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Abstract

We consider the free-boundary problem for the plasma—vacuum interface in
ideal compressible magnetohydrodynamics (MHD). In the plasma region the
flow is governed by the usual compressible MHD equations, while in the
vacuum region we consider the pre-Maxwell dynamics for the magnetic field. At
the free interface, driven by the plasma velocity, the total pressure is continuous
and the magnetic field on both sides is tangent to the boundary. The plasma—
vacuum system is not isolated from the outside world, because of a given surface
current on the fixed boundary that forces oscillations.

Under a suitable stability condition satisfied at each point of the initial
interface, stating that the magnetic fields on either side of the interface are
not collinear, we show the existence and uniqueness of the solution to the
nonlinear plasma—vacuum interface problem in suitable anisotropic Sobolev
spaces. The proof is based on the results proved in the companion paper
(Secchi and Trakhinin 2013 Interfaces Free Boundaries 15 323-57), about the
well-posedness of the homogeneous linearized problem and the proof of a basic
a priori energy estimate. The proof of the resolution of the nonlinear problem
given in the present paper follows from the analysis of the elliptic system for
the vacuum magnetic field, a suitable tame estimate in Sobolev spaces for the
full linearized equations, and a Nash—Moser iteration.
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1. Introduction

Consider the equations of ideal compressible MHD (see, e.g., [16,21]):
0;p +div (pv) = 0,
d(pv) +div(pv@v—HQ® H)+ Vg =0,
o0H —V x (vxH) =0,
3 (pe+ 31H|?) +div ((oe + p)v + Hx (vx H)) =0,

ey

where p denotes density, v € R? plasma velocity, H € R* magnetic field, p = p(p, S)
pressure,q = p+ % | H |? total pressure, S entropy, e = E+%|v|2 total energy, and E = E(p, S)
internal energy. With a state equation of gas, p = p(p,S), and the first principle of
thermodynamics, (1) is a closed system.

System (1) is supplemented by the divergence constraint

divH =0 @

on the initial data. As is known, taking into account (2), we can easily symmetrize system (1)
by rewriting it in the non-conservative form

d d

&—p+divv=0, P_v_(H'V)H"'Vq:O’

p di dr ©)
dH . ds

— —(H-V)v+Hdivyv =0, - =0

dr dr

where p, = dp/dp and d/dt = 9, + (v - V). A different symmetrization is obtained if we
consider ¢ instead of p. In terms of ¢ the equation for the pressure in (3) takes the form

» [d dH .
Pty ST dive =0, @)
o |dt dt
where it is understood that now p = p(q — |H|*/2, S) and similarly for pp- Then we derive
div v from (4) and rewrite the equation for the magnetic field in (3) as

dH d dH
L Hmovp-Legl g S, )
dr 0 dr dr
Substituting (4), (5) in (3) then gives the following symmetric system:
Pp/ P 0 —(pp/P)H 0 q
o' pls 03 0" 5 | Y
—(pp/PHT 03 Li+(pp/)H®H 0" || H
0 0 0 1 S
(pp/P)v -V V. —(pp/P)HV -V 0 q
v pv - VI —H -V or "1 _o (@
~(op/pH -V —H-VIy (+(pp/p)H®H)W-V 0" ||H] ™~
0 0 0 v-V) \S

where 0 = (0, 0, 0). Given this symmetrization, as the unknown we can choose the vector
U=U(,x)=(q,v, H,S). For the sake of brevity we write system (6) in the form

3
AgU)3,U + Y A;(U)3;U =0, )

j=1
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which is symmetric hyperbolic provided the hyperbolicity condition Ay > 0 holds:
p >0, pp > 0. 8)

Plasma—vacuum interface problems for system (1) appear in the mathematical modelling
of plasma confinement by magnetic fields (see, e.g., [16]). In this model the plasma is confined
inside a perfectly conducting rigid wall and separated from it by a vacuum region, due to the
effect of strong magnetic fields. However, the plasma—vacuum system is not isolated from the
outside world because energy flows into the system. This can be modelled by a given surface
current which forces oscillations onto the system.

This subject is very popular since the 1950-1970s, but most of theoretical studies are
devoted to finding stability criteria of equilibrium states. The typical work in this direction
is the classical paper of Bernstein et al [5]. In astrophysics, the plasma—vacuum interface
problem can be used for modelling the motion of a star or the solar corona when magnetic
fields are taken into account (see [16]).

According to our knowledge there are still no well-posedness results for full (non-
stationary) plasma—vacuum models. More precisely, a basic energy a priori estimate in
Sobolev spaces for the linearization of a plasma—vacuum interface problem (see its description
just below) was derived in [44], and the existence of solutions to this problem was recently
proved in [33]. The proof of the existence and uniqueness of smooth solutions of the original
nonlinear free-boundary problem is the main goal of the present paper. Note that the a priori
estimate for the linearized problem obtained in [33] somewhat improves the similar estimate
firstly deduced in [44]. We also use the same notations and functional spaces as in [33].

Let Q*(¢) and Q7 (¢) be space-time domains occupied by the plasma and the vacuum,
respectively. That is, in the domain Q*(z) we consider system (1) (or (7)) governing the
motion of an ideal plasma and in the domain 7 (¢), as in [5, 16], we consider the so-called
pre-Maxwell dynamics

VxH=0, divH =0, ©)]
V x E=—3H, divE =0, (10)

describing the vacuum magnetic field H € R? and electric field E € R?. That is, as usual in
non-relativistic MHD, in the Maxwell equations we neglect the displacement current (1/¢) 9, E,
where c is the speed of light.

From (10) the electric field E is a secondary variable that may be computed from the
magnetic field H. Hence, in the vacuum only one basic variable is needed, viz. H, satisfying
the elliptic (div—curl) system (9).

Let us assume that the interface between plasma and vacuum is given by a hypersurface
I'(t) = {F(t,x) = 0}. It is to be determined and moves with the velocity of plasma particles
at the boundary:

dF—O NG 11
Frie onI'(?) (11

(for all t € [0, T]). As F is an unknown of the problem, this is a free-boundary problem. The
plasma variable U is connected with the vacuum magnetic field H through the relations [5, 16]

[q] =0, H-N=0, H-N =0, on I'(¢), (12)

where N = VF and [¢q] = ¢qIr — %lHI‘ZF denotes the jump of the total pressure across the
interface. These relations together with (11) are the boundary conditions at the interface I"(¢).

As in [23,43], we will assume that for problem (1), (9), (11), (12) the hyperbolicity
conditions (8) are assumed to be satisfied in Q*(¢) up to the boundary I'(¢), i.e. the plasma
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density does not go to zero continuously, but has a jump (clearly in the vacuum region Q7 (¢)
the density is identically zero). This assumption is compatible with the continuity of the total
pressure in (12).

Since the interface moves with the velocity of plasma particles at the boundary, by
introducing the Lagrangian coordinates one can reduce the original problem to that in a
fixed domain. This approach has been employed with success in a series of papers on the
Euler equations in vacuum, see [9-14,22,23,32,41]. However, as, for example, for contact
discontinuities in various models of fluid dynamics (e.g., for current-vortex sheets [8,42]), this
approach seems hardly applicable for problem (1), (9), (11), (12). Therefore, we will work
in the Eulerian coordinates and for technical simplicity we will assume that the space—time
domains Q*(¢) have the following form.

1.1. The reference domain 2

To avoid using local coordinate charts necessary for arbitrary geometries, and for the sake
of simplicity, we will assume that the space domain 2 occupied by plasma and vacuum is
given by

Q= {(x1, %2, x3) € R |xy € (=1, 1), X' = (x2, x3) € T?},

where T? denotes the 2-torus, which can be thought of as the unit square with periodic boundary
conditions. This permits the use of one global Cartesian coordinates system. We also set

QF:=QnN{x =0}, [:=Qn{x; =0}
Let us assume that the moving interface I'(¢) takes the form
T@) = {(x,x) e RxT? x; = o(t, x)} t€[0,T],

where it is assumed that —1 < ¢(z, -) < 1. Then we have Q*(7) = {x; = ¢(z, x")} N Q. With
our parametrization of I'(¢), an equivalent formulation of the boundary conditions (11), (12)
at the free interface is

d¢ = vy, [q1=0, Hy=0, Hy =0 on I'(1), (13)

where vy =v-N,Hy =H  -N,Hy =H-N, N = (1, =00, —039).
On the fixed top and bottom boundaries

L= {(£1,x), x' € T%
of the domain €2, we prescribe the boundary conditions
vn=H =0 on[0,T] xT,, vxH=3 on[0,T]xTI_. (14)

In the last equation v = (—1,0, 0) is the outward normal vector at '_ and J represents a
given surface current which forces oscillations onto the plasma—vacuum system. The effect
of such an outer boundary is that the system is not isolated from the outside world because
energy flows into the system. In laboratory plasmas this external excitation may be caused by
a system of coils. The model can also be exploited for the analysis of waves in astrophysical
plasmas, e.g. by mimicking the effects of excitation of MHD waves by an external plasma by
means of a localized set of ‘coils’, when the response of the internal plasma is the main issue
(e.g. in the problem of sunspot oscillations excited by sound waves in the photosphere). For a
more complete discussion we refer the reader to [16].

When the system is isolated from the outside world, the natural boundary condition at I _
for the vacuum magnetic field is H - v = ‘H; = 0, for perfectly conducting wall, i.e. the same
we are prescribing at 'y, for H. For a simply connected domain as in the above choice, H is
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then necessarily zero (H is the unique solution of a homogeneous problem) and one solves the
plasma equations with a vanishing total pressure ¢ on I'(t). The problem becomes meaningful
for non-simply connected vacuum regions, as in most of interesting applications, see [16]. In
that case the null space associated with the homogeneous equations (9), under the boundary
conditions Hy = 0 on I'(¢), H; = 0 on I'_, is finite-dimensional, see [3]. One looks for
a vacuum magnetic field from this finite-dimensional subspace, interacting with the plasma
solution through relations (13). We postpone to a future work the analysis of interaction of a
plasma with vacuum magnetic field in a non-simply connected domain.
System (7), (9), (13), (14) is supplemented with initial conditions

U0, x) = Up(x), x € Q7(0), 90, x) = o(x), x € I'(0),
H(O, x) = Ho(x), x € 27(0). (15)

From the mathematical point of view, a natural wish is to find conditions on the initial data
providing the existence and uniqueness on some time interval [0, T'] of a solution (U, H, ¢) to
problem (7), (9), (13)—(15) in Sobolev spaces. Since (1) is a system of hyperbolic conservation
laws that can produce shock waves and other types of strong discontinuities (e.g., current-vortex
sheets [42]), it is natural to expect to obtain only local-in-time existence theorems.

We must regard the boundary conditions on H in (13), (14) as the restriction on the initial
data (15). More precisely, we can prove that a solution of (7), (13), (14) (if it exists for all
t € [0, T)) satisfies

divH =0 in Q") and Hy=0 onI(),

for all # € [0, T1], if the latter were satisfied at t = 0, i.e. for the initial data (15). In particular,
the fulfillment of div H = 0 implies that systems (1) and (7) are equivalent on solutions of
problem (7), (13)—(15).

1.2. An equivalent formulation in the fixed domain

We want to reduce the free-boundary problem (7), (9), (13)—(15) to the fixed domain €2. For
this purpose we introduce a suitable change of variables that is inspired by [20]. In all what
follows, H*(w) denotes the Sobolev space of order s on a domain w. We recall that on the
torus T2, H*(T?) can be defined by means of the Fourier coefficients and coincides with the
set of distributions u such that

D1+ 1K) lec)* < +oo,

keZ?

ci(u) denoting the kth Fourier coefficient of u. In the following T2 is always identified with
I'. The following lemma shows how to lift functions from I" to €2.

Lemma 1. Let m > 1 be an integer. Then there exists a continuous linear map ¢ €
H" 95(T) = W e H™(Q) such that ¥(0,x") = ¢(x’) on T, W(£1,x") = 0 on 'y, and
moreover W (0,x") =0ifm > 2.

The proof of lemma 1 is given in [8]. The following lemma gives the time-dependent version
of lemma 1.

Lemma 2. Let m > 1 be an integer and let T > 0. Then there exists a continuous linear map

¢ € MIZJC/([0, TT; H"/703()) > W e NIZJC/([0, TT; H"(Q))
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such that W(t,0,x") = ¢(t, x'), V(t, £1, x") = 0, and moreover 9, ¥ (¢,0,x") = 0if m > 2.
Furthermore, there exists a constant C > 0 that is independent of T and only depends on m,
such that

Vo e Jc/(0, T; H"/7%3(T), Vj=0,....m—1, Viel0,Tl,
18] W (2, )l m-iy < C 18] @(t, )| grm-i-05ry.

The proof of lemma 2 is also given in [8]. The diffeomorphism that reduces the free-boundary
problem (7), (9), (13)—(14) to the fixed domain €2 is given in the following lemma.

Lemma 3. Let m > 3 be an integer. Then there exists a numerical constant €y > 0 such that
forall T > 0, forall ¢ € m;'.;}w ([0, T1; H™1705()) satisfying @ llcqo.r). 525y < €0, the
function

D(t, x) := (x1 +W(t, x), x'), (t,x) €0, T] x 9, (16)

with ¥ as in lemma 2, defines an H™-diffeomorphism of Q for all t € [0, T]. Moreover,
there holds 3] ® € C([0, T1; H" /() for j = 0,...,m — 1, ®(t,0,x") = (¢, x), x"),
D, +1,x") = (£1,x), 0,P(¢,0,x") = (1,0,0), and

Vi el0,T], IV, )wie@ < %

Proof. The proof follows directly from lemma 2 and the Sobolev imbedding theorem, because
0Pt x)=1+0W(, x) =1 =W, Hlleqo, ) whe)
z 1 = Cllelleqo,r;m2sry = 1/2,

provided that ¢ is taken sufficiently small in C([0, T]; H>>(I")). In the latter inequality, C
denotes a numerical constant. The other properties of W follow directly from lemma 2.  [J

We introduce the change of independent variables defined by (16) by setting
U(t, x) == U(t, ®(t, x)), H(t, x) := H(t, D1, x)).

Dropping for convenience tildes in U R 7—7, problem (7), (9) (13)-(15) can be reformulated on
the fixed reference domain 2 as

P(U,¥)=0 inl0,T]x Q*, V(H,¥)=0 in[0,T]x R, (17)
BU,H,¢) =3 on[0, 7] x (I x Iy x T'_), (18)
(Us H)|l=0 = (U()v HO) in Q+ X Q_v (0|l=0 = 900 on Fs (19)

where P(U, W) = P(U, W)U,
P(U, W) = Ag(U)d, + A (U, W)d) + Az (U)d, + A3(U)d3,

3
~ 1
AU, ¥) = ﬁ(/‘h(U) — Ap(U)o, ¥ — kZ;Ak(U)ak‘l’),
Vx5
V(H,¥) = < divh >
H=H10:P1, Hey, Hey), b= (Hy, H201 Py, H301Py),
HN =H1 —Hzazqf —'H333‘~I’, 'Hr,. =H13[\I’+H[, i =2,3,
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00 — vy
[¢q] |
BU.H.p)=| Hyv [ [4]=du=00 = 5 20
V]
vxXH
N = U1 — 12V — 1303V, 3=(0,0,0,0,".

In (18) the notation [0, 7] x (I"® x I',, x I'_) means that the first three components of this vector
equation are taken on [0, T'] x ', the fourth one on [0, T'] x I', and the fifthone on [0, T] x I"_.
To avoid an overload of notation we have denoted by the same symbols vy, Hy here above and
vy, H asin (13). Notice that vy |y, =0 = V1 — 02020 — V303, Hyjx,=0 = H1—H20:0 —H3030,
as in the previous definition in (13).

We did not include in problem (17)—(19) the equation

divh =0 in [0, T] x QF, (20)
and the boundary conditions
Hy=0 on[0,T]xT, H =0 onl0,T] x Iy, (21)

where h = (Hy, H,0,91, H3019,), Hy = H; — H,0, ¥ — H30;V, because they are just
restrictions on the initial data (19). More precisely, referring to [42] for the proof, we have the
following proposition.

Proposition 4. Let the initial data (19) satisfy (20) and (21) fort = 0. If (U, H, ¢) is a
solution of problem (17)—(19), then this solution satisfies (20) and (21) for all t € [0, T].

Note that proposition 4 stays valid if we replace (17) by system (1) in the straightened
variables. This means that these systems are equivalent on solutions of our plasma—vacuum
interface problem and we may justifiably replace the conservation laws (1) by their non-
conservative form (7).

In [33] we proved the well-posedness of the linearized problem associated with the
nonlinear problem (17)—(19) in Sobolev spaces3 provided that the ‘unperturbed flow’ (a basic
state) satisfies the hyperbolicity condition (8) and the stability condition

|H x Hlx=0 = 80 > 0, (22)

where Jy is a fixed constant. Since the basic state in [33] was also assumed to satisfy (21)

and the third boundary condition in (18), one can show that the stability condition (22) is
equivalently rewritten as

|HyH3 — H3Ho v =0 2 o > 0. (23)

Now our main goal is to prove the well-posedness of the nonlinear problem (17)—(19) in

suitable anisotropic Sobolev spaces (see section 2) provided that the initial data (19) satisfy

the hyperbolicity condition (8) and the stability condition (22) (together with appropriate
compatibility conditions).

2. Function spaces

Now we introduce the main function spaces to be used in the following. Let us denote
Q7 = (—00, T x Q, Q7 = (=00, T] x Q*,

wr = (=00, T] x T, a);[ = (=00, T] x I'y. 24

3 More precisely, the well-posedness in so-called conormal Sobolev spaces was proved (see section 2 for their
definition).
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2.1. Weighted Sobolev spaces

Fory > land s € N, H)(2) will denote the Sobolev space of order s, equipped with the
y-depending norm defined by

||u||§1;(9) = Z y2(s—|0l|)||8otu||iz(9).

| <s

For functions defined over Qr we will consider the weighted Sobolev spaces HJ'(Qr)
equipped with the y-depending norm

el on = D > PNullLz g,

la|<m

Similar weighted Sobolev spaces will be considered for functions defined on Q%, Q}t.

