can be used to reduce the dimension-
ality of the problem from three to two dimensions.

There are two resonator mode families with the electric
field polarized predominantly either in the radial or
perpendicular direction. Using the conventional notation,
these will be referred to as Ex

pq and Ey
pq [29], where the sub-

scripts p and q denote the number of maxima in the in-plane x
(or radial r) and perpendicular y direction, respectively, as
shown in Fig. 1. We will present a detailed analysis for the
Ex
pq mode and present only the result for the Ey

pq mode, which
is derived analogously. Our starting point is the wave equation
for the magnetic field in a cylindrical geometry, i.e.,�

∇2
−

n2

c2
∂2

∂t2

�
H � 0; (1)

which can be derived from Maxwell’s equations in the
absence of free charges and currents. Following Marcatili’s

approach [29] we set Hr � 0 and consider the equation for
the Hy field component. Assuming a plane wave solution
Hy�r; y;ϕ� � Hy�r; y�ei�ωt−mϕ� for the angular dependence,
the wave equation can then be written as

�
∂2

∂r2
� 1

r
∂
∂r

� ∂2

∂y2
�
�
k20n

2
−

m2

r2

��
Hy�r; y� � 0; (2)

where the angular periodicity requires that the mode number
m is a constant, which is related to the propagation constant β
as m � βr0 with r0 being the (mean) radius of the resonator.

A. Radial Mode Solution
We now make the critical assumption that the field is sepa-
rable, i.e., Hy�r; y� � R�r�Y �y�, and employ the effective
index method to obtain separate equations for the in-plane
factor R�r� and perpendicular factor Y�y�:

1
r
d
dr

�
r
dR
dr

�
�
�
k20n

2
e −

m2

r2

�
R � 0; (3)

d2Y
dy2

� k20�n2
− n2

e�Y � 0; (4)

where we have introduced the auxiliary refractive index ne,
which is obtained from the separation constant k20n

2
e .

Equations (3) and (4) are to be solved self-consistently to ob-
tain the vacuumwavenumber k0�m� � 2π∕λ0 and the auxiliary
refractive index ne � ne�m� for each resonant mode with
mode number m. Note that the auxiliary index is sometimes
also referred to as an effective refractive index, but we will
use the term auxiliary index to avoid confusion with the
effective index neff � neff�m� that is related to the propaga-
tion constant β�m� � k0neff .

We consider a ring waveguide that has a three-layer sand-
wich structure in the perpendicular direction, consisting of: a
substrate, a core layer, and a cladding, as illustrated by the
cross section in Fig. 1. The general solution of the radial
Eq. (3) for each region, which satisfies the physical boundary
conditions of being finite on-axis and vanishing at infinity, is
given by

R0�r� � AJm�krr� � BYm�krr�; a ≤ r ≤ b; (5)

R
−

�r� � CIm�αrr�; 0 ≤ r ≤ a; (6)

R��r� � DKm�αrr�; r ≥ b; (7)

Fig. 1. Cross section showing layer structure of the ring waveguide.
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where Jm�krr� and Ym�krr� are Bessel functions of the first
and second kind while Im�αrr� and Km�αrr� are modified
Bessel functions of the first and second kind, respectively.
The coefficients A, B, C, and D are constants that will be de-
termined by the continuity requirement of the Hy component
of the magnetic field and of the tangential components Eϕ and
Hϕ, which, using the assumption ofHr � 0, are obtained from
Maxwell’s equations in cylindrical coordinates as

Eϕ�r; y� �
i

ωε0n2

∂Hy�r; y�
∂r

; Hϕ�r; y� � −

ir
β

∂Hy�r; y�
∂y

;

(8)

for the dominant Hy component of the Ex
pq modes while the

Hr component of the Ey
pq modes satisfies

Eϕ�r; y� � −

i
ωε0n2

∂Hr�r; y�
∂y

; Hϕ�r; y� � −

i
β

∂�rHr�r; y��
∂r

:

(9)