2.2. Conormal Sobolev spaces

Let us consider functions defined over Q%. For j =0, ..., 3, we set

Zy =0, Zi :=0(x1)01, Z;:=0;, forj=2,3,
where o (x1) € C*(0, 1) is a positive function such that o (x;) = x; in a neighbourhood of
the origin and o (x;) = 1 — x; in a neighbourhood of x; = 1. Then, for every multi-index
o = (o, ..., 03) € N*, the conormal derivative Z¢ is defined by

Z% =27y ... 23
we also write 3% = 9;,° ... 95" for the usual partial derivative corresponding to .

Given an integer m > 1, the conormal Sobolev space H[' (Q%) is defined as the set

of functions u € L?(Q%) such that Z*u € L*(Q7%), for all multi-indices o with |er] < m
(see [27,28]). Agreeing with the notations set for the usual Sobolev spaces, for y > 1,
Ht':n,y(Q}) will denote the conormal space of order m equipped with the y-depending norm

4l o5 = D V> NZull}z g5 (25)
|| <m
and we have Hy, (Q7) = Hy, (Q7). Similar conormal Sobolev spaces with y-depending

norms will be considered for functions defined on Q* (disregarding Z, derivatives), Q;.“

2.3. Anisotropic Sobolev spaces

Keeping the same notations used above, for every positive integer m the anisotropic Sobolev
space H"(2") is defined as

H™Q) = {w e LX(Q) : Z2%0fw e LX(QY), |a| +2k < m).
For the sake of convenience we also set HY(Q%) = HY (Q*) = L*(Q*). For an extensive
study of the anisotropic spaces H"(Q2*) we refer the reader to [26,27,38] and references
therein. We observe that

Hm(Q+) (SN H:I(Q‘F) SN Htl;:ln(Q‘F) C HIIZJC(Q‘F)’

H™(QF) — HM2(Q"), HNQY) = H} (29
(except for H}? (2*) all imbeddings are continuous). The anisotropic space H:fy (%) is the
same space equipped with the y-depending norm

||w||§_1;”y(9+) = Z yz(m—‘O(‘—Zk)'|Zaa{(w||iz(9+)' (27)

la|4+2k<m

(26)

4 OnQ~ or Qf Z; isdefined by Z; := o (—x1)d.
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We have H"(Q*) = H]"|(2*). Some useful properties of the y-dependent space H. o Qh),
used in this paper, are listed in appendix A.

In a similar way we define the anisotropic space H:’V(Q}), equipped with its natural
norm.

We will use the same notation for spaces of scalar and vector-valued functions.

3. Main result and discussion

Let us now state our main result:

Theorem 5. Letrm € N, m > 13, and J € H" ([0, Tp] x I'_) for some Ty > 0. Consider
initial data Uy € H™3(Q*Y), H* € H">(Q7), and ¢ € H"'O(T"). Moreover, the initial
data satisfy (8), (22), (129) and (130) and are compatible up to order m + 9 in the sense of
definition 20. Then there exists 0 < T < To, €; > 0 and yy > 1 such that, if |||l g2sry < €1
and y = yy, problem (17)—(19) has a unique solution (U, H, ¢) in [0, T], with

U e H!,(10, T[xQ"), H e H)'(10, T[xQ7), ¢ e H;”“/Z(]o, T[xID).

Remark 6. The initial vacuum magnetic field H° € H”**3(Q7) is not given independently
of the other initial data. In fact, as it is assumed to satisfy (130), which is an uniquely solvable
elliptic system, H° is uniquely determined from gy (i.e. the initial space domain) and J(0) (the
external density current at initial time) by theorem 13. In this sense, for a given J, the actual
initial data of the problem may be considered only Uy, ¢g.

Theorem 5 shows that the stability condition (22) is sufficient for nonlinear well-posedness.
As far as we know, it is not known what happens if (22) is violated, whether there is some
form of strong/weak stability’ or a transition to instability implying the ill-posedness of the
original nonlinear problem. The study of the well-posedness of the plasma—vacuum interface
problem for the case when condition (22) is violated, i.e. at some points of the initial interface
the plasma and vacuum magnetic fields may be parallel to each other (or one of them is zero),
is postponed to the future.

The remainder of the paper is organized as follows. In section 4 we formulate the
linearized problem associated with (17)—(19) and introduce suitable decompositions of the
magnetic fields to reduce it to that with homogeneous boundary conditions and homogeneous
linearized ‘vacuum’ equations. In fact, for proving the basic a priori energy estimate, in [33]
it is convenient to have the vacuum magnetic field satisfying homogeneous equations and
boundary conditions as in (41), and plasma magnetic field satisfying homogeneous constraints
(53), (54). Thus we introduce the decomposition H = H’ + H” in the vacuum side, with H’
solution of (41), and H" taking all the non-homogeneous part (40), and the decomposition (49)
in the plasma side.

In section 5, for convenience of the reader we recall the well-posedness result of [33] for
the reduced homogeneous linearized problem. In section 6, for each fixed time 7, we study the
non-homogeneous elliptic system (40) for the component H” of the vacuum magnetic field.
Here we work in suitable function spaces taking account of the particular geometry and the
different conditions on the upper and lower boundary of 2~. An important point is the direct
L? estimate of the solution by negative H~! norms of the data, inspired from [3], which will
be crucial in section 8 when dealing with commutators.

3 Strictly speaking, in this paper by stability we mean the well-posedness of the problem resulting from the linearization
about a given (generally speaking, non-stationary) basic state.
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In section 7 we obtain the final form of the H' estimate for the full linearized problem
(39), see theorem 15. In section 8 we deduce a so-called tame estimate and show the well-
posedness of the linearized problem in anisotropic Sobolev spaces of an arbitrary fixed order
of smoothness, see theorem 16. In the plasma side the main difficulty comes from the
characteristic boundary, forcing to work in anisotropic Sobolev spaces H." with different
regularity in the normal and tangential directions. Moreover, due to the loss of one derivative
with respect to the source terms in the basic H'! estimate (86), special care is needed in the
estimate of commutators containing the solution itself, as they can not be treated in the usual
way as zero-order terms. Here we use the calculus tools developed in [27] (see appendix A),
in particular for the cases when only conormal regularity is involved. In the vacuum side the
main difficulty comes from the commutators with conormal derivatives. Here we use the a
priori estimates of section 6 with negative norms H ! (in space) to compensate the too higher
H? regularity (in time) appearing in the right-hand side of the basic H' estimate (86).

In sections 9-13 we give the proof of our main theorem 5. In particular, section 11 is
devoted to the description of the Nash—Moser iteration scheme, similar to that of [1, 7, 42],
and section 12 to the proof of its convergence by induction. The main difficulty is that at
each iteration the inversion of the operator (I', V', B’) requires the linearization around a state
satisfying the constraints (29)—(34), (61), that is the constraints of the basic state given in
section 4. We thus need to introduce a smooth modified state, denoted V11,2, Kz, Ynt1/2,
that satisfies the above mentioned constraints; the exact definition of this intermediate state is
detailed in section 12.4. A similar difficulty was found in [7,42]. Section 13 is devoted to the
proof of the uniqueness of a smooth solution.

At last, in appendix A we recall some technical results about the anisotropic Sobolev
spaces and some useful calculus inequalities for them whereas in appendix B we recall for the
reader’s convenience some well-known commutator estimates and Moser-type inequalities for
standard Sobolev spaces. Moreover, in appendix C we briefly explain minor modifications
necessary to adapt the energy a priori estimate obtained in [33] for the linearized problem for
the case with the whole space domain to our present case with the added fixed top and bottom
boundaries I'.

4. The linearized problem

4.1. Basic state

Let
(U, x), H(t, x), §(1, X)) (28)

o~

be a given sufficiently smooth vector-function with U= @q, 0, H, ), respectively, defined on
07, 07, or, with

1T s, 5 + ||7/‘z||12,,3(Q;) + 1@l s < K, I@lleqo.71; m25(r)) < €o, (29)
where K > 0 is a constant and €y is the arbitrary constant introduced in lemma 3.

Corresponding to the given ¢ we construct U and the diffeomorphism ® as in lemmata 2
and 3, such that

3D > 1/2.
Notice that (29) yields6

1T lwamcop) + 1810 lweeop + 1Rllweion + 1 Ve Pllwesgry < CK),
where V,; . = (9;, V) and C = C(K) > 0 is a constant depending on K.

6 This inequality is taken as an assumption in [33].
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We assume that the basic state (28) satisfies (for some positive pg, o1 € R)

p(p.S) = po>0, py(p,S)=p >0  inQp, (30)
—~ 1 —~ ~ ~
0+ —— {(ﬁ)-V)H—(h~V)ﬁ+Hdivﬁ}=0 in OF, G1)
1¥1
divh =0 in 07, (32)
3¢ —0y=0 Hy=0 onwr, ;=0 on wr, vxH=3] on wy, (33)

where all the ‘hat’ values are determined like corresponding values for (U, H, ¢), i.e.
9= (H,0,9, ﬁl’zv ﬁn)v b= (Hy, Had1 D1, H30,®D1), h = (Hy, Hy9,®,, H:0,9)),
v =H — BV — H30;0, Hy =H, — H20,¥ — H30:0,
p=q—IHP/2 Oy = 01 — 020, — D33,
i = Dy, 020Dy, 030, D), =10 —(87,0,0).
It follows from (31) that the constraints

divh =0 in Q%, Hy =0 onowr, H =0 onw}, (34)
are satisfied for the basic state (28) if they hold at # = 0 (see [42] for the proof). Thus, for the
basic state we also require the fulfillment of conditions (34) att = 0.
4.2. Linearized problem

The linearized equations for (17), (18) read:

~ d
P'(U, ¥)(8U, 8W) := d_P(Ua’ Vo)le=o = f in 07,
&
PN d ;o
V(H, W)(§H, V) = aV(HE» Ye)le=0 = G n QTﬂ

P d
B'(U, H. 9)OU, 81, 8¢) i= T-B(Ue, He, 9)le=0 = ¢ on wy X Wy,

where U, = U+ edU, H, = H+ e 8H, Y. = @ +¢e8¢; SV is constructed from §¢ as in
lemma 2 and ¥, = U + ¢ §W. In the above boundary equation the first three components are
taken on wr, the fourth one on w}., and the fifth one on w;. Here we introduce the source
terms f = (f1,..., f8), ¢ = (X, 8), x = (X1, x2, x3) and g = (g1, &2, &3) to make the
interior equations and the boundary conditions inhomogeneous.

We compute the exact form of the linearized equations (below we drop §):

. . . U
P(U, $)(U, ) = P(U, W)U +C(T, ¥)U — | P(T, xy)qf}a‘_5 _
1¥1
VH, x VW
V/(H, B)(H, W) = V(H, §) + 0 e

Vx|-Hs| vw
H>
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01 + 02020 + V13030 — vy

L q—ﬁ-H
B'(WU.H.OWU.H.0) = | 4y —Hotrp — Hasdo | =&
v
vxXH

where vy = v; — maﬁ — U3 83\3 and the matrix C (fj , @) is determined as follows:
CU, W)Y = (Y, VyAg(0))3,U + (Y, V, A, (U, )3, U
+ (Y, Vy Ay (U) U + (Y, V,A3(0))3:U,

8

AA(Y
(Y, V,A(V)) =Dy ( 8;)
i=1 !

), Y = (1,5 ¥8).
Y=V

Since the differential operators P/(ﬁ , @) and V’ (ﬁ , @) are first-order operators in W, as in [2]
the linearized problem is rewritten in terms of the ‘good unknown’

. v —~ . |\ —~
U:=U—-—0U, H:=H— —0/H. 35)
1D 91D,

Taking into account assumptions (33) and omitting detailed calculations, we rewrite our
linearized equations in terms of the new unknowns (35):

PO, ). w) = PO, 90 + 0. 90 + — WP, )} = 7,
0 (36)
W{V(H. W)} =7,

V/(H, U)(H, ¥) = V(H, U) + —
3, D,

B.(U, H,$)(U, H, ¢) :=B' U, H,$)(U, H, ¢)

09 + 020,90 + 030390 — Uy — @ d1 Dy

g —H-H+[014l

Hy — 02(Hagp) — 83(Hsg) =g 37)
U1
VX H

where i)N = l')l — 1.)232\1\/ — 1')333{1\/, HN = H] — 7'.(232\1\’ — 7'.[333\1\/ and

0141 = 1) yy=0 — (H - H )l 0-
We used assumption (32), taken at x; = 0, while writing down the third boundary condition
in (37).

As in [2,7,42], we drop the zeroth-order terms in W in (36) and consider the effective

linear operators
P.(U, W)U := P(U, W)U +CU, W)U = f, 38)
V(H, W)H :=V(H,¥) =G

In the future nonlinear analysis of section 12 the dropped terms in (36) should be considered as
error terms. With the new form (38), (37) of the linearized equations, our linearized problem
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for (U, H, @) reads in explicit form:
3

AU+ A;9;U+CU = f in Q% (39q)
j=1
Vx$H=yx, divh=E2 in 07, (39h)
0 = Uy — 02020 — V3039 + @ 310y + g1, (39¢)
G=H-H—[3dle+g, (394)
Hy = 9 (Hap) + 85 (Hsp) + g3 on wr, (3%)
U1 = g4 oOnwh, vx H = gs on wy, (39
(U,H,9)=0 fort < 0, (392)

where
Ay = Ay(U), «=0,2,3 A =AU, ¥V), C:=cU,W0),
H=(H,0,9,, Heyy Hey)s b= (Hy, Ho0, D1, Had ),
Hy = Hi — HadhW — H303W, Hy = Hi1 9,V +H, i=2,3.

For the resolution of the elliptic problem (390), (39¢), (39f) the data x , g5 must satisfy necessary
compatibility conditions described in (66).

We assume that the source terms f, x, & and the boundary data g vanish in the past and
consider the case of zero initial data. We postpone the case of non-zero initial data to the
nonlinear analysis (see e.g. [7,42]).

4.3. Reduction to homogeneous constraints in the ‘vacuum part’

We decompose H in (39) as H = H'+H" (and accordingly H=9+9", b = b +4"), where
H” is required to solve for each 7 the elliptic problem
Vx9' =y, divh"=E in O,
b =HY = g3 on wr, (40)
vx H = gs on wy.
For the resolution of (40) the data y, g5 must satisfy the necessary compatibility conditions
(66). The resolution of (40) is given in section 6.
Given ‘H”, we look for H’ such that
Vx$H =0 divh' =0 in Q7,
=M M —[0qlp+sg
H;\, =0 (Hz(p) + 03 (H3(p) on wr,
vxH =0 on oy,

(41)

where we have denoted g =8+ H-H". If H" solves (40) and H’ is a solution of (41) then
H =H +H" clearly solves (39b), (39d), (39¢), (39)). '
From (39), (41), the new form of the reduced linearized problem with unknowns (U, H')
reads
3 .
Ay, U+ A;0;U+CU = f in QF, (42a)
j=1
Vx$H =0, divh =0 in Oy, (42b)
0,0 = Uy — D200 — D3030 + @ 010y + g1, (42¢)
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o~

g =H-H —[3:9)p + g, (42d)
Hy = d2(Hag) + 85 (Hsp) on wr, (42e)
U =g4 ONwy, vxH =0 on wy, (42f)
(U, H,9)=0 for t < 0. (429)

4.4. Reduction to homogeneous constraints in the ‘plasma part’

From problem (42) we can deduce non-homogeneous equations associated with the divergence
constraint div 4 = 0 and the ‘redundant’ boundary conditions HN|x1:O =0, H1|X1=1 = 0 for
the non-linear problem. More precisely, with reference to [42, proposition 2] for the proof, we
have the following.

Proposition 7 ([42]). Let the basic state (28) satisfies assumptions (29)—(34). Then solutions
of problem (42) satisfy

divh =r in OF, (43)
Hyp + Hyds9 — Hy — @ Hy = R on wr, H =R* onoh. (44)
Here

h = (Hy, Hy9,®, H39,®1), Hy = Hy — Hy,¥ — H303 .
The functions r = r(t,x), R = R(t,x') and R* = R*(¢t, x'), which vanish in the past, are
determined by the source terms and the basic state as solutions to the linear inhomogeneous
equations

1
da+—<{i-Va+adivi} =Fy in QF,
019
R + 82(12R) + 85(03R) = O on wr, (45)
8,R+ + 82(ﬁ2R+) + 83(ﬁ3R+) = Q+ on a);,
wherea = r/®,, Fy = (div fy)/ ),
fi = (f. fo. f1). In = fs — foh¥ — fr:30,
0= (n(Fa) +s(Aig) ~ fwlly g Q= (o) +os(Fsga) + 5},
Let us reduce (42) to a problem with homogeneous boundary conditions (42c¢), (42d), (42f)
(i.e. g1 = g, = g4 = 0) and homogeneous constraints (43) and (44) (i.e. r = R = R* = 0).
More precisely, we describe a ‘lifting’ function as follows:
U=(3.1.0,0 H,0),

where ¢ = g5, U = —g) on wr, Uy = g4 on wy, and where H solves the equation for H
contained in (42a) with v = v = (14, 0, 0):

~ 1 ~ ~ ~ ~ —~ ~

0H + — (- V)H — (h - VYD + Hdivid) = fy + (h, V)o — Hoypy — 9,0, H in QF,
1¥1

(46)

where h = (I-11 — I;zaz\fl — ﬁ383\f!, 172, ﬁ3), fu = (fs, fe, f7). Itis very important that, in
view of (33), we have Wy |y,—o = Wi |y,=1 = 0; therefore the linear equation (46) does not need
any boundary condition and we easily get the estimates

”H”H[‘;".y(Q}) < C{l S Il g

tan,y

< CUL N

tan,y

oy T (o ||H§+1(Q;)}
op gl gz, + 18all oz e b k=1,2. 47)
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Here and after C is a constant that can change from line to line, and sometimes we show the
dependence of C from other constants. In particular, in (47) the constant C depends on K
and T. From (47) we obtain

“U”H[lm_y(Qi;) < C(“f”H] (0%) + “g;“Hyl/z(wT) + ”ngHf/z(w-r) + ”g““Hf/z(w;))

< %(anﬂ‘gw(g;) 132y + 18152 + 88152 ))- (48)
Then the new unknown
Ut =0 -0, H =M (49)
satisfies problem (42) with f = F, where
F=(F,... F)=f—-P®U, WU. (50)

In view of (46), (Fs, Fg, F7) = 0, and it follows from proposition 7 that U* satisfies (43) and
(44) with r = R = R* = 0. Moreover, again taking into account (47), for the new source
term F we get the estimate

IF N, o < CLIS Il

tan,y tan,y

< C{IIf Il

tan,y

oyt | H |l g2

tan,y

onH + 1, 171)||H3(Q;)}
(3] + ”gé”HS/z(wT) + ”gl ”H;/z(wr) + ”g4”H;/2(w})}' (51)

Concerning the above inequality it is worth noticing that in P;gﬁ ,U)U the only normal
derivatives involved are those of the non-characteristic part of U, namely of g, vy; in this
regard see the equivalent system (58) that will be introduced below.

Dropping for convenience the indices * in (49), the new form of our reduced linearized
problem now reads

3

AU+ A;3;U+CU =F in Q% (52a)

j=1
Vx$H=0, divh=0 in 07, (52b)
dp = vy — 02dag — 03030 + ¢ 31 Dy, (52¢)
q=H- H—[%]le. (52d)
Hy = 82 (Fag) + 35 (Hap) on wr, (52¢)
vy =0 onor, VXH=0 on oy, (52f)
U, H,9)=0 fort < 0. (529)

and solutions should satisfy
divh =0 in O7F, (53)
Hy = Hyorp + Hyd30 — 9 91 Hy on wr, H =0 onwh. (54)

All the notapions here for U and H (e.g., h, $, b, etc) are analogous to the corresponding ones
for U and H introduced above.

4.5. An equivalent formulation of (52)
In the following analysis it is convenient to make use of different ‘plasma’ variables and an
equivalent form of equations (52a). We define the matrix
1 -0 —U
n=10 9d;, O . (55)
0
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It follows that

1 = (vy, 128, @1, V39 @) = fv, h = (Hy, Hyd,®1, H39,®) = ) H. (56)
Multiplying (52a) on the left side by the matrix
1 0 0 O
e Qi 1 93 Q; ’
00 0z 7 0
0 0 0 1

after some calculations we get the symmetric hyperbolic system for the new vector of unknowns
U = (q,u,h,S) (compare with (6), (52a)):

pp/p 0 —(p/Dh 0 q 0 V- 0 0\ (g
93 0" pio 03 0" wl |V 0 05 0" u
S =GR 05 ao+ (y/ph@h 0" [T LR T [0" 05 05 0" ]| n
0 0 0 1 S 0 0 0 0/\s
(bp/P)W-V V- —(pp/PYhid> - V 0\ (4
-~ N A. —AA. T
+01 D, R AVAT R pa,\ouj M R R a?h,\ V,\ R QT “ + 671/1 =F,
—(pp/ DR -V —aoh -V (ao+ (pp/P)h @ W)W -V 0 h
0 0 0 w-V S
(57)

where p := p(p, ), Pp = pp(D, S), and @y is the symmetric and positive definite matrix

- A INTA—1

ap=@m)n -,
with a new matrix C’ in the zero-order term (whose precise form has no importance) and where
we have set F = 9, P; RF. We write system (57) in compact form as

3

Apd U + Y (Aj + & )dU +CU = F, (58)
j=1

where

01 00 0 00 1 0 0
1 000 0 00 0 0 0
00 0 0 0 1 000 0

=10 0 0 0 ol- E3=10 0 0 0 ol:
00 0 0 0 00 0 0 0
00 0 1 0
0000 0
00 00 0

Cu=11 00 0 0
0000 --- 0

The formulation (58) has the advantage of the form of the boundary matrix of the system
Aj + &2, with

A =0 on wr U o, (59)
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because w; = h 1 = 0, and &, is a constant matrix. Thus system (58) is symmetric hyperbolic
with characteristic boundary of constant multiplicity (see [31,34,36] for maximally dissipative
boundary conditions). Thus, the final form of our reduced linearized problem is

3
Aod U+ (A + & p)dU +CU = F. in 0F, (60a)
j=1
Vx$H=0 divh=0 in 07, (60b)
0 = uy — 020,90 — V3039 + @ 31 Uy, (60c)
g =H- M~ [34le. (60d)
Hy = 0:(Hap) + 85(Hzp) on wr, (60¢)
vy =0 onowry, vXH=0 on oy, (60f)
U, H,9)=0 fort < 0, (60g)

under the constraints (53), (54).

5. The main result of [33]

We recall the main result of the paper [33]. Actually, in [33] we considered the case with the
whole space domain, i.e. the case Q* = R*N {x; = 0} and I' = R3 N {x; = 0}. The result
of [33] can be readily extended to the present space domain with minor modifications (see
appendix C), in particular, when treating the added fixed top boundary I',, under the standard
rigid wall boundary conditions on I'y in (14), see [35,39].

Recall that U/ = (g, u, h, S), where u and h were defined in (56).

Theorem 8. Let T > 0. Let the basic state (28) satisfies assumptions (29)—(34) and
|H x H| >80/2 >0 on wr, ©61)

where & is a fixed constant. There exists yo > 1 such that for all y > yy and for all

F, € H[lm‘y(Q}), vanishing in the past, namely fort < 0, problem (60) has a unique solution

Uy Hy . 0)) € HY, (QF) x HN(Q7) x Hy* (wr) with traces (g w1, . hiy)lw, € Hy* (wr),

an,y
Hylw, € Hyl/z(wT), and (qy, ury, hiy)lo; € Hyl/z(w}). Moreover, the solution obeys the a

priori estimate
v (1 ooy + 110y 0y + 1 1y B i e+ 10102, )
4 HlalLy(QT) 14 HV(QT) v v v/ loror H, '(wTUw,}") 4 H, (w7)

< Cuf |12
= % YW Hy, ,(0%)°

(62)
where we have set U, = e V'U,H, = e V" H,p, = e " ¢ and so on. Here C =
C(K,T,dy) > 0is a constant independent of the data F and y .

We observe that in the above a priori estimate there is no loss of regularity from the data F to
the solution (U, H).

Remark 9. Strictly speaking, the uniqueness of the solution to problem (60) follows from
(62), provided that our solution belongs to H?. The existence of solutions with a higher degree
of regularity (in particular, H?) is given in theorem 16.

Remark 10. Differently from the above statement, in [33] it is proved that ¢, € H}} (w7)

with corresponding a priori estimate. Actually, the regularity of ¢, can be easily improved

to H,é/ 2(0)7) as above, because, under the stability condition (61), V; ¢, is estimated by the
172

traces (u1y, 1y, D1y)jw; € H)' " (07).
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6. The elliptic problem (40)

Let us first study the elliptic system (40) for freezed time . We rewrite it as (we drop for
convenience the ” of H”, $")

Vx$H=yx, div(AH) =E in 27,
(A9H)1=g3 onl, vx$H=gs onl_, (63)
(x2, x3) = H(t, x1, X2, x3) is 1-periodic

because h = A$), and where A = A(VW) = (3;®)~'# ", with 7 defined in (55). The matrix
A is symmetric and positive definite. On I'_, since ¥ = O one has v x H = v x §). We denote
by v = (%1, 0, 0) the outward normal vector to I';.

6.1. Preliminaries

Only in this subsection, for the sake of clarity the spaces of vector fields are indicated with the
complete notations L2(Q~; R?), H'(Q~; R?), and so on.
Let us introduce the space of tangential H' vector fields on I,

HTIF(Q’; R?) := {n e HY(Q ;R : vxn=0o0n 1"}.
We also introduce the space of H' scalar functions vanishing on I"_:

Hor (7):={peH'(Q7): $=00nT_}, lollay = I1VlLae)-

The definition of the norm is possible because the Poincaré inequality applies in Hj. (27); it
also yields [|¢r |l g2y < C ”¢”Hdr . Let us denote

Curl,r(Q7) :={V x 7 : n€ H.(Q;R)},

Gor_(27) :={V¢ : ¢ € Hyr ()}
Proposition 11. The following orthogonal decomposition holds:
L*(Q7; R?) = Curl,r(27) & Gor_(Q").
For more general decompositions we refer the reader to [3].

Proof. By an integration by parts one first show that the above subspaces are orthogonal w.r.t.
the L? inner product. Then, assuming there exists u € L*(~; R*) which is orthogonal to
Curl,r (£27) one obtains

Vxu=0 1in D'(Q), vxu=0 in HV*(T.).
If u is also orthogonal to Gor_(£27) one obtains
divu =0 inD(Q), u; =0 in HV2(D).

This shows that u = 0 and that the above direct sum span the whole space L*(27; R?) as in
the statement. ]

From the proposition, any vector field v € L?(2~; R?) can be uniquely decomposed as
v=V xn+Ve, (64)

with n € Hrlr(Q’; R?), V¢ € Gor_(27). However, 1 in (64) is not uniquely defined. To do
so, we choose n € HTII- (27; ]R3) such that, for an assigned V x n, it also solves

divp=0 inQ", n=0 onI_.
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This 7 is uniquely defined; in fact, any such 7 satisfies by an integration by parts and Poincaré
inequality applied to each component

/ |Vxn|2dx=/ 3i77j3i77jdx>C/ In|* dx,
_ o- o
and uniqueness follows from the linearity of the problem. Summing up we have obtained the

following result.
Proposition 12. Given any vector field v € L*(Q7;R3) there exists a unique n €
H.(Q7; R, V¢ € Gor_(Q27) such that (64) holds and also
||77||H1(Q*) + ”V(p”LZ(Q*) < C”U”LZ(Q*)-
We denote by H ' = H'(27) the dual space of H!.(2~; R?). Denoting by (-, -) the
pairing between H_! and H., we have

Il = sup [{x, ¥
o YeH!, IRAF?e

oIl < Clixlleeys  18ix iy < lxlleg fori=2,3,

where the second inequality follows by an integration by parts.
We denote by Hy' = Hy' (27) the dual space of HJ. (7). Denoting by (-, -) the
pairing between Ho_rl_ and Hj. , we have

[(€, &)
1N = sup ———, l&llg < ClEl@), 1€y < IEl@)
= et 1@llmy - -
fori =2,3, (65)

where the first inequality follows from the Poincaré inequality, and the second one by
integrating by parts. The use of negative norms will be crucial in section 8.2 in the analysis of
some commutators.

6.2. Compatibility conditions

For the resolution of (63) some necessary compatibility conditions are needed:

gs-v=20 onl_, (66a)
/ x-ndx = / gs - ndx’, Vn e HTIF(Q_; R* suchthat Vx n=0in Q. (66b)

The first equation on I'_ follows from (v x §) - v = g5 - v = 0. (66b) follows by multiplying
the first equation of (63) by 1 as above and integrating by parts. Observe that one could choose
n=Ve¢,¢¢c HOl (27). In such a case from (66) one gets

f x-Vodx =0 Vo € Hy (),
i.e. the weak form of the natural constraint div y = 0.

We have the following result.

Theorem 13. Assume that for each fixed t the data (x, E, g3, g5) in (63) satisfy (x, B) €
L*(Q7), g3 € H'*('), g5 € HY*(I'_) and the compatibility conditions (66). Then there
exists a unique solution $ € H'(Q7) of (63) and

1912 < C(K)(||X||HT—F' +IEl g +l8slla-12m) + ligsll -2 y), (67a)

VA2 < CE)Y(IIx, Ellzzgy + g3l mewy + lIgslmac ). (67b)
If (x, B) € H(Q27), g5 € HY*(T'), gs € HY*(I'_), then $ € H*(Q") and

191 20— < CE)(lx, Ellma) + g3l mem + Igslmee.)).- (68)
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Clearly, this statement can be translated in a similar one for the original variable H in place

of 9.

Proof.
(1) Given y, let us consider the elliptic system

Vx¢=x,

divei =0 in 27,

21 =0 on T, (69)
VX =gs onI'_,

(x2, x3) — ¢(t, x1, X2, x3) is 1-periodic.

We first show by integrating by parts that a solution ¢ satisfies

/x~r;dx=/ Vx¢-ndx = §~Vxndx+/ gs - ndx’ VneHTll-(Q_),
- - Q- r

Ozfidivg“q&dx:— Qﬁ{-V(j}dx Vo € H'(Q7), ¢r. =0.
It yields

/7)(~r)dx=/§;g“-(V><17+Vq5)d)c+/F gs - ndx’, (70)
for all n € HT'F(Q‘), V¢ € Gor_(27). Given any vector field v, let us choose n €

HrlF (27), V¢ € Gor_(27) as in proposition 12 and substitute in (70). This gives the weak
formulation of (69)

/ x -ndx = g“-vdx+/ gs - ndx’, Vv e L*(Q27). an
- Q- r_
Noticing that

/ x~ndx—/ gs - ndx’
- r_

< C (Il + gshne ) Il

< C (Wl + gsher ) ey

we may apply the Riesz representation theorem and find a unique solution ¢ € L*(27) of
(71), such that

el < € (Il + Neslhaea ) (72)

Using again (64), (70) and (66) gives that ¢ solves (69) in weak sense. Integrating by parts
yields

f Ix|2dx:/ |Vx§|2dx=/ al-gja,-;,-dx+2/ ¢V x gsdx/,
Q- Q- Q- Ir_

where we have set V x J = (d28s5.3 — 93852, 0, 0), and we infer { € H'($27) with

IVl < C (||X 22y + ||gs||H1/2(r,)) . (73)
Finally, by elliptic regularization, if y € H'(Q7) and gs € H*>(I"_), then ¢ € H*(Q~) and

”C”HZ(Q*) <C (||X ”HI(Q*) + ||85||H3/2(r_)) . (74)
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(2) As V x (9 —¢) = 0, we now look for § in the form ) = ¢ + V&, where £ should satisfy
the Neumann-Dirichlet problem

div (AVE) = B — div (AQ) in 27,

(AVE) = g3 — (At onT,

£E=0 onl_,

(x2, x3) = &(t, X1, X2, X3) is 1-periodic.
We first look for a weak solution & € Holn (27). Multiplying (75) by ¢ € Hol11 (27) and
integrating twice by parts yields

/ Avg-wpdx:—/ E¢dx—/ A;-V¢dx+/g3¢dx’, V¢ € HYL (Q0).
- - Q- r

(76)
Recalling that the matrix A is positive definite and that Poincaré inequality holds in Hy. (227),
and noticing that the right-hand side of (76) is easily estimated by the right-hand side of
(67a) times [|@]|51 . by Lax-Milgram lemma we get the existence of a unique solution

€ € Hj- () in the sense of (76), with

(75)

IVEN2 @y < CE (Il + 1Bl gzt +lgsllara) + sl ara))- (77
Then by standard elliptic regularity results
V&l g1 oy < C(K)(”X’ Ellrz) + 1gsllaem) + ||gs||Hl/2(11))- (78)

Thus we get the existence of a unique solution of (75) in H*(Q7),and § =¢+VE e HY(Q)
is a solution of (63). By (72), (73), (77) and (78), the solution constructed above satisfies (67).
Again by elliptic regularization, if the data of (75) have one more derivative then

V&l g2y < C(K)(HX, Ellgre) + lg3llasea + ||gs||H3/2(r,))- (79)
From (74), (79) we get (68). Due to the linearity of the problem, the uniqueness of the solution
to (63) follows by showing that the homogeneous problem has only the trivial solution. In fact,
in the simply connected domain 27, V x § = 0 yields $ = V&, and the other equations of
(63) give (75) with zero data, apart from an arbitrary constant as a boundary datum on I'_. As
this problem has a unique solution &, this solution is necessarily the arbitrary constant given
on I'_, which yields § = V& = 0. U

Now we study the elliptic system (40) taking in account the time dependence. We set

$H, =e7"'H, x, =e 7" x, and so on, for all functions in (40).
Lemma 14. Assume that the data (x, 2, g3, &s) in (63) satisfy (x,, Ey) € LZ(Q;), Xy €
L*(—o00, T; H}) and 8,8, € L*(—o0, T; Hy ), g3, € L2(—o0, T; Hy/*(T")) with 8,83, €
L*(—o0, T; Hy (), g5, € L*(—o00, T3 Hy/* (")) withd, gs, € L*(—oo, T; H, *(I')),
and the compatibility conditions (66). Then the solution $) of (63) satisfies ), € H]l (Q7) with
||57Jy||HV1(Q;) < C(K)(HX,,, Ey”LZ(Q;) + ”alXVHLZ(—oo,T;Hr}‘) + ||8tEV|IL2(—OO,T;H&L)

+||g3y ”Lz(—oo,T;Hyl/z(F)) + ”gSy ”LZ(—OO,T;HVI/Z(F,))

+|| 8tg3y ”Lz(foo,T;H;l/z(F)) + ” 8tg5)/ ”Lz(foo,T;H;]/z(F,)))' (80)
Ifxy € H{(Q7)NH2(—00, T: H)), B, € HN(Q7)NH2(—00, T Hytl ), g3, € Hy'*(wr)N
HX(—o00, T; Hy (), g5, € Hy*(wp)NH2(—00, T3 Hy (') then $, € H2(Q7) and
”ﬁy ”HV?(Q;) < C(K)(V ”Xy’ Ey ”Hy‘(Q;) + ”Xy ”HVZ(foo,T;H,}l) + | Ey ||1-1V2(7007T;1-10*1_‘7)

+||g3y ”H;/Z(wr) + ”g3y ”Hﬁ(foo,T;Hf]/z(l"))

+||g5y I HS/Z(a);) + ”gSy ”HVZ(—OO,T;H;I/Z(I‘,)))' (81)
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Proof. Multiplying the equations in (63) by e™*", applying (67) and integrating in time
yields

”'61/ ”Lz(foo,T;Hy] Q) < C(V ”Xy s Ey ”Lz(Q;) + ||g3y ”LZ(—OO,T:HVI/Z(I‘)) + ”gSy ”LZ(—OO,T;HVI/Z(I‘,)))'
(82)

For the estimate of 0,),, we consider the decomposition 9,5, = 9;¢, + 9, VE,, with ¢, & from
(69), (75). By taking the time derivative of (69) we get from (72)

||at§y ”L%(Q;) g C(”ath ”Lz(—OO,T:Hr_Fl) + ||8tg5y ”Lz(—oo,T;Hy_]/z(l",)))' (83)

The estimate of 9, V&, is more complex. Multiplying (75) by e™* and differentiating in time
gives the system

div (A9, VE,) = 9,8, —div 9,(Ag,) — div ((9,A)VE,) in 27,
(A0 VE, )1 = 0183y — 3, (Agy)1 — (3 A)VE,) onT,
&, =0 onI_.