It should be noted that the modes of a microring resonator
are somewhat different from the whispering-gallery-modes
(WGMs) of a uniformly filled cylindrical microdisk resonator.
The presence of an inner boundary wall implies that the res-
onator has a different topology (toroidal), which forces the
field of the microring to be exponentially decaying also in
the central cladding region. While the cylindrical WGM
approximation can still be appropriate in certain limits, it is
generally unsuitable for resonators possessing a large radius
to width ratio. This can clearly be seen from the resonance
mode profiles in the example of Fig. 6, which shows both nu-
merically and analytically calculatedmodes at a wavelength of
2.5 μm for a 1 μm wide silicon microring resonator with a
mean radius of 50 μm. Figure 6 shows the cylindrical WGMs
to be a poor approximation in this limit, with the mode extend-
ing far into the inner cladding region. The WGMs have peak
amplitudes close to the inner boundary wall and exhibit large
shifts in mode numbers compared with the numerical mode
solver solutions that are centered in the waveguide. The
approximation for the mode area is also poor since the WGMs
are much wider than the actual width of the waveguide. Note
however, that although R�r� is an exact solution of the radial
Eq. (3), it is only an approximation of the actual magnetic
field. The remaining electromagnetic field components will
generally not satisfy the vector wave equation (1) exactly.

The coefficients of the eigenmodes can be obtained as

B � −A
J 0
m�kra� − η�I 0m�αra�∕Im�αra��Jm�kra�

Y 0
m�kra� − η�I 0m�αra�∕Im�αra��Ym�kra�

; (10)

and

C � AJm�kra� � BYm�kra�
Im�αra�

; D � AJm�krb� � BYm�krb�
Km�αrb�

;

(11)

where the amplitude A is arbitrary, and the simultaneous sol-
ution of the continuity requirements at the medium bounda-
ries a and b gives a consistency condition for the mode:

�
J 0
m�kra� − η

I 0m�αra�
Im�αra�

Jm�kra�
��

Y 0
m�krb� − η

K 0
m�αrb�

Km�αrb�
Ym�krb�

�

−

�
Y 0

m�kra� − η
I 0m�αra�
Im�αra�

Ym�kra�
�

×
�
J 0
m�krb� − η

K 0
m�αrb�

Kβ�αrb�
Jm�krb�

�
� 0; (12)

where kr � k0ne, αr � k0n0 and η � n1∕n0 for the Ex
pq

mode while η � n0∕n1 for the Ey
pq mode. The cylindrical

WGMs can be obtained from the radial mode solution in
the limit of a → 0 with B � C � 0 and requires that the solu-
tion satisfies the consistency condition J 0

m�krb�Kβ�αrb� �
ηK 0

m�αrb�Jm�krb� � 0.
The general solution for each region of Eq. (4) is similarly

given by

Y��y� � cos�kyh − ψ�e−α0�y−h�; y ≥ h; (13)

Y 0�y� � cos�kyy − ψ�; 0 ≤ y ≤ h; (14)

Y
−

�y� � cos�ψ�eαsy; y ≤ 0; (15)

where ky � k0
����������������
n2
1 − n2

e

q
, αs � k0

����������������
n2
e − n2

s

p
and α0 �

k0
����������������
n2
e − n2

0

q
[30]. Requiring the fieldsHy (orHr) to be continu-

ous at the boundaries results, in accordance with Eq. (8) [or
Eq. (9) for the Ey

pq mode], in another consistency requirement:

kyh � �q − 1�π � arctan
�
ξ1

αs
ky

�
� arctan

�
ξ2

α0
ky

�
; (16)

where ξ1 � ξ2 � 1 for the Ex
pq mode while ξ1 � n2

1∕n2
s and

ξ2 � n2
1∕n2

0 for the Ey
pq mode and we have used that

tan ψ � αs∕kz.
The simultaneous solution of Eqs. (12) and (16) allows the

unique wavenumber k0�m� and auxiliary refractive index
ne�m� of a given resonance to be determined, with each res-
onance corresponding to a particular mode with mode num-
ber m. Once the resonance frequency of the mode m is
known, the effective refractive index can be determined from
the relation neff � m∕�k0r0�; i.e., the requirement that the
circumference of the resonator corresponds to an integer
number of wavelengths. Note also that Eq. (16) can be used
to obtain an explicit relation for k0 as a function of ne, under
the assumption that n1 is frequency-independent.

B. Frequency-Dependent Refractive Index
To accurately determine the resonance frequencies and the
dispersion profile, it is necessary to self-consistently take into
account the frequency dependence of the refractive index of
the core material. This can most easily be done using a
Sellmeier equation that expresses the core index as function
of the vacuum wavenumber, i.e., n1 � n1�k0�. The wavenum-
ber dependent refractive index of silicon can, e.g., be modeled
using the Sellmeier formula

n1�k0� �
���������������������������������������
B0 � B1k20 � B2k40

q
; (17)
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where B0 � 11.713, B1 � 1.92826 · 10−14 m2, and B2 �
1.89593 · 10−28 m4. This formula represents a least square
fit of 19 measurement values between 1.12 and 5 μm, taken
from Ref. [31].

C. Rectangular Approximation
The previous solution for the eigenmodes and eigenfrequen-
cies is applicable to cylindrically symmetric ring resonators
with arbitrary radii, and must be used when there is an appre-
ciable radial shift of the peak intensity position with respect to
the center of the waveguide. However, if the radius is suffi-
ciently large in comparison with the width of the resonator,
it becomes possible to approximate the cross section of the
ring waveguide with the rectangular cross section of a straight
waveguide. This simplifies the analysis considerably, since the
radial mode solution can now be expressed using trigonomet-
ric functions, instead of the more cumbersome Bessel func-
tions. This approximation also makes it possible to treat
resonators with a more complicated geometry than ring res-
onators within the same formalism, i.e., resonators lacking an
axial symmetry such as, e.g., racetracks or folded resonators,
provided that the local radius of curvature of any bends re-
mains sufficiently large.

The reasoning behind this approximation can be made
more precise by noting that the radial factor should satisfy
the following approximate equation at the center of the ring
where the field has its greatest magnitude:

�
d2R
dr2

� 1
r
dR
dr

�
�
k20n

2
e −

m2

r2

�
R
�
r�r0

≈ −k2x � i
kx
r0

�
�
k20n

2
e −

m2

r20

�
≈ 0: (18)

Here, we have used that the solution for the rectangular case
is given by R�r� ∝ exp�ikxr�. It is easily seen that the second
term on the left-hand side can be neglected with respect to the
first term if the condition jkxr0j ≫ 1 is satisfied, which shows
that Eq. (18) can be approximated as

d2X

dx2
� �k20n2

e − β2�X � 0; (19)

where we have replaced the radial function R�r� with the in-
plane function X�x� and used that m � βr0. In the following
we will, therefore, assume that the magnetic field factors as
Hy�x; y� � X�x�Y �y�, and replace Eq. (3) with Eq. (19) while
Eq. (4) for the perpendicular factor remains the same.

The general solution of Eq. (19) is similar to that of
Eqs. (13–15) and it is found to be given by

X
−

� A cos�kxa − ϕ�eαx�x−a�; 0 ≤ x ≤ a; (20)

X0 � A cos�kxx − ϕ�; a ≤ x ≤ b; (21)

X� � A cos�kxb − ϕ�e−αx�x−b�; x ≥ b: (22)

The boundary conditions for the Ex
pq (Ey

pq) mode require
that Hy (Hx), as well as the transverse components
Eϕ ∝ �1∕n2�∂Hy∕∂x (Hϕ ∝ ∂Hx∕∂x) and Hϕ ∝ ∂Hy∕∂y
(Eϕ ∝ �1∕n2�∂Hx∕∂y), should be continuous at the interfaces.

This leads to an equation for the phase ϕ � kx�a� b�∕2�
lπ∕2 and the following consistency condition:

kx�b − a� � �p − 1�π � 2 arctan
�
η
αx
kx

�
; (23)

where we now have kx �
��������������������
k20n

2
e − β2

q
and αx �

��������������������
β2 − k20n

2
0

q
.

The coefficient η � n2
1∕n2

0 for the Ex
pq mode while η � 1 for

the Ey
pq mode. The propagation constant β can be determined

from the condition that the circumference L of the resonator
should correspond to an integer number m of wavelengths,
i.e., βL � 2πm. This condition simplifies to βr0 � m for a ring
resonator, but is also valid for resonators with an arbitrary
folded geometry. The effective refractive index, correspond-
ing to a given resonance frequency of a particular mode, is
obtained from the propagation constant of that mode as

neff � β∕k0 � 2πm∕�k0L�: (24)

D. Analytical Approximation
Using the rectangular approximation, it is also possible to ob-
tain some explicit analytical approximations for the effective
and auxiliary refractive indices as a function of the vacuum
wavenumber. In particular, we can use the approximation
arctan�x� ≈ �3x∕2�∕

��������������
3� x2

p
to find solutions of the consis-

tency conditions of Eqs. (16) and (23). We find that the
auxiliary and effective refractive indices of the Ex