Multiplying by 9;£, and integrating twice by parts yields
/ AV9,E, - VoE, dx = —/ 0,8, 0;6, dx
Q- Q-

_/ [0:(AL,) + (8, A)VE,)] - VI,&), dx +/ 9,83 0,&, dx’,
Q- r
which gives

||an§y||L2(Q;) < C(”XV“H;(—oo,T;H,}‘) +l Ey”HVl(—oo,T:H&rl)

+ ”g3y ”H;(foo,T;H;]/Z(F)) + ”gSy ||H;(7OO,T;H;1/2(F_)))' (34)
Adding (82), (83), (84) gives (80). The proof of (81) is similar, and so we omit the
details. O

7. Final H! estimate for the linearized problem (39)

Summarizing the results of theorems 8 and 13 we get what follows. Let us recall the linearized
problem (39)
3
AU+ A;0;U+CU = f in Q%,
i=1

J
Vx$H=yx, divh=E in Oy,
8,<p =Al')N.— ﬁzazw — ﬁ333(/) + @ allA)N + &1,
g=H-H—[0:1q]p + g,

Hy = 32(ﬁ2¢)+33(7‘73§0)+33 on wr,
Uy = g4 oOnwj, VX H=gs onwr,
(U,H,(p):O fort < 0.

For the following analysis it seems more convenient to work in the plasma part with the system
apalogous to (_58) and write the vacuum equations in terms of ), as in (63). We find that
U= I(q,u,h,S), where
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see (56), satisfies with Y) the system

3
Apdh + Y (A +Ep)d U +CU = f in O%,
Jj=1
Vx$H=yx div(AH) =E in 07,
dp =1ty — 02009 — V3030 + @ 010y + g1, (85)
G=0-9—1[3:4lg+ g,
(AH) = 32(ﬁ2¢) + 03 (7/'2390).+ 83 on wr,
Uy = g4 oOnwj, vxH=gs onwy,
U, H,¢) =0 fort < 0,

where we have set f = 8161 R f. Let us remark that (85) is equivalent to the linearized
problem (39). Then we have

Theorem 15. Let T > 0. Let the basic state (28) satisfies assumptions (29)—(34), (61).
There exists yy = 1 such that for all y > yi and for all f, € H}%(Q;), Xy €

_ 1N = - - 502
H!(Q7) N H2(—00, T3 H), B, € H!(Q7) N H2(=00, T Hyr ). g1, € Hy*(w}). g2, €
3/2 3/2 —1/2 5/2 32, _

H,*(wr), g3y € Hy (wr) N H2(—00, T; Hy *(1)), g4, € Hy*(0}), g5, € Hy*(07) N
Hf(—oo, T; Hy_l/z(l",)), with (x, gs) satisfying the compatibility conditiqns .(66), and
all functions vanishing in the past, problem (85) has a unique solution U, ,$,,p,) €
Ht:m’y(Q}) x H}(Q7) x H,"*(wr) with trace Gy, i1y, hiy)lw, € H)l/z(wT). Moreover,
the solution obeys the a priori estimates

72 . 2 . . : 2 2
Y (”u]/ ”H!lm,y(Q;‘) + ”fJ]/ “HVI(Q;) + “(qy, Uly, hly)|wr “Hyl/z(wT) + ”‘Py ”Hs/z(wT))
£ o2 = 12 2 = 2
< ; { ”fy ”H(%m,y(Q}) +]/ ”Xy’ —y ”HVI(Q;) + ”Xy ”Hf(—DO,T;H;r]) + ” ~y ”Hyz(_oo’T;HO—r{)
2 2 2
+llg1y ||H5/2(wr) + 1182y, &3y ||H;/2(wr) + ||g3V”HVZ(—oo,T;H;”2(F))

2 2 2
+ ) + + _ , 86
||g4y ||H;/_<w}) ”gSy ||H3/2(w;) ||85y ”Hf(—oo,T;Hy '/2(11))} (86)

where we have set Hy = e ! U,f)y = e V'H, ¢, = e " ¢ and so on. Here C =

e
C(K,T,8) > 0isa constant independent of the data f, x, &, g and y.

Proof. The proof follows from theorem 8 and lemma 14, with (86) following from the
inequalities (48), (51), (62), (80), (81). In particular, |9, | s1(o;) < 119}, 3 0p) + 197 1)
where the first norm in the right-hand side is estimated by (62), and the second one is less

than (1/y)||5§;; ”HVZ(Q?)’ which in turn is estimated by (81) (where £),, stands for 5’);). When
we estimate the boundary data g}, = g + H - H" in (48), (51), we use the trace estimate
195 100 1 532 gy < ClIDY 207 and (81) again. O

vlor

We observe that, differently from what haEpens in (62), in the above‘a priori estimates
we have a loss of one derivative from the data f, x, &, g to the solution (i, ).

8. Well-posedness of the linearized problem in anisotropic Sobolev spaces

The aim of this section is to prove the following theorem.
Theorem 16. Let T > 0, m € N,m > 1 and s = max{m + 2,9}. Let the basic state (28)
satisfy assumptions (29)—(34), (61) and

(U H.§) € HS (Q}) x HS(Q7) x Hy'(wp). (87)
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There exists y, = 1 such that for all y > y, and for all f, € H:f;’l(Q}), (xy, B)) €
H;”“(Q}), satisfying the compatibility conditions (66), (g1y, &2y, &3y) € H;"”'S(wT),

84y € H;"”‘S (w7), 85y € H}’,'”1 (w7), all functions vanishing in the past, problem (85) has a

solution Uy, $,, ¢,) € H",(Q%) x HI(Q7) x H)'*(wr) with trace (G, i1y, hiy)lw, €

H;" -2 (wr). Moreover, the solution obeys the tame estimate

) 2 < 2 . . 3 2 2
7 (W s o)+ 19 Py gy + 1ty o ny ) + 1)
C 2 — 2 2
< ;{(nfynﬂgy(g;) 1t By g + 18 s
772 7712 An2
% (10 Bymsaigp) *+ 1 gy + 19 25(0))

2 —~ 2 2
Ly B copy + 1t By Wy + 180 s | (88)

where the constant C = C(K, T, &) is independent of the data f, x, B, g and y, and where
for the sake of brevity we have set

2 — 2 2 2
”g}/ ”H;’/”H'S(a):;) T ”gl]/v g2)/’ g3y ||Hym+l.5(wT) + ||g4y ”H}r/m-lj(w;) + ”gSy ”H;’”l(u);)'

The proof proceeds by induction. Assume that theorem 16 holds up to m — 1. Given the data
(f, x, €, g) as in theorem 16, by the inductive hypothesis there exists a solution (U, 9, ¢)
of problem (85) such that (4, , 9,,¢,) € H:fy’l(Q}) X H}’,"’l(Q}) X H;”’l(a)r) with trace

(qy, 1y, ley)|wr € H;" -3/ 2(a)r). This solution satisfies the corresponding a priori estimate
(88) of order m — 1.

In order to show that (Hy, .‘f'");,, @) € H;’fy (Q}) X H}’," (Q7) % HJ’/" (w7) we have to increase
the regularity by one order. For ¢/, which has to belong to the anisotropic space H. > we have
to increase the regularity by one more tangential derivative and, if m is even, also by one more
normal derivative. The idea is the same as in [34, 36], revisited as in [6, 26, 37], with the
additional difficulty of the loss of regularity from the source terms, as in [27], and the coupling
with the elliptic system for 9.

At every step we can estimate some derivatives of I/ through equations where in the right-
hand side we can put other derivatives of / that have already been estimated at previous steps.
For the increase of regularity we first consider the system of equations (91) for purely tangential
derivatives of U, coupled with the elliptic system (93) through the boundary equations (111),
where we can use the inductive assumption. The difficulty is that we have to deal with the
loss of one derivative in the right-hand side of (91). However the terms in the right-hand side
have order m — 1; after the loss of one derivative they become essentially of order m, and can
be absorbed for y large by similar terms in the left-hand side. The regularity of the front is
obtained at this step.

Then we consider other systems (119), (122) of equations for mixed tangential and normal
derivatives where the boundary matrix vanishes identically, so that no boundary condition is
needed and we can apply a standard energy method.

For the sake of brevity, let us denote

3
L = .A()al + Z(AJ + 51j+1)8j +C.
j=1
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We decompose U asU = <ZZ”) , where U! = (¢, 1t1), U™ = (ilo, 13, b1, by, h3, S). A similar

decomposition is used for other vectors. We also write the first two rows of .24\1 +&p as

0 1
@'eey AN et= (1 )

The matrix 6%21 is the invertible part of &),.

8.1. Purely tangential regularity in the plasma part

Let us start by considering all the tangential derivatives Z°U, |a| = m — 1. By inverting 5{21
in the first two rows of (85);, we can write 9;U" as the sum of tangential derivatives by

WU = AZU+R (89)
where

2
AZU = —(ERD) T (A Zolh + Y (Aj +E ) Zith)' + Ao,
j=1
R=(EN(f-Cw'.

Here and below, everywhere it is needed, we use the fact that, if a given matrix A vanishes
on {x; = 0} U {x; = 1}, we can write AGIZJ = MZIL?, where M is a suitable matrix, and
it holds ||M|| HE(0%) < ¢l A H;,(0})> See lemmata 46 and 47; this trick transforms some
normal derivatives into tangential derivatives. We obtain A € H:.;Z(Q;).

Applying the operator Z* to (85)1, with & = (¢, &’), &' = (@1, @, a3), and substituting
(89) gives

L(Z°U) + Z Zzzjzjzyu_,_ Z ZA, (AZO(ZVU)>

ly|=lal—1 j#1 [y |=lee|—1
- ag 7a1—1 ay 7a3 47,
s (M T )
T T o 71 —1 7oy a3 0 .
+< Z ZAIZV—oq(A1+512)ZO°Zl‘ 22223’> <81Z/-{H :Fa, n Q;—, (90)
ly1=lal-1
where
~ w B ~ o wg (AZU+R
Fo=— Y |> zPA;z;z2Pu+ 2P Az ﬂ( o )

1BI22.8<a | j#1

o\ ~ oo a (AZU+TR
- (21) (A +E) 227 2z;z;< )

aluH

— (4 +512)31Zg°|:(Z1 — D" = ZV +a(Z) — D!

- (‘;1> (Z), — 1)”412}23‘22;‘321 - ZA, [Z“’, <é\)} zu

—~ A . ~ -
+ai (A + &) [zgﬂz‘f"lzgzzg‘*, (0 )} zu—[z*.Cu

lo'|=le| =1

T ! T o - o R o F
—| > zZAZY - (A + )z 2y 25 28 (O>+z 1.

lor'|=le| =1
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[-, -] denotes the commutator. Equation (90) takes the form (L + B)Z°U = F, with
B € H (0}). '
Then we consider the problem satisfied by the vector of all tangential derivatives Z“U of

order || = m — 1. From (90) this problem takes the form
(L+B)ZU = Fy in QF, 1)
where
L

L‘,: .
L

BeH ;jf(Q}) is a suitable matrix and F, is the vector of all right-hand sides F,.
In order to increase by one tangential derivative the regularity of Z*/ we will apply

theorem 15 and in particular the a priori estimate (86). For this, we have to estimate F,, in

Hénf},(Q}). Here special care is needed because of the loss of one derivative in (86) from

the source term to the solution. However, this is the same calculation of [27, pp 77-79].

Proceeding as in [27] gives from corollary 44 and theorem 45 the estimate

”-7: ay “ H2

tan,

: .
L0 S C(”“y”HS.’“,y(Q?) 101Uy g 2c05)

tan,y

tan,y

+ Uy a7, op U VWL gmaon) + Ly e (Q;)), (92)

where the constant C depends on || l7, A ||H3y(Q;).

8.2. Purely tangential regularity in the vacuum part

Let us consider now the equations (85), for the vacuum magnetic field. Applying the operator
Z* gives

V X Z°9 = xo, div(AZ%§) = E, in 07, (93)
where we have set
Xe = 2% — (2%, VX 19, By = Z*E — [2°, div (A)]9. (94)

For the estimation of the commutators in x,, &, it is crucial to have introduced the functional
spaces Hf}l, H(;rl, (in space variables) with negative order, in order to compensate the H?
norm (in time) appearing in the right-hand side of (86).

Lemma 17. The following estimate holds:
Y Xay» an”HVl(Q;) + | Xy an”HVZ(_oo,T;HT}‘xH&_L)
< C(K){”f.jy ||H(;n_y(Q;) + Xy, By ||H;;;:‘y(Q;) + lley ||H;”+1/2(wT)
U scr *+ 100 Do) U8y gz, + 1 Fl o)

+||g3y||H;"*l/2(wT) + ||g5y||H;”*l/2(w;)}~ (95)

Proof. Notice that [Z%, 9;] = 0 fori = 2, 3, and [Z*, 9;] # O only if o} > 0. In fact, it is

(29, 9] = -0’28 = Z1(0'0, 28 %) — - = 20 (07d). (96)
It follows from (96) that [Z*, V x ]5;“) may be written as’
[Z%, VX 19, = Pu-1(2)8:9,, (97)

7 The equality follows by commuting 8; and Z; till when d; always stands on the right-hand side of each term.
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where Pjy—; is a polynomial in Z of degree |@| — 1 with C*° coefficients only dependent on
x1. For the sake of simplicity let us first assume m = 2, sothate = oy = 1 and Py = —o’'.
By an integration by parts we have

| Jo 0019, - ¥ dx]|

o819, 1y = sup
T, T
| 0’9y Yy’ — [ 0’9, Y dx' — [5 9, - 31 (c'Y) dx]|
= Sup . 98)
yeH! 11l

Regarding the boundary integrals, ¥ € Hrlr and the boundary condition on I'_ give
Sy =myr ol HYy =Sy —gsYatgsays  onlo (99)

Since the trace ¥ € H'/2(I' UT_), for the estimate of the boundary integrals in (98), after
(99) we need an estimate of $; in H~'/>(I" UT_). From?®

(AH)1 = (VO)2H1 — 920, — H305¢ onT, (AH) = (D) "'$H; onT_,

we get
/Glﬁf;hy% dx’—/ o' H1, Y1 dx’
r Ir_
= f o/ (VP) 2 (AH,) 1Y dx’ — f o'8,®1(AH,) 1Y dx’
r _
" / o' (V) ($2y 92 + $13y 030) ¥ dx’
r
=/ div (a/wv@)—zAf")y)dH/a/<v¢>—2(s'§2yazcﬁ + 93, 830) ¥ dx’
- I

= fg (@YY 2B, + AS, - V(6 Y1 (VP) ) dx

+/ o’(V@)’z(ﬁz},az(Z) +53y83¢3)1ﬂ1 dx’. (100)
r
Thus, from (98), (99), (100) and the well-known trace estimate

1Sy, 3 irlaeay < C (19 2@ + 1V X 9y ll2@)) (101)

we get
||<7/31~‘;0y||;1;rl < C (199120 + 1%y Byl + llgsy lla-12¢ ) -
For m in the general case as well as for the time derivatives of 815y we follow similar arguments
and obtain from (97), the calculus inequality (269) and Sobolev imbeddings
I1z®, Vx 19, l2(—c0, 75051 < c{l9, e com + 1y Eyllmz, cop)

+ ”ﬁy ”H;‘(Q;) ”(py ” H;//”H/z(wr) + ”gSy ”H;"*l/z(w;)}-

Adding the estimate of Z* y gives

”Xay ”HVZ(*°°~T3HT_1"]) < C{ ”ij ”H"’

tan,y

o + Iy By g o)
1 s oy 18 gy + 1850 g2 )+ (102)

which provides half of (95) for the part of yx,; in analogous way we prove the estimate of
I Xery 11 07y
Y T

8 Here we use the notation (V@) := (1 + (30| + |9:¢|%) /2.
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Let us consider E,. As to the second commutator in (94) we have
[Z%, div (A)]H = Z%div (A§) — div Z%(A$H) + div Z¥(AH) — div (AZ49H)
= [2%, 011(A9)) +div[Z, A-19 = Pla-1(2)01(A$H), +div[Z°, A-19,
(103)
from [Z%, Z;] = 0if i = 2, 3, and (96), where again Pj,|—; is a polynomial in Z of degree
] — 1 with C* coefficients dependent on x;. To estimate the first term in the right side

assume for the sake of simplicity that m = 2, which yields Py = —o’. Integrating by parts
gives

| [ 0'81(A$,)16 dx]|

o' 91 (A9)1 Iyt = sup

peH) ||¢||HU‘K
| [0 (AH,)1¢dx' — [ o' (ADH,)1pdx’ — [, (A$H,)131(c"¢) dx|
= sup
ot IVl
| [ div(0'pA$H,) dx — [, (A$),)19i(c’$) dx|
= sup
el Vol
- | [ (6’0 B, + A$H, - V(0')) dx — [, (A$,)10(c'$) dx|
gl IVll2@) ’

and we readily get

o' (A9l < C (195 2@y + 1Ey llz@) -
For m in the general case a similar argument gives
I Pt 1 D0 AN 2ozt ) < CUID g 00y + 1By g, c0r)

19y s om 16y g }- (104)

Finally, consider the last term in the right-hand side of (103)

div[Z®, A-1$9 =Y %[Z% Ay 19;.

iJ

If i = 1 we compute

”81[ZaaAlj']§)y”H0}l_ = sup |fl"[z ,Alj-]ﬁy(ﬁdx _fgf[Z ,A]j-]ijalqbdx" (105)

peH) VoIl

Her.e the'problem is how to estimate the trace of 551,/ in the boundary integral, while the traces
of $,,, $3, can be controlled as in (101). From the boundary condition

i =Had =) (Hid¢+3(Hig)+g  onl, (106)
i=2,3
we have
552 = Hﬁz? +Hy = (X (Hitigp +0; (Eﬂp)) +g3) 029 + Ha,
93 =M1W +Hs = (X, (Hi9:¢ + 9;(Hip)) + g3) 93¢ + Ha,
and this system can be rewritten as
(1+ 100 + 0:00:6H = 92 — (X, i (Hig) + 3) D2,

+ 1024 03¢ = 4 ‘ (107)
0903pH, + (1 +1939|H3 = H3 — (X, 9: (Hip) + g3) 03¢
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Since system (107) has determinant 1 + |8,@|> + [83¢]* # 0, we can write H,, Hs in terms of
the right-hand sides. The values of H,, H3 that are controlled in this way are then used for the
estimate of §)1,, from (106). From (105)—(107) we get

10112, A1y 192 oot ) < CUID I, c0r) + 100 i

+(19y 1307y *+ 1900 300r)) Uyl goesi gy + 1 1 (07

+1839 | 172y + 1857l gr-120 }- (108)
Fori = 2, 3, applying the last inequality in (65) yields

19127, Aij 19 2 oozt y < MZ% A 1912 o0, 7:122)-

By Leibniz’s formula, we expand [Z%, A;;- ]55_,~ (we write it in informal way, only taking
account of the order of derivatives and dropping the irrelevant numerical coefficients)

(2%, Ay 19 = > 2P A; 2°9;. (109)
Bl<lal

Applying the calculus inequality (265) to each term of the above expansion and a Sobolev
imbedding yields

I1Z*, Aij-19y 200,322 < CU$Hy Il

tan,y

;) 119y ||HV3(Q;)“(/A))/ ||H;"+1/2(w7)), i=2,3.

(110)
Adding the estimate of Z* &, from (104), (108), (110) we obtain (95) for the part of E,. The
proof of || Eqy || HI(07) is similar so we omit it for the sake of brevity. O
8.3. Regularity on the boundary
Applying the operator Z* to the boundary conditions in (85) gives
(0 + 0202+ 0303) Z% = Z%1iy + Z%@ 31Dy + [Z%, 0202 + 030319 + g1a,
24 =6 2% — (13129 + gou, ain
(AZ*$)1 = 0(H2Z%9) + 33 (H3Z°‘<P).+ 83 on wr,
Z%0) = Z%g4 on wry, VX Z*H =2%s onow;y,

where we have set
8l = Z%g1 +[Z%, 010y]g,
B0 =20 +[2°, 519 — (2%, [3:4] g, (112)
3 = Z°g3+ (2%, 0y(Ha') + 5 (H3) 1o — (1Z%, A 1)1
It is understood that these terms make sense only for o; = 0, because of the weight ¢ in Z;,
vanishing at wy. We immediately get

“Zag4y ||Hy5/2(w;) + ”ZagS}/ ”HS/Z(‘U'/_‘) + ZagS)/ ”Hyz(foo,T;H[l/z(F,))
< ||84y ||H;"+3/2(w;) + ||85y ||H;r+1(w;)~ (113)
For the other more involved terms we prove:
Lemma 18. The data g;o,i = 1,2, 3, defined in (112), satisfy the estimates

”glot)/ ”Hfﬂ(wf) + ||g2aya 83ay ”HE/Z(wT) < ”gly ”HV"’”/Z(wT) + ”gZya 83y ”H}//"Jrl/z(a)r)
+ €19y g, 0 + 10l g2

+ (100 + 1Ry + 19 % Nmpecon ) (195 lpon + oy lmen ) ). (14)
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||g30ll/||Hy2(7oo,T;H;l/2(1")) < ||g3]/||H,;'“’](wT)

+C(K)(||55y ||ng§,_y(Q;) + Xy ”HIQ"HYV(Q;) + lloy ”H;"*'/Z(wr)
+ (Rl mgcon + IV ®lmpacon ) (19 lngon + leslmsen) ). (115)
Proof. As the commutators in (112) are meaningful only for «; = 0, they only involve

derivatives Zy, Z,, Z3, i.e. standard derivatives (not conormal) and the standard analysis of
commutators applies. The proof of (114) follows by well-known commutator estimates (see
lemma 48), standard Sobolev imbeddings and theorem 41. The proof of (115) follows by using
part of the arguments needed for the proof of lemma 17. 0

8.4. A priori estimate for purely tangential derivatives

Now we apply the a priori estimates (86) to the solutions of (91), (93), (111). This is a
compound system with the same structure of (85), except for the addition of the zero-order
terms B in (91), and the commutator term added in the first line of (111), which however
behaves as a zero-order term in Z%¢. A check of the proof of theorem 8 in [33] immediately
shows that it works well even with added zero order terms in (85);, w.r.t. U, and in (85)3,
w.r.t. ¢. From (86), (92), (95), (113), (114), (115) we have

. . L
v (103, o5+ 190 s omy + 199 1210

tan,y

. . ; 2 2
Gyt hilor 2+ 197 120,)

<& 1 2 ony + 1UNNZ 2 o + 199 120 oy + 10y 112 i

Sy v Hg, , (O7) v VHp 2(05) YU HG, (07 v g2 (o0
Y2 . 2 2 7702 T2 T2

(068 7 ) + 195 Pascom, + 10 Bscon) (101205 + 1 g0y + 100, )
72 — 2

+ mal ey T , & el e

”fy”Hmn‘ly(QT) ”X)/ y”Hmn‘ly(QT)
2 2 2
+||gl)/’ 82y, 83y ||H;”+3/2(a)7-) + ”84)/ ||H;"+3/2(w}') + ”gSy ||H}V/H+l(w;)}' (116)

The constant C depends on K. Taking y sufficiently large yields
v (1L 1 ony + 119 11 +[V9, 12
Y Hlan-V(QT) v Hll‘)llny(Q;) Y Htr:niyl(Q;)
Iy s B 1312, + 0y 13 < Sfioane
vo e B Aler TR wr) P ) Sy v VHg 2 0%)
7 12 . 2 2 2 712 T2
(0812 0+ 195 ey + 10 sy ) (1000 + 1P gy + 19 s )

£ 2 = 2
A Wt o) + 1 Bl o)

2 2 2
+||g1)/’ gz}/’ g3}/ ||H}//”+3/2(w7_) + ||g4)/ ||H;"+3/2(w}) + ”85)/ ”H;”*l(a);)}’ (117)

where the constant C depends on K.



Plasma—vacuum interface 31

8.5. Tangential and one normal derivatives

We apply to the part II of (85); (i.e. to the equations for U = (i, 13, hy, ha, h3, S)) the
operator ZB9,, with |B] = m — 2. We obtain equation (28) in [6], that is

[(L+aADZP+ Y (ZAw+)  ZA;9,)Z"
lyl=181-1 j=1
—Bi(A +Eanzy ZP T 2B 2 " = g, (118)

where the exact expression of G, with the lower order terms, may be found in [6]. Using (89)
again, we write (118), for variable || = m — 2, as

(L+0)z2PoU" =g, (119)

]ll,ll

where

L
E:

L

with L = A, AL g, + ijl(ﬁj + 51,-“)1“13, and where C € H,f;/z(Q}) is a suitable matrix.
Here a crumal point is that (119) is a transport-type equation, because the boundary matrix of
£ vanishes at {x; = 0} U {x; = 1}. Thus we do not need any boundary condition. Moreover,
a standard energy argument gives an L? a priori estimate for the solution with no loss of
regularity w.r.t. the source term G. For its estimate it is important to observe that the only
derivatives of I of order m contained in G are tangential derivatives, estimated in (117). We
get the a priori estimate

C
)/||31UH||Hm 2(0r ) (”fy”Hm won T ||1/l ||H'” (0r) +J/||u ”H"’ 0y )> (120)

tan,y

for all y sufficiently large where the constant C depends on ||U V\IJ||Wl (01" Combining
(117), (120) and applying theorem 15, we infer U e tan),(Q") with (g, i1y, hly)lw,

Hy' " (wr), ¢, € H)'"*(wr) and $ € H', | (Q7) with V$) € Hiw ' (07).
We also deduce. that equation (119) has a unique solution zP alu“ € LZ(Q+), for all
1Bl =m —2,ie. U € H"" 2(QJ}). Using (89) again, we infer 0,14 € H/y. 2(Q ). Adding

tan,y tan,

(117), (120) and taking y sufficiently large yields

(104 e cop) + 1012k a0, + 1901 gy + 1990 21
S s ) C
Gyt il 2+ 190 B, ) < {ynu [P
+ (08 17 gy + 195 Psiom, + N sy (||U||H,,,+2(Q+) IRy gy + 19 1500,)
wy &1 y &7 y *,y T y T Y
1y Wiz cop + 16 By et o)

2 2 2
+81y: 8201 83y yposny,) + 188y Ipmoss ) + 185y I | (121)
where C depends on K.

8.6. Normal derivatives

The last step is again by induction, as in [34], page 867, (ii). For convenience of the reader,
we provide a brief sketch of the proof.
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Suppose that for some fixed k, with 1 < k < [m/2], it has already been shown that
Z*3"U belongs to L>(Q%), for any h and « such that h = 1, - - -, k, |ee| + 2k < m. From (89)
it immediately follows that Z*3**1¢4' € L?(Q%). It rests to prove that Z*3** 1" € L2(Q%).

We apply operator Z"‘&{‘“, || +2k = m — 2, to the part II of (85), and obtain an equation
similar to (119) of the form

(L+C)zéu" = g, (122)

where G € H. :;,3 (Q7%) is a suitable linear operator. The right-hand side Gy contains derivatives

of U of order m (in H]' , ie. counting 1 for each tangential derivative and 2 for normal
derivatives), but contains only normal derivatives that have already been estimated. All
products of functions are estimated in spaces H,", by the rules given in theorem 39 and

lemmata 46 and 47 ~in appendix A. We infer Gy € L?(Qr). Again it is crucial that the
boundary matrix of £ vanishes at {x; = 0} U {x; = 1}. We obtain the a priori estimate

k+19711 12
YIZ5 Uy Wz g,

. . :
= Bah 2
< » 15 ez o) + > 1279y Uy [l

72
lan.y(QT) + V ||Z/{)/ ”H»f.l;](QT) ) (123)
|Bl+2h=m, h <k

for all y sufficiently large. The solution Z“Z)f“l]n is in L2(Q}) for all «, k with || + 2k =
m — 2. By repeating this procedure we obtain the result for any £k < [m/2], hence
Ue H,,f’fy (Q7). We refer the reader to [6,26,27,34,36] for similar details.

From (121) and (123) for varying k, plus the direct estimate of the normal derivative of
U' by tangential derivatives via (89) we obtain the full regularity of E{y in H, (07):

) 2 < 2 . 2
(10 i, o)+ 19 10y + 1V s
Gy iy i lor 2, + 197 n,,))
< S, 12 + 19y 1300 + oy I
S vy, 05 vIlascor) T 19y T3 wr)
T2 7712 T2
X (||U||H;";'2(Q7) + ||H||H;V/H+2(Q7) + ”\IJ"H;MZ(QT))
72 =2
+||fV||H,_T;§](Q}) + ”Xy, uy“H‘Z‘:;(Q;)
2 2 2
+||gly» 82y 83y ”H}'”}/z(wr) + ||g4y ||H;1+3/2(w;) + ”gS)/ ||H;n+l(w;) }7 (124)

where C depends on K. The norms of higher order in the right-hand side are absorbed by
taking y sufficiently large.

8.7. Regularity of the vacuum magnetic field

Up to now we have only proved for the vacuum magnetic field $ € Hg, ,(Q7) with

v € Ht;"nf;(Q;). We write the normal derivatives in terms of the tangential derivatives
from

Vx$H=yx, div(AH) =2 in QF,
where (x,, E,) € H}’,”“(Q}). Starting from V§) € H{;:;(Q;) we may increase the regularity

in the normal direction step by step and finally conclude e HJ(Q7).
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8.8. The tame estimate

From (124), after the previous calculations for the additional regularity of $ we obtain, for all
y = ym sufficiently large, the following estimate

y 2 < 2 . . 3 2 2
y(nuy Ui, o *+ 19y W gy + 1y ity i)l i, + 0y ||H;m/z(w”)
< Sl 19y 112 o + oy 112
X )/ Y Hl,y(Q;) Y H;‘(QT) Y Hﬁ(wr)
7712 77112 02
% (10 Bymaigp) + 1 er o + 19 s
2 — 2
+||fy||H:1;l(Q;_) + ”X)/v DVHHEHI(Q;)

2
+||g1y» 82y 83y ||H;"+3/2(wr

2 2
88y 12 )+ 1859 Iy (125)
where C depends on K.

The a priori estimate (125) holds for all m > 1 and y > y,, (we may assume that y,, is
an increasing function of m). From (125) for m = 7 and y > y; one gets

72 o 2 2
Y (”uy ”HZV(Q;,) + ”57.7}/ ”H;(Q;) + ”(Py ||Hy7'5(wr)>
< S (2 + 19y 3000y + oy I
Sy vy (09 vilascon T 19y T3 r)
2 =2 32 2 !
X <”U”H*9V(Q*T') + ”H”HVQ(Q;) + ”ly”H;U(Q”) + ||f}/ ”HE_V(Q;_) + ”X}/a —y ”HE(Q;)
2 2 2

+||gly > 82y 83y ||H§-5(w7) + ||g4y ”Hf-j(w}) + ”gSy ”Hrg(“’;) ]

Then, by taking y larger if needed, one obtains

. . C
2 2 2 2 -~ 2
V(”uy ”HZV(Q;) + ||57Jy||H;(Q;) + ”(py”HVm(wT)) < ;{”fy ”HEV(Q;) + ||X)/7 “H‘V”HE(Q;)

2 2 2
+||g1y ) gZy ’ g31/ ”H‘S'S(wr) + ||g4y ”Hfi(w;’-) + ”85)/ ”Hf(w;) } ’ (126)
where C depends on K, having used ||(I'\||HV‘U(QT) < C||<,5||i195(w1_). At last, substituting (126)
v

in (125) gives the tame estimate

y 2 < 2 . . : 2 2
V (”uy ”HKV(Q;) + ||57Jy ”H}l/n(Q;) + ”(‘Zy, Mly, hly)'wr ||H';"71/2(a)7‘) + ||(py ”Hﬂ'“/z(wr))
< 1A 3 +11xy Ey 117 +| I3
= y v HS (07) Xy» Sy HE(07) 81y 82y 83y HSS (wr)
2 2 7712 77112 A2
18 s + 185 o)) (10 By + 1P gy + 100y )
2 = 2 2
+||f)/ ||HQ;‘(Q}) + ”Xya Sy ”Hymﬂ(Q;) + ”gly» 82y 83y ||H;:n+3/2(ll)7‘)
2 2
gty s, + 1857 o | (127)
where C depends on K. In the end, for homogeneity of notation we raise the norms of boundary

data of fractional order to the higher integer order and get (88). The proof of theorem 16 is
complete.
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9. Compatibility conditions on the initial data

Assume we are given initial data Uy = (go, v°, H?, Sp), H° and ¢ that satisfy the hyperbolicity
condition (8) and the stability condition (22). We also assume

llooll g2sry < €, (128)

with €; := €y/2, for €y as in lemma 3. Let the functions Wy, @Y be defined from ©o, as in
lemmata 2 and 3. We assume also that the initial plasma magnetic field H° satisfies

divh® =0 in Q",

Hz(\)/(, =0 onT, Hlo =0 only,, (129)

where h? = (H]?,U , Hgal GD?, H3°81 CD?), H](\),0 = Hl0 — H2082‘-IJO — 1-1_383 W, and the initial vacuum
magnetic field H° satisfies

VxH’=0, divh®’=0 inQ",

130
H(,)vozo on T, vx H"=30) onl_, (130)
where $°, h° and H?VU are defined by
o = a1, 1), b = (), 1o @, 1]y o), (131)
Hiy = H] — Hj 8o — H; 9o, HL =MW+ H], =23,

for j = 0. Notice that system (130) uniquely determines " from ¢, and J(0) by theorem 13,
see the comment in remark 6. o S

Letusdefine U; = (q;, v/, H’, S;), withv/ = (v{, v5, vj)and H/ = (H], HJ, H]), and
@; by formally taking j — 1 time derivatives of (17) and the boundary equation d;¢ — vy = 0,
evaluating at time + = 0 and solving for 3/ U(0), 3/ ¢(0). This procedure inductively
determines 9/ U (0), 3/ ¢(0) in terms of Uy, ¢g. We denote U; = 3/U(0), p; = 3/ ¢(0).
Corresponding to ¢; we compute the functions W;, ®/, as in lemmata 2 and 3.