11 mode
can be written as

n2
e�k0� � n2

1�k0� � F
�
n1�k0�2 −

n2
0 � n2

s

2
; 1; k0h

�
; (25)

n2
eff�k0� � n2

e�k0� � F
�
n2
e�k0� − n2

0;
n2
1�k0�
n2
0

; k0�b − a�
�
; (26)

and the refractive indices of the Ey
11 mode can be written as

n2
e�k0� � n2

1�k0� � F
�
n2
1�k0� −

n4
0 � n4

s

n2
0 � n2

s
;
2n2

1�k0�
n2
0 � n2

s
; k0h

�
; (27)

n2
eff�k0� � n2

e�k0� � F �n2
e�k0� − n2

0; 1; k0�b − a��; (28)

with the function F defined by

F �a;b; c� � 9b2

2c2�3− b2�

 
1� c2a

9
−

���������������������������������������������������������
1� c2a

9

�2

� 4�3− b2�c2a
9b2

s !
:

(29)

These approximations agree very well with the effective
refractive index that has been numerically calculated for a
rectangular silicon waveguide (Figs. 2 and 3). Interestingly,
the explicit analytical approximation of the Ey

11 is in better
agreement with the numerical mode solver solution than
the numerical solution of the consistency requirement that
it approximates. Note also that the refractive index of the
Ey
11 mode approaches the substrate index ns � 1.54 for wave-

lengths close to 4 μm.
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However, one should be careful about using the approxima-
tions for the effective refractive index to estimate cavity
dispersion and zero-dispersion wavelengths. The reason for
this is that the dispersion depends on the second derivative,
which is more sensitive than the function value of the propa-
gation constant. One should, therefore, verify the analytical
approximations with the numerical mode solver solution
(Figs. 4 and 5).

E. Dispersion
Inserting Eq. (24) into Eq. (23) allows the vacuum wavenum-
ber k0 � k0�m� and the auxiliary refractive index ne � ne�m�
of the mode to be determined as the simultaneous solution of
Eqs. (16) and (23). The resonance frequency can then be
obtained as ωm � k0c, together with the effective refractive
index for that frequency from Eq. (24).

Alternatively, it is also possible to solve Eqs. (16) and (23)
for β � β�k0� and ne � ne�k0� as continuous functions of the
wavenumber. This is similar to how the propagation constant

is usually determined for straight waveguides. The eigenfre-
quencies are then found as those frequencies that satisfy
βL � 2πm. By differentiating β with respect to frequency, i.e.,

βn � dnβ
dωnω�ωm0

; (30)

one can obtain the FSR ωFSR � 1∕�β1r0�, as well as dispersion
coefficients β2, β3, etc.

Once the set of resonance frequencies ωm is known, they
can be used to determine the FSR and dispersion profile of the
resonator. For this purpose, it is helpful to introduce a finite
difference operator Δωm � ωm�1∕2 − ωm−1∕2, with half-integer
mode numbers, defined as ωm�1∕2 � �ωm�1 � ωm�∕2, which
can be used to find the coefficients Dk � Δkωm of the follow-
ing Taylor expansion for the resonance frequencies around
the pump frequency ωm0, viz.

ωm � ωm0 � D1�m −m0� �
1
2
D2�m −m0�2

� 1
6
D3�m −m0�3 �…: (31)

Here, the coefficient D1 is the FSR while D2 is related to the
second-order dispersion coefficient, with β2 � −D2�τ0∕D2

1� (τ0
being the round-trip time) in the formalism of the Lugiato–
Lefever equation [24]. Calculating the second-order difference
D2 � Δ2ωm for different m allows the complete dispersion

1.5 2.0 2.5 3.0 3.5 4.0
Λ �Μm�

1.5

2.0

2.5

3.0

neff

Fig. 2. Effective refractive index as a function of wavelength for
a silicon ring resonator with a � 49.5 μm, b � 50.5 μm, and
h � 0.5 μm. Fully drawn lines are explicit analytical approximations,
while dotted lines are numerical solutions of the consistency require-
ments; dashed–dotted lines are numerical mode solver solutions. The
upper solutions (blue color) signify the Ex

11 mode and the lower
solution (red color) the Ey

11 mode.

Fig. 3. Differences between the analytical approximations and mode
solver solution for the effective refractive index plotted in Fig. 2. The
fully drawn (blue) line signifies the difference of the explicit analytical
approximation of the Ex

11 mode, while the dashed (blue) line is the
difference of the numerical solution of the consistency requirement
for the Ex

11 mode. The dashed–dotted (red) line is the corresponding
difference of the explicit analytical approximation of the Ey

11 mode
while the dotted (red) line is the difference of the numerical solution
of the consistency requirement for the Ey

11 mode.