Finally, we define the time derivatives at initial time H/ as the unique solution of the
elliptic system

V x 9 =aj, divh/ =B, inQ,

; g . 132
Hy =0;, onT, vxH =03/30), onl_, (132)

where $/, b/ and H{;, are as in (131) and «, B;, 6; are suitable commutators, for example

B = [V, 3WeIHS + [V, 33V HS

with VW, := W;, WH? := M. From the second boundary equation in (18), stating the
continuity of the total pressure, we deduce that sufficiently regular solutions should satisfy

8/(q—1MP|_,=0  onT.
These equations yield the compatibility conditions
qo = %I?—lol2 onl', j=0,
j-1
. S 133
gi=)_ Ci,(H.,H™)  onl, j>LI (13
i=0

Notice that the other boundary conditions in (18) do not give raise to compatibility conditions
as these are implicitly included in the above definitions of ¢;, H/.
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Lemma19. Letk € N, k > 4, Uy € H*12(Q*), H® € H*2(Q7), g9 € H*(T) and J €
H*12(10, Ty] x T_). Then, the procedure described above determines U; € H=I=172(QM),
HI e H=I-12(Q7) and @; € Hk’j(F)forj =1,...,k— 1. Moreover,
k-1
110 sy + D (10 sy + WH sy + 1@l asiy) < C(Mp), — (134)
j=1
where the constant C = C (M) > 0 depends on
k=1
Mo = |Uoll i@y + lgoll ey + Y 197 3O | g1 (135)
j=0

Proof. As follows from the construction of the functions U; and ¢;, we can estimate them
separately from H/:
k—1
D (10 i@ + 95l ) < CMo, (136)
j=1
where the constant C > 0 depends only on k and the norms ||Up||w1.~q+ and |l¢ollwice -
For the proof of (136) we refer to [25,30].
Problem (130) has the form of problem (63) with x = 0, E = 0, g3 = 0, and theorem 13
shows its solvability with H? regularity of the solution. By classical results one can improve
the regularity to

||550||ka'/2(9*) < C(Ky) (||</70||Hk(1") + ”\K(O)HH"’*‘(F_)) ,
with Ky = ||@ol| w2 (). Since HKT) < W>*(I"), we get

IH Il -1y < € (Mo). (137)
For estimating 7/ we can use as well regularity results for elliptic systems. Indeed, the elliptic
problem (132) has the form of problem (63) with

X =0, B =5 g ="y, (138)
and @, U and ® | replaced by ¢, Wy and @Y, respectively. The proof of estimate (134) follows
then by finite induction with respect to the upper limit of the sum. Applying the Moser-type
calculus inequality (269) for estimating the commutators «;, 8; and %, taking into account
lemmata 2 and 3 and using estimates (136), (137) and Sobolev’s imbeddings, for problem
(132) with j = 1 we derive the a priori estimate

I+ | sy < C(Mo)
justifying the basis for the induction. Exploiting similar arguments, from the inductive
hypothesis

k=2

0 .
11 i@y + Y (1l + IH L aesmny + 9 avsy) < C(Mo)
=1

we derive the desired estimate (134). But, in this step some terms appearing in the commutators
are treated in a different way. For example, for the term H(2)|r 0,1 appearing in ¥;_; we do
not use the Moser-type inequality and estimate it as follows:

0 0 0
IH;00k—1 2y < I HL L@ lok—1llasay < ITH k@) lok—1llaszay < C(Mo),
where we have used Sobolev’s imbedding and estimates (136) and (137). O
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Definition 20. Let k € N, k > 4. Consider initial data Uy € H*"'/*(Q*), H* € H*=12(Q7),
and ¢y € H*() that satisfy (8), (22), (128), (129) and (130). The initial data (U, HO, ©o)
are said to be compatible up to order k — 1 if they satisfy (133) on T, v{ = 0 on T, for
j=0,...,k—2, and

k—2
o d d
f|4k—] -y C,’(_z(H’,Hk’l”)|2ﬂdx’+/ [ P2 dy < oo, (139)
r i—0 X1 I, X1

Observe that U; € HY2(Q%), H/ e H¥?(Q ) for j =0, ...,k —2,s0itis legitimate to take
the traces at {x; = 0}.

10. Construction of an approximate solution

We now introduce the following ‘approximate’ solution. As regards the plasma equations,
these are solutions in the sense of Taylor’s series at + = 0. Let us set
0 =R xQ, QiszQi, wo=RxT, ot =R x .

First we extend the density current J € H k=1/2(10, Ty] x T'_) to the whole real line of times
by preserving the same regularity. Thus from now on we assume that J € H*~1/2(w™).
Lemma2l. Letk € N, k > 4 and 3 € H*"'>(w™). Consider initial data Uy € H*='/2(Q"),
HY e H'2(Q7), and oo € HNT) that satisfy (8), (22), (128), (129) and (130) and
are compatible up to order k — 1 in the sense of definition 20. Then there exist functions
(U, H, ) such that U* € H*(Q"), H* € H*(Q7), ¢* € H*'2(w), and such that

/P, W) = = 0 for j=0,....k—1, (140)
V(HY, W) =0 inQ", (141)
BU* H, ¢*)=F onwxw" xw, (142)

where W¢ is constructed from ¢ by lemma 2, and‘;j =(0,0,0,0,3)T. Moreover (U®, H*, o)
satisfy (29),, (30), (61) with a strict inequality, the constraint (31) and the estimate

N1U“Nax s + IH ko) + 9 | r12(0) < C(Mo), (143)
with C = C(My) > 0 and M, defined in (135).
Proof. Given the initial data, let us take U; = (g;, v/, H/, S;) and ¢;, with v/ = (v{, vg, vg)
and H/ = (H{, HJ, H]), as in lemma 19. We first take (v, %) € H*(Q") such that
3 (1%, im0 = v/, S)) inQ*, j=0,....k—1, W=0 onao' (144)

Given v“, we find ¢* from

3ra¢” = V3 1= V] — v§0,9% — v§d3¢" on w, 145)
©%li=0 = @o.

As v, € H*1/2(w) we get ¢ € H*/2(w). From (144), deriving (145) in time, it follows
3 ¢%li=0 = @, j=0,... k-1

Since ¢ satisfies (128) at the initial time ¢ = 0, by a cut-off argument we can choose ¢“ that
satisfies (29), for all times in strict sense. From ¢* we compute ¥¢, ®¢ as in lemmata 2, 3.
Now we solve

oH® +

“CCVYHY — (b - Vvt + HAdivu®t =0 in Q%
5100 {(w ) ( v vu } in Q7, (146)

H",—0 = Hy,
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where
h® = (H{ — Hf 0,V — H{9;W*, H}0, P, H{ 9, D7),
u® = (Vya, v501 P97, v50,97), w® =u® — (0,94, 0, 0).
We have w{ = 0onI' UT,, so that (146) does not need any boundary condition.

With the usual calculations we find from (146) and the initial constraints (129), that H¢
satisfies forr > 0

divh(t) =0 in QF,

147)
Hy() =0 onTl, H (t)=0 onl,.
From (146) we also obtain
3/ H o = H/, j=0,...,k—1.
Then we compute the vacuum magnetic field H?, for each fixed ¢, from the problem
V x H =0, divh =0 inQ7,
a " a _ ~ (148)
ye=0 onT, vxH =3 onl_,

where HY.. = H{ — H50,90 — H503¢¢, and where ¢, h* are defined as usual from H*, ¢,
®“4. When t = 0 we get

V x $H0) =0, divh’(0) =0 inQ",
4 (0)=0 onT, v x H*(0)=3(0) onTl_.

On the other hand, we are prescribing for H the initial constraints (130). As the right-hand
side of (130) and (149) is the same, by uniqueness of theorem 13 we get $H4(0) = 9, that is
H%(0) = H°. By taking the time derivatives of (148) we obtain

3 H e = M, j=0,...,k—1.

(149)

To conclude, we define ¢ € H*(Q*) by requiring

Btjq“|,]:o=;]j nQ*Y, j=0,...,k—1, (150)

q“ = 3|Hl" onw.
Such a lifting is possible because of the compatibility conditions (133) for j =0, ...,k —2
and (139), see [24, theorem 2.3].

The regularity ¢ € H k1/2(w) follows from (147),, (148), and the stability
condition (22). We observe that (148); may be equivalently written as (141), and
(144),, (145)1, (148),, (150), as (142).

At last, since U“, H* satisfy (30), (61) at the initial time ¢+ = 0, by a cut-off argument
in the above procedure we can choose U“, H that satisfy (30), (61) for all times in strict
sense. O

The approximate solution (U“, H“, ¢“) enables us to reformulate the original problem as

a nonlinear problem with zero initial data. Let us take k = m + 10 in lemmata 19, 21, where
m € N. Introduce:

fe.=-PWU*°, ¥, t >0,

f:=0, t <O.

Because U € H"'0(Q"), p¢ € H"103(w), (140) yields f¢ € H™°(Q*). From (143), we
also get the estimate:

1 f Mmooy < C(Mp). (152)

(151)
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Given the approximate solution (U4, H%, ¢) of lemma 21, and f¢ defined by (151), then
(U, H,p) = (U H, ¢*) + (V, K, ) is a solution of (17)—(19) on Q% x QF, if (V, K, )
satisfies the following system:

LV, W) = fo, in 0%

£(K, W) =0, ino;,

B(V,K,¥) =0, on wr X wF, (153)
(V,K,¥)=0, fort < 0,

where

LV, W) :=PU*+V, ¥ +W¥) —PU* ¥,

EC, W) = V(H* + K, U + ), (154)

B(V,K,¥) :=BU" +V, H + K, ¢* +¥) — J
with W denoting the extension constructed from ¥ by lemma 2. We note that the properties
of the approximate solution imply that (V, K, ¥) = 0 satisfy (153) for # < 0. Therefore the
initial nonlinear problem on [0, T'] x Q% is now substituted for a problem on 0% x Q7. The
initial data (19) are absorbed into the source term, and the problem has to be solved in the class
of functions vanishing in the past, which is exactly the class of functions in which we have a
well-posedness result for the linearized problem. Thanks to (143), we see that (U, H?, ¢“)
satisfies the first inequality in (29) if we choose K > C(M,).

11. Description of the iterative scheme

We solve problem (153) by a Nash—Moser type iteration. (We refer to [1, 17, 18] for a general
description of the method). This method requires a family of smoothing operators whose
construction is inspired from [2, 15], see also [7].

11.1. The smoothing operators

We begin with a few notations. In what follows, 27 stands alternatively for Q%., Q7, Q. For
T>0,s>20,and y > 1, we let

Fo(Qr) :={u € H)(Qr), u=0fort <0}
This is a closed subspace of H; (€27), that we equip with the induced norm. In case of QOr, in

the definition of ]—"; the space H; (Q7) is substituted by H, ;:’y (Q7). The definition of ]—"; (w7)
is entirely similar.

Lemma 22. There exists a family {Sp}o>1 of operators Sy : ]:S(QT) — m,a;o ]-"f (27),
such that

ISeull gty < COP M Ntllpeieyy Vo, B 20, (155a)

ISou = ull g,y < COPMltllmei@yy  0< B <o, (155b)

H—Seu < COP ! ullug e Va, > 0. (155¢)
H (@)

Here we use the classical notation (8 — o)+ := max(0, 8 —«). The constants in the inequalities
are uniform with respect to a, B when a, 8 belong to some bounded interval. In case of Q%,
in (155) the norm of H (Q*) substitutes the norm of H, (07),s =a, B.

Moreover, there is another family of operators, still denoted Sy, that acts on functions that
are defined on the boundary wr, and that enjoy the properties (155), with the norms || - || HE (wr)-
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11.2. Description of the iterative scheme

Let us describe the iterative scheme. The scheme starts from Vy = 0, Ky = 0, ¥y = 0, ¢ = 0.
Assume that Vi, Ky, W, ¥y are already given for k = 0, ..., n and verify

Vio =0 ona)}, VX Ky =0 onaog, (156)
Vi, Ki, Wi, ¥) =0 fort < 0.
As in [1], we consider
Vel = Vu +8V,, Ko = K, + 8K,
" " (157)
V=¥, + 8\1—’,,, 1;l/n+1 = wn + Bwn»

where the differences §V,,, 6KC,;, W, §v,, will be specified later on. Given 8y > 1, let us set
6, := (63 +n)'/?, and consider the smoothing operators Sp,. We decompose

L Vi1, Y1) — 'C(Vn’ v,) = ]P(Uu + Vatls w4 We1) — ]P(Uu + Va, e+ v,)
=P(U*+ V,, ¥ +W,)(8V,, 8W,) + e,
=P (U + Sp, Vi, W + S, ) (8V,,, 8U,) + €, + €,

where ¢), denotes the usual ‘quadratic’ error of Newton’s scheme, and e, the ‘first substitution’
error. The operator [P’ is given explicitly in (36).
Similarly, in the vacuum side we have

E(ICIHI’ \Iln+1) - E(Knv \I"n) = V/(Ha + S@,,Knv v+ Se,, qln)(alcnv (Sll"n) + é,ll + é//

n’

where €/ denotes the ‘quadratic’ error, and €/ the ‘first substitution’ error. The operator V' is
given in (36) as well.
On the boundary I we have

B((Vn+19 ICn+1)\X1:ov wn+1) - B((Vn’ K:n)lx]:ov 1pn)
= B/((Ua + Vn’ Ha + Icn)\Xl:Qv (Pa + I//n)((avn’ (SK:n)lklzo’ Sl/fn) + é,lq
= B/((Ua + SG,, an Ha + SG,,’Cn)\XFOv @a + SO,, Wn)((avnv (SKII)‘”:(]! 31[/11) + é; + é;,/9

where €], denotes the ‘quadratic’ error, and €], the “first substitution” error. This decomposition
is meaningful only for the first three components, defined on wr, as the last two components
of B are linear.

The inversion of the operator (', V', B’) requires the linearization around a state satisfying
the constraints (29)—(34), (61), that is the constraints of the basic state in section 4. We thus
need to introduce a smooth modified state, denoted V412, K™/, W,11 /2, Yy 2, that satisfies
the above mentioned constraints. (The exact definition of this intermediate state is detailed
in section 12.4.) A similar difficulty was found in [7,42]. Accordingly, we introduce the

decompositions
E(Vn+la “I"n+l) - ‘C(Vn’ “I’n) = ]P)/(Ua + Vn+1/2» e+ \pn+1/2)(8Vns S\Dn) + e;, + e;,, + 61,1”,

ECnsts Wnst) — ERCp, W) = VI (H  + KMV2 W 4,041 0) (8K, 8W,) + &, + ¢ + ),
B((Vn+l» K:n+l)\xl=ov I//n+l) - B((Vn’ ICn)IXFov I/fn)
=B (U + Visryo. H+ K20 0% + Y1 2) (8 Vi, 8K, Lor 8Y) + &, + 8, + )

" S st

where e/, ¢, ¢’ denote the ‘second substitution’ errors.

n’ n’"n

The final step is the introduction of the ‘good unknown’ (compare with (35)):

01U + Viy12) A (H® + KCm+1/2)

SV, 1= 8V, — 80, 2 PRt S
81(CI>l + \Ijn+l/2) al(q)l + \Ijn+l/2)

8K, 1= 8K, — 8V (158)
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For the interior equations this leads to
['(Vn+l’ "I‘jn+1) - E(‘/na "I‘In) = ]P);(Ua + Vn+l/2, e+ \IJ11+1/2)8Vn
s\,
01(® + Wyi1/2)

’ /” "
+e, e, +e, +

01 {P(Ua + Voo, W + ‘I’n+1/2)}, (159)
ER 1, Wnat) — EKp, W) = V,(H + K"™2 0% + W, )8K,
SW
+A/ + A//+ A///+ n a {V Ha +’Cn+l/2, ‘-I—[a +\Ijn ]’ 160
e, te, e, —31(@{ V) 11 V( +1/2) (160)

recalling (36), (38). For the boundary terms we obtain
B((Vast, KD, 2o Yne1) — BV, Ky, o0 ¥n)
= B,((U* + Vi HE+ K200 0% + Va1 2) (Vi 8K, Ly 8Y) + €, +E) + €,
(161)
where B/, is defined in (37). For the sake of brevity we set

1
Dyaip 1= e 0y [P+ Vi, 7+ W)}
+1/2 51 (P + Dy ) 11P( +172 +1/2)
lA)n -~ 5 [V HY + K:n+l/2’ N v, }’
+1/2 51 (D + Uy ) 11 V( +1/2)

B;1+1/2 = B/E(Ua + Vn+1/2’ H + ]Cn+1/2, o'+ ¢n+1/2)-

Let us also set

en:=¢e,+e, +e, + D8V, é,:=¢é,+e, +e, +DppdV,, é,:=¢,+e, +e,.

(162)
The iteration proceeds as follows. Given

Vo:=0, Ko:=0, Yo:=0, 1:=0,

for=Saf% for=0, fo:=0, Ep:=0, Eo:=0, Ep:=0,

Vi,ooow Vi, Ki, oo Koy WY,V Y, e, U,

Fiveoos facte Fioeeis focts fioeeis facts €0neevr it @0veeeiluits vy lnits
we first compute forn > 1

n—1 n—1 n—1

E, = Zek, E,:= Zék, E,:= Zék. (163)
k=0 k=0

These are the accumulated errors at the step n. Then we compute f,, fn, and f, from the
equations:

n n n

> fo+ So,En = Sy, £, > fo+ So,En =0, > fo+ So,En =0, (164)

k=0 k=0 k=0

and we solve the linear problem

PLU® + V12, U + Wi12) 8V, = £ in Q%
VI(HE + K2 00 W, 0) 8K, = fr in 07, 165)
B, 128 Vi, 8K, 8%) = f on wr X wx,

8§V, =0, 8K,=0, 8¢,=0 fort < 0,
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finding (§ Vyy, 8K, 8Y,). Then we construct §W,, from & Y, by lemma 2, the functions §V,,, §C,,
are obtained from (158), and the functions Vi, .41, Wyt1, ¥ye are obtained from (157).
Finally, we compute e, ¢,, &, from

£(Vn+l’ \Iln+l) - £(Vns \I’[n) = fn +éy,
E(Vn+l’\pn+l)_5(vn"yn) = fn+énv (166)
B(Vn+l, ’Cl‘l+]7 1//n+l) - B(Vm ’Cm an) = fn + én~

Adding (166) from 0 to N, and combining with (164) gives
LVnst, Yne) — fC=(Soy = D"+ — So)En +en,
EKRN+1, Wne1) = (I — Spy)En + éiv,
B(Vats Knats Yvat) = (I — Sp ) En +éw.

Because Sy, — I as N — +o0, and since we expect (ey, é,, €y) — 0, we will formally
obtain the solution of the problem (153) from

LV, Yne) = [, En+1, Yns1) = O, BV, Knet, Yve1) — 0.

11.3. Tame estimate for the second derivatives

For the control of the errors in the iteration scheme, we need to estimate the second derivative
of the operators P, V, and B. Let us first define the spaces

Wh(Q%) = {u € L¥(QF) : Ziu € L¥(Q%), i =0,...,3},

167
W2(0%) = {1 € W'™(03) : Vu e WhS(0D), (167)

equipped with its natural norms. From theorem 41 we have Hf(Q’;) — Wf*OO(Q;). We
consider a fixed time 7 > 0, and we take (U , 7:[, @) such that
Ue w20}, Hew'=Qn., ¥ew>(Qmn,

. . : _ ) (168)
||U||W3v°°(Q;) + I H I wieor) + W ly2eg,) < K, l@lleqo, 1 m25(ry) < €0,

where K is a positive constant. As usual, corresponding to the given ¢ we construct W and
the diffeomorphism @ as in lemmata 2 and 3. Let & be a sufficiently large integer that will be
chosen later on. We have the following result:

Proposition 23. Let m € N,m € [6,a — 2], and let T > 0. Assume that (0, 7:1, @) satisfy
(168), and

(U, H. W) € HY,(0}) x HZ(Q7) x HZ(Q7).