Fig. 4. Dispersion D for the Ex
11 mode of a silicon ring resonator with

a � 49.5 μm, b � 50.5 μm, and h � 0.5 μm. Fully drawn lines are
explicit analytical approximations, while dotted lines are numerical
solutions of the consistency requirements and dashed lines are
numerical mode solver solutions.

Fig. 5. Dispersion D for the Ey
11 mode of a silicon ring resonator with

the same parameters as in Fig. 4.

Hansson et al. Vol. 31, No. 5 / May 2014 / J. Opt. Soc. Am. B 1113



profile to be found. By changing the device geometry and, in
particular, the width and height of the ring waveguide, it is
thus possible to engineer the dispersion profile and optimize
the resonator design for nonlinear applications. Wavelength
ranges and magnitudes of normal or anomalous dispersion
can be determined from D2, as well as any zero-dispersion
wavelengths. We emphasize that not only the repetition-
rate/FSR, but also the dispersion profile is of critical impor-
tance for frequency comb generation and nonlinear FWM
applications, since it allows tuning of the modulational insta-
bility process. An optimal design criterion can, e.g., be to have
anomalous cavity dispersion, i.e., D2 > 0, with a flat profile
and a magnitude that makes the peak modulational instability
gain overlap with a chosen sideband pair. While an in-depth
study of the dependence of the dispersion properties on the
device geometry is of great practical interest, it is, however,
beyond the scope of the current article. More detailed inves-
tigations and comparisons of the resonance spectrum with
other types of microcavities [18,32], will instead be the topic
of future work.

In Figs. 4 and 5, we show a comparison of analytically and
numerically calculated profiles of the second-order dispersion
parameter D � −�λ∕c�d2neff∕dλ2 for a silicon ring resonator.
The resonator is assumed to have a radius of 50 μm, a width
of 1 μm, and a height of 0.5 μm. The material refractive index
of the core layer is assumed to be given by Eq. (17) while the
cladding (air) and substrate (SiO2) have constant refractive
indices of n0 � 1 and ns � 1.54, respectively. The numerical
dispersion profile was obtained by applying a commercial fi-
nite element mode solver (COMSOL) to a straight waveguide,
and the accuracy was ascertained by successively refining
the mesh until the eigenvalues converged. However, one
should instead use a radial mode solver [33] if the inequality
jkxr0j ≫ 1 is not satisfied.

3. NONLINEAR PROPERTIES
The generation of optical frequency combs relies on modula-
tional instability and the nonlinear FWM process to generate
new frequency components from the CW pump mode. The
efficiency of this process depends on the magnitude of the
nonlinear coefficient. The Kerr coefficient of a microring
resonator in the formalism of the driven and damped NLS
equation is inversely proportional to the effective mode area
Am of the resonator, i.e.,

γ � ωm0n2

cAm0
L; (32)

with n2 being the nonlinear refractive index coefficient
(n ≈ n0 � n2I). The mode area can be related to the mode vol-
ume as Vm0 � Am0L. It is critical to have a small mode area to
get a large field enhancement effect and efficient frequency
conversion.

In this section, we make a simple approximation of the
effective mode area of a microring resonator, using the
rectangular mode approximation. Since we are interested in
determining the magnitude of the nonlinear Kerr coefficient,
we will use the definition:

Am �

�R jHx;y�x; y�j2dA
�
2

R jHx;y�x; y�j4dA
: (33)

The rectangular approximation is motivated when the wave-
guide is narrow and the ring radius is large. Because of the
high degree of localization of the mode inside of the core re-
gion due to the high index contrast, as well as the absence of
nonlinear effects in the air cladding, we may neglect the field
outside of the core area. We then find that the effective mode
area can be approximated from Eq. (33) as

Am ≈
4
9

�
�b − a� � 2ηαx

k2x � η2α2x

��
h� ξ1αs

k2z � ξ21α
2
s
� ξ2α0

k2z � ξ22α
2
0

�
;

(34)

which is valid both for the Ex
pq mode and the Ey

pq modes, using
the respective definitions of η and ξi. The above expression
tends to overestimate the core contribution somewhat, but
agrees reasonably well with the more precise values that
can be found numerically by integrating the mode profile from
the mode solver solution (Figs. 6 and 7).

4. WAVEGUIDE COUPLING
Besides considering the FSR and dispersion properties, it is
also necessary to take into account the coupling of light into
and out of the resonator. In this paper, we assume that the
coupling occurs due to an evanescent field overlap between
the resonator and either one or two slab waveguides that
are made of the same material as the resonator. This allows
coupling coefficients, as well asQ-value and coupling regimes,
to be estimated. We further assume that the radius-to-width
ratio is sufficiently large that the radial dependence can be
neglected.