Then there exist two constants Ifo > 0, and C > 0, dependent on Ifo but independent of T,

such that, if K < Ko, and if (V', W), (V", W") € H":?(Q3%), then one has

BT, ) (V' %), (V) o3
<C {n(ﬁ, W)llzszcon 1OV W 2o o 1OV ) 2 1)

IV, W azzcop 1OV ¥y gry + 1V WD)z 1OV, \v’)uwz-w(g;)} '
(169)
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If (K, V&), (K", V") € H*'(Q7) x H"*'(Q7) one has
IV (L B (K, @), (K, %)) 05

<C {||<7%, V)l g5y 1C, VI i) K", V) e o)
+I(K', V\I",)HH;"“(Q;) 1", V) i o:)

HIK", VU e 07 1K V‘I’/)IIWI-WQ;)} : (170

IfF (VK 9, (V' K" ") € HIS'(QF) x HY'(Qr) x H)'(wr), then one has

IB"((V', K "), (V" K" 9 ) 3 limn < C {”v,”H;;];‘(Q}) 1" lw1.oo @)
+ IV oy I N amsi ry + IV N amsicop 1w @py + 1V ooy 19 (o)
+||’C/||H;(Q;) ||7C//||H;"+'(Q;) + ”’C/”H;‘“(Q;) ||’C//||H;(Q;)
+ ”’C/”H;(Q})”w//”H;”“(wT)”IC/”H;”“(Q;) ||1/f”||W1-°°(wT)

HIE 20 19 Nigoopy + 1K zgescopy 19 Nwisscon |- (171)

Proof. The proof follows from the long, but straightforward calculation of the explicit
expression of P, V” B”, from Moser-type inequalities in standard Sobolev spaces, see
lemma 49, and from theorem 40 when we argue in H]" spaces. Also for later use, it is
useful to observe that Hf(Q;) — L*(07), Hf(Q;) — W*I’OO(Q}), see theorem 41. (171)
regards only the first three components, defined on w7, as the last two components of B are
linear and therefore the second order derivative is zero. For its proof we use the trace estimate
2t )00y Il HY () S Cllull HI#1(0%)» S€e [29]. The constant K is fixed so that under the constraint

K < Ko, U takes its values in a fixed compact domain of the hyperbolicity region. g

The estimates (169), (170), (171) hold for every m, with a constant C that may depend on
m. Since in proposition 23, m is taken in a bounded interval, the constant C may be assumed
to be independent of m.

Without loss of generality, we assume that the constant Ko = 2C(M,), where C(My) is
the constant in (143).

12. Proof of the existence of smooth solutions

We recall that the sequence (6,) is defined by 6y > 1, 6, := (63 +n)"/?, and that we denote

A, := 0,41 — 0,,. In particular, the sequence (A,) is decreasing, and tends to zero. Moreover,
one has
VneN ! <A JO2+1 -6, < !
n €N, — = — .
39,, X ~n n n o 29n

12.1. Introduction of the iterative scheme

Given an integer « that will be chosen later on, let us assume that the following estimate holds:

10 N s2cop) + IH Wz o) + 19 N azacory + 109 gassrag,,, ) + 1Lf Nz opy < 8'(T), (172)
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where 8'(T) — 0 as T — 0. Given the integer & := m + 1 and a small number § > 0, our
inductive assumption reads:

@Vvk=0,....,.n—1, Vse[6,a]NN,
18Vills;, o) + 18Kl 13 07y + 18Wkll g1y + 18kl g2,y S 80,71 Ay,
®VYk=0,....n—1, Vsel[6,a—2]NN,
1LV W) = follag op < 266;,77" . KK Wl oy < 286,77,
©Vk=0,....,n—1, Vsel[6,ada—2]NN,
IB(Vie, Kies Wi 2311 3 wr) < so; !

Fork =0, ..., n, the functions Vi, Ky, Wi, ¥y are also assumed to satisfy (156).

The first task is to prove that for a suitable choice of the parameters 6y > 1, and § > 0,
and for T > 0 small enough, (H,_) implies (H,). In the end, we shall prove that (H) holds

for T > O sufficiently small.
From now on, we assume that (H,_) holds. Let us show some basic consequences:

(Hn—l)

Lemma 24. If 6, is big enough, then for every k = 0, ..., n, and for every integer s € [6, ],

we have

(s—a)s
||Vk||H;_V(Q}) + ||’Ck||H;(Q;) + ||‘I"k||H;+1(QT) + ||1/fk||H;+1/2(w,l.) <86 @ , a#s, (173a)
1Villze, o0 + IKillms o) + 19kl oscny + Wil oo, < 6 logbi. (173b)

The proof follows from the triangle inequality, and from the classical comparisons between
series and integrals.

Lemma 25. If6, is big enough, then foreveryk = 0, ..., n, andforevery integers € [6, a+4],

we have
156 Vil g cop) + 180Kl 307 + 180 Will s cory + I1Sa, Wkl govin,,) < C 8677, s #
(174a)
16 Vicll e, o) + 1S K Lo o7y + 16, Wil gt oy + ISa Ykl yoor 2,y < € 8 log O (174D)
Foreveryk =0, ..., n, and for every integer s € [6, &], we have
I = Se) Viell g o) + 1T = Sa) Kl s 05
I = So) Wil g ) + 1T = So) Wl e,y < C 8657 (175)

The proof follows from lemma 24 and the properties (155) of the smoothing operators.
The estimates (174), (175) actually hold for every s, with a constant C that may depend on s.
Taking s in a bounded interval, the constant C may be assumed to be independent of s.

12.2. Estimate of the quadratic errors

We start by proving an estimate for the quadratic errors ¢}, €, €, of the iterative scheme. Recall
that these errors are defined by’

e = LVist, Yiw1) — L(Vi, W) — L' (Vie, W) (8 Vie, %), (176)
e 1= EKrs1, Wisr) — EKh, Wi) — E'(Ki, W) (8K, 8Wy), (177)
& := B((Virts KDl o Vi) 1 55 = BV Ko Vi) 15 5

—B'((Vi, K1, <o 1/fk)1’2,3((5vk, S, o 8Yr), (178)

where L, £, and B are defined by (154).

=11 =

9 With abuse of notation with respect to section 11, we identify the boundary errors terms &, &/, &/ with the only
meaningful first three components.
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Lemma 26. Let o« > 7. There exist § > 0 sufficiently small, and 6y > 1 sufficiently large,

such that forallk =0, ...,n — 1, and for all integers s € [6, @ — 2], one has
leillas, op) < € 82677 Ay, (179a)
kILH, (O7) k
16y 07y < C 87671 AL, (179b)
”§],< ||H;+1/2((1)T) <C 52 9]f+6_2a Ay, (179c¢)

where L1(s) := max{(s +2 — a), + 10 — 2a; s + 6 — 2 }.
Proof. The quadratic error given in (176) may be written as
1
¢, = / A =D)P (U +V, +7 8V, W+ W + 7 5wk)((avk, 5WL), 8V, 8%)) dr.
0

From theorem 41, (172), and (173a), we have

sup (||U“ F V4T 8Vill o gr, + WO+ W + T awk||W3.x(QT))
t€l0,1]

< C sup <||U“ +Vi+t SVk||H*sV(Q;) + |V + W+ T S‘I’k”ny(Qr)) < C(My) +C 6,
7€[0,1] ' '
and so for ¢ sufficiently small, we can apply proposition 23. Using (H,_;), (143) and (173)
we obtain (179a). The estimate (179b) of ¢, is similar, and follows from (170). The quadratic
error ¢ is estimated by means of (171), a classical trace estimate and the Sobolev imbedding
theorem. O

(07

12.3. Estimate of the first substitution errors

Now we estimate the first substitution errors ¢}/, €/, ¢/ of the iterative scheme, defined by

e,Z = ,C/(Vk, \Ilk)(é Vk, S‘I/k) - ,C’(Sgk Vk, Sgk\I’k)(é Vk, 5\Ifk), (180)
ey = &' (Ki, W) (8K, W) — E'(Sg, Kr, So, Vi) (8K, W), (181)
e, == B'((Vi, K1, 2o l/fk)]’2,3((5Vk, 8K, —0» 8Y)

—B'((Sa Vies Sa K1 20> SaVk) 5 5((8 Vi, 8K, o 8Vk) (182)
Lemma 27. Let « > 7. There exist § > 0 sufficiently small, and 6y > 1 sufficiently large,
such that forallk =0, ...,n — 1, and for all integers s € [6, @ — 2], one has

ley s, o) < C 820797 Ay, (183a)
16/ 15007y < C 826,271 Ay, (183b)
”g]ZHH;H/Z(wT) < C 82 9/§+8—2a Ak, (1830)

where Ly(s) ;= max{(s +2 — o), + 12 — 2a; s + 8 — 2c}.
Proof. The substitution error given in (180) may be written as
1
o = / P”(U“ + S, Vi + T(L — Sg) Ve, WO + Sy, W + 7(1 — Sgk)\l’k>
0

x ((8Vi, 8%, (I = Sp) Vi, (I = Sp) W) dr.
We first show that we can apply proposition 23 for § sufficiently small, as in the previous proof.
For s +2 # «, and s + 2 < @, the estimate (183a) follows from (143), (H,—;), (174a) and
(175). For s + 2 = «, the proof requires the use of (174b). (183b) follows in the same way.
The substitution error given in (182) is estimated by using (171), (H,—;), and (175). O
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12.4. Construction and estimate of the modified state

The next step requires the construction of the smooth modified state V.2, K2, /25
Ynr1/2 satisfying the constraints on the basic state stated in section 4. We will focus especially
on (31)—(33), because the additional constraints (29), (30), (61) will be simply obtained by
choosing 7 > 0 small enough.

Proposition 28. Let « > 8. If T > 0 is sufficiently small, there exist some functions
Vi1 = (Gue1ja, V"V H™V208,000), K'Y Wiy, Yer o, that vanish in the past, and
such that U + V410, H + K2 o 4 Wi1/2, @° + Va1 2 satisfy the constraints (29)—(33),
(61) and

Wi12 = So, Wa, Ynriy2 := So, ¥ (184a)
Gn+172 = So,qn, U,~n+1/2 = Sp,Up; fori =2,3, Sne172 = S5, Sn- (184b)
Moreover, for § > 0 sufficiently small, and 6y > 1 sufficiently large, these functions satisfy:
|| V,H.]/z — Sgn Vn ||H;-V(Q}) < Cé 9,‘:+27a, fors e [6, o+ 3], (185&)
1K™ = S, Knll 307 < C 86,7, for s € [6, & +3]. (185b)

Proof. Let us define W,11/2, Yus1/2, Gu+1/25 Sns1/2, and the components v;’“/ 2, v;’“/ % asin

(184). It is easily checked that all these functions vanish in the past. Then we define the error
&" and a function G by

g" = B(Vn’ IC,,, wn)l = 3:% + (vlf’ + vn,i)lxlzoaiwn + (vn,i)lxlzoaigoa - (vn,1)|x1=Ov (186)

1/2 1/2
G = Ynsiyp + (U + 07 / =00 Y12 + (V) / V=00 9" — (S, Vi, 1) ;=05 (187)
where summation over i = 2, 3 is understood, and the normal component of the velocity
vr]1+1/2 by
v = S 0,1 + R1G, (188)

where Ry is a lifting operator H*~!(wr) — H S(Q%), s > 1,see [29]. Itis easily checked that

V"1 vanishes in the past. We now prove the estimate (185a) for the part regarding v"+!/2,

We have

1/2
||Un+ /2 _ SO,, v,,”H;YV(Q;) < C”g”H;"l(uH)‘

Using the definitions (184b), (186), (187) we get
G = Sy," + 101, So, 1 + (0 + S5, 00.)0: Sg, Y — Sp, (V' + v0.1)0i )

+ (89, Vni) 0i9" — So, (vn.i0i¢”). (139)
To estimate the first term Sy, " on the right-hand side we use the decomposition:
e" = B(Vuo1, Kot Va1 + 0 (8Yu—1) + (v + v,-1,1) i (8%,—1)

+ 80,21, (@ + Y1) — SVp—1,1,
then exploit point (c) of (H,—1) and the properties of the smoothing operators. We get

156, 6" 111 0py < C 86577 (190)

For the estimate of the commutators in (189) we proceed as in [7] and obtain

”vn+1/2 _ Senvn”H;)V(Q;,) < C(Se;_a, fors € [6,&"‘3]. (191)
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12.4.1. The modified plasma magnetic field. Let us see now how to define the modified
magnetic field H"*'/2, following somehow [42]. This field should be such that H¢ + H"+!/2
satisfies (31), together with v* + V2w 4, /2, that is, denoting the equations for the
magnetic field in (17) by Py (v, H, V) = 0, we require

Py (v + 0"V HY + H™2 W+, ) = 0. (192)
Recalling (146), i.e. Py (v, H?, ) = 0, and the definition (154), we write (192) as
Ly@™' 2 H™2 W) = 0. (193)

We notice that (193) does not need to be supplemented with any boundary condition. In fact,
the coefficient of 3; H"*'/? in (193) is

12 12
vi + )" ?_ '+ )8 (¢ + Ynr172) — 01 (@ + Vur1/2),

which vanishes at the boundary because of (145) and (188). Given v"*!/2, W, /2 as above, we
define H"*!/2 as the unique solution vanishing in the past of (193).
In order to estimate H"*'/2 — S, H, we first observe that (192) yields

Py + 0™ H™Y2 Sy Hy W+ W, 00)
=Py + v HO+ H™Y? — Sy Hy W+ W,y 0) =Py (0 + 0™ 2 HY W+ W, )
= Py +v""V2 HY + Sy H,, W + S5 U,).
Then H"*'/2 — S, H, solves the equation
P + "2 H™V2 — Sy H, W+ W, 0) = Fit'?, (194)
where
Firl = Ay + Ay — S5, Py (v +v,, HY + H,, W9+ W,),
Ay =S, Py (v +v,, H* + H,, V¢ +U,)) — Py (v + Sp, v, H + Sp, H,,, ¥ + S, Wy,
Ay =Py + Sy, vp, H + Sy Hy, W + Sy W) =Py (v + v™V2 HO+8y H,, W + S, W,).

For T > 0 small enough and o > 7 we obtain from (172) with T sufficiently small, (173)—
(175), (260)

A, 05 < CEO for s € [6, & + 3], (195)
and from (191) we also get
A2l c03) < C 86 fors € [6, & +3]. (196)

To estimate the last term of Ff,H/ 2, we write

SGNPH(U(I + Up, H + Hna e+ \Ijn) = SO,,[:H(Vna lI’n)
= S0, Lt (Va1 Wa1) + 8o, (Lt (Vaoy + 8Vimt, Wy + 8%, 1) — Ly (Vae1, Wasi)).
From (155) and point (b) of (H,,—;) we have:

IS0, Lot V-1, Wn—Dll 1, (03) < COSTNLy Vo, VD llas, o) < csos !, (197)
for all integers s > 6. Similarly, from (155), point (a) of (H,_;), (173) and (259) we obtain
IS0, (Lt (Vio—1 + 8Vt Wy + 8V, 1) — Ly (Vo q/nfl))”H;vy(Q,‘;) <C867 7', (198)

for all integers s > 6. Collecting (195)—(198) yields

IEE Mg cop) < C 8057 for s € [6, & + 3]. (199)
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Now, equation (194) solved by H"*!/? — S, H, has the form

3

Y+ Di(b)d;Y + Qb)Y = Fy''?, (200)

j=1

forY = H™2—8, H,,b = (v*+v"*/2, W4+, /2), and where D; and Q are some matrices.
The matrices D; are diagonal and, more important, D; vanishes at {x; = 0} U {x; = 1}. This
yields that system (200) does not need any boundary condition. A standard energy argument
applied to (200) and (174), (191), (259), (260) give for y large and T > 0 small the a priori
estimate

n+l/2 s+l—o)y
Y1yl om0 < € (ICER )l o + 8208 1Y, s o) - (201)
Choosing s = 6, ¢ > 8, and taking § small in (201) yields

1/2
YI¥y e o) < ClICFY
and substituting in (201) gives

)y”Hf_y(Q}),

n+1/2 s+l—a), n+1/2
YI¥las,cop < € (IRl o + 82 651 CFR ), s, o) (202)
Finally, plugging (199) in (202) yields
VIYyll on = yICH™ " = Sg Hy)y lla: o5y < C860;727 fors € [6,a +3]. (203)

This completes the proof of (185a).
From now on y is assumed fixed, satisfying the requirements for theorem 16 and the proof
of (203).

12.4.2. The modified vacuum magnetic field. The modified vacuum magnetic field K"*!/2 is
supposed to satisfy with 1 and W + W, the constraints (32), (33),,4. This means'”

MY+ KT — (e + K0, (W + W1 ))

+O{(HE + K010 + Wop12)) =0 in OF,
MY+ K2 — (HE+ )0 (0 + Yaen ) = 0 on wr,
vx (H+ K12y =3 on wy.
Taking account of (148), this can be rewritten as

T2 — K20 (W + Wiy o)} + 3K 201 (D + Wi )

= O {H{ 0 Wur1 2} — 0;{H 01 Wnr1/2) in O,
/Crf+l/2 - /C?H/Zai (@ + Yne12) = H 0 Yus12 on wr,
v x K2 =0 on wj. (204)
Denoting
b2 = (N2, T 201 (D + W1 /2), KT 281D + Wi ),
K:r;v+l/2 — ’CT+1/2 _ IC;”I/ZB,» (\I’a + an+1/2)7
(204) is rephrased as
div "% = 3 {H 0 W12} — 0 {H{ 91 W1 2} in 07,
T = 1o on wr (205)
v x K2 =0 on wy.