The effective index method allows the in-plane field
dependence to be separated from the perpendicular field
dependence. This can be used to reduce the dimensionality
of the problem from three to two dimensions if the auxiliary
refractive index is used instead of the material refractive

Fig. 6. Comparison of cylindrical whispering-gallery-modes, explicit
analytical solutions using the rectangular approximation, and numeri-
cal mode solver solutions for the normalized mode profiles of reso-
nant modes at λ � 2.5 μm in the x-direction of a silicon ring
resonator. Dotted lines are WGMs, fully drawn lines are explicit ana-
lytical approximations, and dashed lines are numerical mode solver
solutions. The lower solution (blue color) signifies the Hy component
of the Ex

11 mode and the upper solution (red color) the Hx component
of the Ey

11 mode. The x-scale is relative to the ring radius r0.
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index for the two dimensional case. The Ex
pq mode can then be

approximated as a TM-mode while the Ey
pq mode can be

approximated as a TE-mode. Using the auxiliary refractive
index, one finds that the in-plane TE-mode has the same
dispersion relation as the Ey

pq mode, i.e., Eq. (19) with η � 1.
The effective index and the resonance frequencies should,
therefore, be the same as those that can be found using the
rectangular approximation. For the TM-mode, which corre-
sponds to the Ex

pq mode, one finds that the TM-mode satisfies
a dispersion relation similar to Eq. (19), but with η � n2

e∕n2
0.

The argument of the arctan function will, therefore, differ
from that of the Ex

pq mode, which has η � n2
1∕n2

0. However,
this is still a reasonable approximation as long as the
argument is large.

The local coupling coefficient between the bus and ring
waveguide at a particular point in a slab geometry can,
according to coupled mode theory [34], be calculated from
the overlap integral

κ̂�s�ϕ�� � ωε0
4I

Z
∞

−∞
�n2

e − n2
0�E�

1 · E2dx; (35)

where

I � 1
4

Z
∞

−∞
�E�

1 ×H1 � E1 ×H�
1� · ϕ̂dx; (36)

is the mode power.
The lumped coupling coefficient κ is subsequently found by

integrating the local coupling coefficient along the length of
the waveguide while taking into account the varying separa-
tion distances s � s�ϕ�, and is given by the expression

κ �
Z

∞

−∞
κ̂�s�ϕ��e−iΔβϕdϕ; (37)

where Δβ � β1 − β2 corresponds to the mismatch between the
propagation constants of the two waveguides.

Assuming that the two waveguides are identical we find the
local coupling coefficient to be given by

κ̂y � 2k2xαx

β�k2x � α2x�
�
b−a
2 � 2

αx

� exp�−αx�2s − �b − a���; (38)

for the TE-mode (Ey
pq) and

κ̂x � �ne∕n0�22k2xαx
β�k2x � �ne∕n0�4α2x�

�
b−a
2 � 2

αx

n2
e

n2
0

k2x�α2x
k2x��ne∕n0�4α2x

�
× exp�−αx�2s − �b − a���; (39)

for the TM-mode (Ex
pq), c.f. [35].

The lumped coupling coefficient depends on how the
separation distance varies with position. If we consider
e.g., a ring or racetrack shaped resonator coupled to a straight
waveguide, we find that the separation distance can be
approximated by a function

s�ϕ� � s0; jϕj ≤ l0
s�ϕ� � s0 � �jϕj − l0�2∕�2r0�; jϕj ≥ l0

�40�

where s0 is the length of the straight line segment and r0 is the
radius of curvature of the bends, c.f. [19,23].

The lumped coupling coefficient of the two modes at zero
mismatch can then be expressed as

κx;y � κ̂x;y�s0�
�
2l0 �

��������
πr0
αx

r �
: (41)

A. Q-value
The quality factor Q is commonly used as a figure of merit for
the frequency selectivity of a resonator. It is defined as the
ratio of energy stored to energy lost per cycle. There are
several factors that contribute to the Q-value, but the most
important, from a design perspective, is the radiation loss,
which accounts for coupling in and out of the resonator. This
coupling Q can be approximated as [19]

Qr ≈
2π2neffr0

κ2λ0
: (42)

It is also important to take into account the intrinsic absorp-
tion loss α̂ of the resonator, which gives the contribution

Qi ≈
2πneff

α̂λ0
: (43)

The total Q can then be found as Q−1 � Q−1
r � Q−1

i .
The critical coupling wavelength, which separates the over-

and under-coupled regime, is found when the coupling coef-
ficient has the same magnitude as the absorption coefficient.
A ring resonator coupled to a single waveguide at a resonant
wavelength where this condition is satisfied will be able to
completely extract the field on resonance, and will have a
unity extinction ratio.

Although bending losses can generally be neglected for res-
onators with a high refractive index contrast, it may, however,
be important to take into account the scattering losses from
sidewall imperfections. A detailed analysis of these phenom-
ena is beyond the scope of the current paper, but it should be

Fig. 7. Comparison of explicit analytical and mode solver solutions
for the normalized mode profiles in the y-direction for resonant modes
at λ � 2.5 μm of the same silicon ring resonator as in Fig. (6). The
upper solution (blue color) signifies the Hy component of the Ex

11
mode and the lower solution (red color) the Hx component of the
Ey
11 mode.
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noted that such sidewall scattering can also lead to the cou-
pling of appreciable amounts of energy into the counter-
propagating mode, which may seriously deteriorate device
performance [36].

5. CONCLUSIONS
We have presented an analytical approach for obtaining the
linear and nonlinear design parameters of planar microring
resonators. Approximate analytical solutions of the eigen-
mode/eigenfrequency problem, using the effective index
method for resonators with both a cylindrical and rectangular
cross section geometry, have been derived. In the latter case,
we have also presented an explicit analytical approximation
for the effective and auxiliary refractive indices. Additionally,
we have demonstrated how the dispersion profile can be
obtained from knowledge of the resonance frequencies and
considered the mode dependence of the nonlinear Kerr coef-
ficient by deriving an analytical approximation for the mode
area. Finally, we have presented expressions for the coupling
coefficients and made estimates of the quality factor. The ana-
lytical theory has been compared with good agreement to
numerical mode solver simulations, with examples given
for microring resonators made of silicon.

The analytical theory presented here should be helpful for
designing microresonators that can be used for nonlinear
FWM applications. The theory allows one to make rapid ap-
proximations of both linear and nonlinear design parameters.
The theory is able to accurately estimate the FSR, Q-value,
and coupling regimes, as well as cavity dispersion properties
and mode volumes. This allows analytical estimates to be
found for all parameters that appear in the dynamic theories
that describe frequency comb generation.

The analytical approach has the advantage over numerical
simulations of being both faster and providing additional in-
sight. However, we emphasize that it should be complemented
with more precise numerical methods to verify sensitive
parameters, such as zero-dispersion wavelengths.

The theory could also be used to obtain estimates and cor-
rections for the higher-order effects that can be of importance
for wideband frequency comb generation. Such effects
include both thermal and nonlinear mode pulling, which
may change the dispersion properties as well as the
frequency dependence of nonlinear Kerr and linear coupling
coefficients.

ACKNOWLEDGMENTS
This research was funded by Fondazione Cariplo (grant
no. 2011-0395) and the Italian Ministry of University and
Research (grant no. 2012BFNWZ2).

REFERENCES
1. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth,

and T. J. Kippenberg, “Optical frequency comb generation from
a monolithic microresonator,” Nature 450, 1214–1217 (2007).

2. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L.
Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line
pulse shaping of on-chip microresonator frequency combs,”
Nat. Photonics 5, 770–776 (2011).

3. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared fre-
quency combs,” Nat. Photonics 6, 440–449 (2012).

4. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J.
Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer

for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267
(2000).

5. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency
metrology,” Nature 416, 233–237 (2002).

6. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L.
Gaeta, “Octave-spanning frequency comb generation in a silicon
nitride chip,” Opt. Lett. 36, 3398–3400 (2011).

7. S. Azzini, D. Grassani, M. Galli, L. C. Andreani, M. Sorel, M. J.
Strain, L. G. Helt, J. E. Sipe, M. Liscidini, and D. Bajoni, “From
classical four-wave mixing to parametric fluorescence in silicon
microring resonators,” Opt. Lett. 37, 3807–3809 (2012).

8. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R.
Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37,
4236–4238 (2012).

9. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala,
“Ultra-high-Q toroid microcavity on a chip,” Nature 421,
925–928 (2003).

10. M. Hossein-Zadeh and K. J. Vahala, “Free ultra-high-Q microtor-
oid: a tool for designing photonic devices,” Opt. Express 15,
166–175 (2007).

11. H. Tavernier, P. Salzenstein, K. Volyanskiy, Y. K. Chembo, and L.
Larger, “Magnesium fluoride whispering gallery mode disk-
resonators for microwave photonics applications,” IEEE
Photon. Technol. Lett. 22, 1629–1631 (2010).

12. M. Ferrera, D. Duchesne, L. Razzari, M. Peccianti, R. Morandotti,
P. Cheben, S. Janz, D. X. Xu, B. E. Little, S. Chu, and D. J. Moss,
“Low power four-wave mixing in an integrated, micro-ring res-
onator with Q = 1.2 million,” Opt. Express 17, 14098–14103
(2009).

13. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu,
H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-
compact Si–SiO2 microring resonator optical channel dropping
filters,” IEEE Photon. Technol. Lett. 10, 549–551 (1998).

14. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M.
Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-
100 GHz repetition rates,” Opt. Lett. 37, 875–877 (2012).

15. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R.
Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg,
“Mid-infrared optical frequency combs at 2.5 μm based on crys-
talline microresonators,” Nat. Commun. 4, 1345 (2013).

16. T. Hansson, D. Modotto, and S. Wabnitz, “Dynamics of the mod-
ulational instability in microresonator frequency combs,” Phys.
Rev. A 88, 023819 (2013).

17. A. B. Matsko and V. S. Ilchenko, “Optical resonators with
whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quan-
tum Electron. 12, 3–14 (2006).

18. M. L. Gorodetsky and A. E. Fomin, “Geometrical theory of
whispering-gallery modes,” IEEE J. Sel. Top. Quantum Electron.
12, 33–39, (2006).

19. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine,
“Microring resonator channel dropping filters,” J. Lightwave
Technol. 15, 998–1005 (1997).

20. M. K. Chin and S. T. Ho, “Design and modeling of waveguide-
coupled single-mode microring resonators,” J. Lightwave Tech-
nol. 16, 1433–1446 (1998).

21. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus,
and J. D. Joannopoulos, “Coupling of modes analysis of resonant
channel add-drop filters,” IEEE J. Quantum Electron. 35,
1322–1331 (1999).

22. O. Schwelb, “Transmission, group delay, and dispersion in
single-ring optical resonators and add/drop filters—a tutorial
overview,” J. Lightwave Technol. 22, 1380–1394 (2004).

23. S. J. Emelett and R. Soref, “Design and simulation of silicon
microring optical routing switches,” J. Lightwave Technol. 23,
1800–1807 (2005).

24. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D.
Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,”
Opt. Lett. 36, 2845–2847 (2011).

25. S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo, “Modeling
of octave-spanning Kerr frequency combs using a generalized
mean-field Lugiato–Lefever model,” Opt. Lett. 38, 37–39 (2013).

26. A. Matsko, A. Savchenkov, D. Strekalov, V. Ilchenko, and L.
Maleki, “Optical hyperparametric oscillations in a whispering-
gallery-mode resonator: threshold and phase diffusion,” Phys.
Rev. A 71, 033804 (2005).

1116 J. Opt. Soc. Am. B / Vol. 31, No. 5 / May 2014 Hansson et al.



27. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-
frequency-comb generation with monolithic whispering-gallery-
mode resonators,” Phys. Rev. A 82, 033801 (2010).

28. M. Sumetsky, “Whispering-gallery-bottle microcavities: the
three-dimensional etalon,” Opt. Lett. 29, 8–10 (2004).

29. E. A. J. Marcatili, “Bends in optical dielectric guides,” AT&T
Tech. J. 48, 2103–2132 (1969).

30. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed.,
(Academic, 2006).

31. E. D. Palik, ed., Handbook of Optical Constants of Solids
(Academic, 1998).

32. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spec-
tral range tunable optical microbubble resonator,” Opt. Lett. 35,
1866–1868, (2010).

33. M. Oxborrow, “Traceable 2-D finite-element simulation of the
whispering-gallery modes of axisymmetric electromagnetic
resonators,” IEEE Trans. Microwave Theor. Tech. 55,
1209–1218 (2007).

34. H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker,
“Coupled-mode theory of optical waveguides,” J. Lightwave
Technol. 5, 16–23 (1987).

35. M. Kuznetsov, “Expressions for the coupling coefficient of a
rectangular-waveguide directional coupler,” Opt. Lett. 8,
499–501 (1983).

36. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A.
Melloni, and M. Martinelli, “Roughness induced backscattering
in optical silicon waveguides,” Phys. Rev. Lett. 104, 033902
(2010).

Hansson et al. Vol. 31, No. 5 / May 2014 / J. Opt. Soc. Am. B 1117


	XML ID ack1