10 Here summation over i = 2, 3 is understood.



48 P Secchi and Y Trakhinin

For given W, ,, we define K"*/2 as a solution of (205)'". K"*!/2 is not unique, but it is
defined up to an arbitrary V x §"*1/2. For instance, we can take X"*'/? such that h"*!/2 solves
(205) and V x b2 = 0in Q7.
In order to estimate AC"*1/2 — Sy, KCn we consider the problem (compare with (204))
DI = S5, K — (T — 5,1 )0 (W + W10}
UG = 5,000 )01 (P + W1 )} = G2 in 07,
K2 = S, Kot = G2 = 85,0000 (9" + Vi) = g/ on wr,
v x (K™2 — 85 K,) = —v x Sp, K, on wy, (206)
where we have set
G™ 2 = 3 {HE D W1 o) — 3 {HED W12}
— 01{S0, KCn,1 — (S5, /Cpn,1) 0 (W + Wyp10)} — 0:{(S0, K00, i) 01 (P + Wiur12)},
g2 = M nary2 — S8,Kn1 + (86,0008 (97 + Ve 2).
As for G"*1/2 we decompose it as
G2 — Ay + A,
where
Az = —0{w1 — (H! + K0 i) 0j W, — K i 0 W7} — 0 {(HY + ICo i) 01 Wy + KCp i 01 DT},
Ay = 0 {H{ 0 (Ss, — DW,} — 0i{H{0,1(Sp, — DW,}
— 01{(Sp, — D1 — (85, KC0,1)0; (W + Sp, W) + LG,y 10; (W + W)}
— 0i{(8,KC0.i) 01 (D] + Sp, W) — Ky i 01 (D] + W)}
A3 is decomposed as
Az = A+ A,
where we have set
A= = {1 — (H! + Ky, 0 Wmy — Kym1,10; W)
— 0{(H} + Kym1,) 01 W1 + KCym1,: 01 PT ),
Af = = 0{8Ku11 — (H + K10 (W, —1) — 8K—1,:0i (W + W, 1)}
— Oi{(H! + K1) 01(8W,—1) + 8KC,—1,;01 (P + W, 1)}
Notice that
Ay ==VH + K1, W + W, 1) = =E(K,—1, Wm).
Then from point (b) of (H,,_;) we get
1850 307 < 2800t <ol (207)
We also obtain from (H,,_;) and (173)
A5 s 07y < € 86,7,

which gives with (207)

||A3||H;(Q;) <Cé0)7%. (208)
Moreover, from (173)-(175) we get the estimate

A4l 507) < €867 (209)

T Once §™*!/2 is found from (205), the vector K"+1/2 is immediately obtained from the defining formula for b"*!/2.
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Thus from (208), (209) we obtain
”Gn+1/2||H;(Q;) < C89;:7a+1. (210)

For the boundary term g"+'/?

we use similar decompositions. We write
g2 = Ay + Ay,
where

Az = =K1 + (H + K )0 + K i 010,
A= (I — Sg,)Kn1 +HEB;(Sg, — DV + K i0:(Ss, — D + (Sp, — 1)Cpi 0 (0" + So, ¥n),

and As is decomposed as
A A/ A
Az = Ay + A5,
where we have set

Ay = —Kog + (HE+ K1) Y1 + K1 0190,

A= =K1+ (MY + K108 3W—1) +8Km1,i8; (9 + Y1),
From point (c) of (H,—;) we have
A% 5172y < IBVats Knmts Yin) gy < 86,7571 < C 86,77 (211)
We also obtain

1ALl -1,y < C 3677
which gives with (211)

1230 512y < C 6,77 (212)
Moreover, we have the estimate

||A4||H;_1/2(MT) <C8657. (213)

Thus from (212), (213) we obtain

n+1/2

lg ,<Co (214)

”H}f*‘/z(wT
Finally, from (206), (210), (214) we have
||IC”+1/2 — S@n Kn ||H;(Q;) < C(”Gn+1/2||H;—I(Q;) + ||gn+1/2||H;71/2(wT)

Hv x Sgn/cn||H;4/2(w;)) <Cso, 215)
which completes the proof of (185b).
12.4.3. Conclusion of the proof. Since the approximate solutions U“, H* satisfy (30), (61)

for all times with a strict inequality, and the modified states V,41/2, K"*'/? vanish in the past,
then U® + V12, HY + K"*1/2 will satisfy (30), (61) for a sufficiently short time 7 > 0. [
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12.5. Estimate of the second substitution errors

" s 2

Now we may estimate the second substitution errors ¢;’, ;" and e, of the iterative scheme,
that are defined by

e = L' (So, Vi, So, W) Vi, 8Wi) — L' (Vier1/2, Wia172) (8 Vie, W), (216)
ey = E' (8o, Kk, So, Vi) 8Kk, 8Wy) — E' (Kiw1/2, Wia12) (8K, §¥y), (217)

EIQH = B,((Sﬂk Vi, S@/(}Ck)hlzo’ 1p"‘)1,2,3((8vk’ (SKk)‘Xl:O’ 8wk)

— B ((Vis1)2, K121, 20 Wk+1/2)1,2’3((6Vka S, =00 SWk)- (218)
Lemma 29. Leta > 8. There exist T > 0and § > 0 sufficiently small, and 6y > 1 sufficiently
large such that for allk =0, ...,n — 1, and for all integers s € [6, & — 2], one has

ey Il cop) < C 826,771 A, (219a)
18" 1 yc05) < €826, A, (2195)
187 1l 172y < C 82072 A, (219¢)

where L3(s) ;= max{(s +2 — ), + 16 — 2a; s + 10 — 2c¢}.
Proof. Using (184a), the substitution error given in (216) may be written as
1
e = / P’ (U + Visr/2 + T(Sg, Vi = Viwr2), W + Sp, W)
0

x ((8Vi, 8Wp), (S, Vi — Vw2, 0)) d.
By lemma 25 and proposition 28 we first derive the bound
(U + Viery2 + T(So, Vi — Viwr/2), W + Sp, W) Il 2 0%)
< CS@OFP go5ti, sel6,a—2]

Then (219a) follows by applying the theorems 40 and 41, proposition 23, (H,—_;) and
proposition 28, provided that 7 > 0 and § > 0 are small enough. A similar argument

A

applies to ¢} and yields (219b). We write the substitution error given in (218) as
e/ =B" ((Vk, 8K 20> 8Y1)s (Vw12 — So, Vies Kierr72 — S0, K1, 2o 0))1,2’3 .

Using the exact expression of B” and (184) gives

0
e = K- (SoKh — Kir1/2)
(S Kni — Ki™)9: (5900
Then (219¢) follows by applying (H,—_;) and proposition 28. |

12.6. Estimate of the last error terms

In our iterative scheme we have two last error terms to be estimated, namely

Sy,
D S, i = ————— 91 {P(U*+ V, LW+ W s
12 OV = o (@7 + Vo) 1 {P( k+1/2 k1/2) }
A Sy, a 4
Diy12 8 := N {VH + Kirrjo, ¥+ Wi )}

01(P] + Wis1/2)
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which result from the introduction of the good unknown in the decomposition of the linearized
equations, see (159), (160). Let us set

Rk = 81 {P(Ua + Vk+l/27 v+ lIjk'*'l/Z)} .

Since Vii1/2, and Wi, /o vanish in the past, Ry does not vanish in the past. However, § Wy
vanishes in the past, so the error term Dy, 6y also vanishes in the past. Moreover,
theorem 40 enables us to obtain:

| Dic1/2 8Wkll s, o) < € {||5‘11k||H;(Q;) IRl 101
+||5\Ijk||w*l~°‘9(Q;)(”Rk”H;‘_y(Q}) + ”Rk”W*‘-O"(Q;) ”q)a + \I'k+l/2||H;+1(Q‘;))} . (220)

Lemma 30. Let o > 8, & > o +2. Foré > 0, T > O sufficiently small, 8y > 1 sufficiently
large, forallk =0, ...,n — 1, and for all integers s € [4, & — 4], one has

IRllss ) < €8 (6767 + g0, 221)

Proof. We proceed as in [2,7]. We introduce the following decomposition:
PU* + Vg2, YV + Wir12) = PU + Vigy o, VO + Wiy 2) — P(U + Vi, W + )

+L(Vi, W) — f°. (222)
Then the estimate follows from the induction assumption (H,_;), lemma 25 and
proposition 28. U

We are ready to prove the following estimate:

Lemma3l. Leta > 8, & > o + 2. There exist 5 > 0, T > 0 sufficiently small, and 6y > 1
sufficiently large such that for allk =0, ..., n — 1, and for all integers s € [6, & — 4], one has

1Dir12 8l o) < C 8671 A, (223)

where L4(s) := max{(s — o), + 16 — 2a; s + 12 — 2 }.

Proof. We firstuse lemma 30 to derive the bound || Re |1 (gs) < C IRl 12, (03) < C 8 6,07,
We combine this bound and (221) in (220). The terms in §\W; are estimated by the induction
assumption (H,_1), and the terms in Wy, = Sy, W, are estimated by lemma 25. Putting all
these estimates together yields (223). g

A similar argument gives

Lemma 32. Leta > 8, & > a+2. There exist T > O sufficiently small, and 6y > 1 sufficiently
large such that for allk =0, ..., n — 1, and for all integers s € [6, & — 2], one has

1Dss1/2 8Will iy 07) < € 82671 Ay (224)

12.7. Convergence of the iteration scheme
We first estimate the errors ey, €, and &:

Lemma 33. Let « > 8. There exist § > 0, T > 0 sufficiently small, and 6y > 1 sufficiently

large, such that forallk =0, ...,n — 1 and all integer s € [6, @ — 4], one has
A L(s)—1

llexlls; , cop) + llexll g or) < C %6 @=L A, (225

”ék ||H;+l/2((/)7') <C 52 9]f+8_2a Ay,

where L(s) ;= max{(s +2 —a), + 16 — 2a; s + 12 — 2a}.
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Proof. We recall that ¢, e;, e; are defined in (162) as the sum of all the error terms of the kth
step. Adding the estimates (179), (183), (219), (223) and (224) we obtain (225). U

The preceding lemma immediately yields the estimate of the accumulated errors E,,
and E,:

Lemma34. Let o > 14, & = a +7. There exist § > 0, T > 0 sufficiently small, 6, > 1
sufficiently large, such that

- I 2
IEull o) + 1 Eall s gy + 1 Enlmasiur) < C 526 (226)

Proof. One can check that L(« +3) < 1 if o > 14. Moreover, in order to apply (225) for
s = o+ 3 one needs o + 3 < @ — 4; the best choice is o + 3 = & — 4, which explains why
& = a + 7. It follows from (225) that

n—1
N ~ 2 L(a+3)—1 2
1 Enll ez op) + W Enll a7y + 1 Enll g r) < €8 E 0.7 A < € 8%, O
k=0

Going on with the iteration scheme, the next lemma gives the estimates of the source terms
fus fus fn, defined by equations (164). Notice that only the first three components of f,, may
be different from zero.

Lemma 35. Let « > 14, and let & be given as in lemma 34. There exist 5§ > 0,T > 0
sufficiently small and 6y > 1 sufficiently large, such that for all integers s € [6, @ + 1], one has

”fn ”vay(Q;) < C An {92_0(_3 ||fa ”HE;Z(Q;) + 52 (92—0{—3 + QnL(S)_l)}, (227a)
iz cory + 1 Full ey, < €82 A (63772 +61071). (227b)

Proof. From (164) we have
Jo = (S, — S, ) f* — (So, — So,_ ) En—1 — Sp,€n—1-

Using (155), (225) and (226) gives (227a), with A,_1,0,_; instead of A,,6,. Using
0,1 < 0, < «/59,1_1, and A, < 3A,, yields (227a). Estimate (227b) follows in the
same way. g

We now consider problem (165), that gives the solution (8 Vn, 8/C,,, 8v,). Then we find
W,.1, and consequently (§V,,, 6/C,,, §W¥,,):

Lemma 36. Assume o > 14. If§ > 0 and T > 0 are sufficiently small, 6y > 1 is sufficiently
large, then for all 6 < s < &, one has

18Vallaz, o0 + 18K lzsco) + 18%ull gtcop + 18Wall e,y < 865771 A, (228)

Proof. Let us consider problem (165). This problem has the form (37), (38), i.e. in explicit
form (39); thus it is equivalent to (85) and will be solved by applying theorem 16. We first
notice that U® + V410, H* + K"*1/2, 0% + 412 satisfy the required constraints (29)—(34),
(61). In order to apply theorem 16, we verify

1/22
N0+ Visiallms, oy + IH + K™ / ||H3(Q;) + 119" + Yurr 2l 95 < K,

le® + Yus12llcqo 1, 525y < €0,
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by means of (172), (174a), (184), (185) and taking § > 0 and T > O sufficiently small (here
we only use @ > 11). Thus we may apply our tame estimate (88) and obtain

||5Vn||Hg,V(Q}) + ||5’Cn||H;(Q;) + 116y ||H;+1/2(wT)
< C{lfallmzsion + 1 il oo + 1 allmgorsion
+ (Wl o + 1 fallgcon * 1 fallmgscon)

1/2
X (10 + Va2 llzop + 1M + K2 o gy + 10+ Vi 2l |-

(229)
On the other hand, from (158) it follows
18Vallzz o5 + 18Kall sy < 18Vallizz, o5 + 18Kull s o)
+C{I8Wall s 0p) + 18Wall o) (U + Va2l o)
HIH + K2 g gy + 19 + a2l o) }- (230)

From lemma 2 we have
18l iy c0r) < ClOYnll o112y (231)
Choosing s = 5 in (229) gives from (231)
189 llscon < € (Ifalns e + 1 fallmscon * 1 fallmsscon)
X (1+ 10+ Varr 2z gy + I+ 2 5 00+ 10 + Yrnet 2l s -
(232)
Therefore, we can combine (229)—(232) and eventually obtain
18Vall ey, o3 + 18Knll s o7y + 18Vnl o172
< C{Mallmson + Walmgron + 1l
+ (Wl o+ 1 allgion + 1 fallmscan )
2
X (IIU“ + Vi 2llmgeop) + IIH + K/ lezse2cop) + ll9® + %+1/2||H;+2'5(w1)> }
(233)

for all integers s € [6, &]. The remaining part of the work is to estimate the right-hand side of
(233). Using lemma 35, (174a) and proposition 28, (233) becomes

18V, ”vay(Q}) + 18K, ||H;(Q}) + 189, ”H‘VHI/Z(wr)
s—a—2 a 2 2 nL(s+1)—1
<O 2 (1 Moy +6°) + 826,71 A,
+C 8 A0 (I f Naeop) +8%) + 876,72 F (05 +05747%). (234)
One checks that, for @ > 14, and s € [6, &], the following inequalities hold true:

Lis+1) <

s —a, +2—a)y+5—a<s—a—1,
s+9—-20<s—a—1, +2—a)y+19 20 <s —a—1,

s+23 —3a<s—a—1.
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From (234), we thus obtain
18Vl o3 + 18Kl o) + 18¥nll i,
< C Il Nueno +82}0: A, < C{E(T) +82 0,7 A,
and (228) follows for § > 0 and T > O sufficiently small. O

From (163), (164) the components of f,, defined on a)jTE are zero. Then the resolution of
(165) gives SVM = 0onw;, n x 8K, = 0 on wy . From (158) the same is true for 8V, 8IC,
because by construction §W,, = 0 at ijE This shows that (156) holds for k = n + 1 as well.

We now check the three remaining inequalities in (H,,).

Lemma 37. Assume o« > 14. If § > 0 and T > 0 are sufficiently small, and 6y > 1 is
sufficiently large, then for all 6 < s < & — 2, one has

IL(Vi, W) = f“llas o) <26 o5 !, (235a)
IEKns W)l s o5y < 286,77, (235b)
”B(Vna lCna 1,0n)1,2,3”H;(wT) < 8 9]570(71. (2356‘)

Proof. Recall that, by summing the relations (166), we have
E(Vna \Iln) - fa = (SG,,_] - I)fu + (1 - S@,,_l)Enfl +én—1.

The proof of (235a) then follows by applying (155), (225) and (226), provided that § > 0 and
T > 0 are taken sufficiently small. The proof of (235b) and (235c¢) is similar. 0

Lemmata 36 and 37 show that (H,_) implies (H,) provided that « > 14, ¢ = o + 7,
(172) holds, § > 0 is small enough, 7 > 0 is small enough, and 6y > 1 is large enough. We
fix ¢, @, 6 > 0and 6y > 1, and we finally prove (Hp).

Lemma 38. If T > 0 is sufficiently small, then property (Hy) holds.

Proof. Recall that Vy = Ky = Wy = o = 0. Thanks to the properties of the approximate
solution (see lemma 21), we see that U* + Vo, H* + Ko, ¢ + Wy, ¢ + g satisfy the
constraints (29)—(33) and (61). Consequently, the construction of proposition 28 yields
V1/2 = /C]/z = l111/2 = W]/z = 0. Consider the problem

P, (U, W) 8Vo = S, f* in 0%,
V,(H*, W) 8Ky =0 in 07,
B/l./z(‘SVOv 5160', 8v0) =0 on ws. X wi,
Vo=0, 8Koy=0, d¢p=0 fort < 0.

Because of (143), we may apply (88) and obtain
18Vollu, 0 + 18Koll g0 + 1890l vy < € {150 £ e

+1S0, £ o) (10 Do + 1M g + 10 lasian) | (236)

Then we find ¥ from § by lemma 2. From (158) we finally obtain:
18Vallu, 05 + 18Koll g 07 + 180l vy < € {150 £ e

#1801 o) (10 Nieion + I N mion + o lgsen ) | @37)
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for all integers s € [6, @]. If T > 0 is sufficiently small, then
18Vollzz, o5 + 18Kol s gz + 18Woll o,y < 86577 Ao, 6< s <a
The other inequalities in (Hy) are readily satisfied by taking 7 > 0 small enough. ]

From lemmata 3638, we get that (H,,) holds for every n > 0, provided that the parameters
are well-chosen.

Conclusion of the proof of the existence of smooth solutions in theorem 5.

Given an integer ¢ > 14, in agreement with the requirements of lemma 34, we set
& = a+7. Letm = a —1 > 13. Let us consider initial data Uy € H"™*3(Q"),
HO € H™93(Q7), and ¢y € H"™'%(I") that satisfy (8), (22), (128)—(130) and are compatible
up to order m +9 in the sense of definition 20. Then, by lemma 21 (withk = ¢+9 = m+10) we
may find an approximate solution (U¢, H“, ¢%) suchthat U¢ € H"*'°(Q*), H* € H"*'°(Q7),
@ € H™195(w), with the properties listed there and (172). If § > 0 and T > 0 are small
enough, and 8y > 1 is large enough, one gets lemmata 36, 37, 38. Hence the property (H,,)
holds true for all n. In particular, it follows that

> 18Valla, o) + 18Kull oy + 16Wnll v, < +00,
n>=0
so the sequences (V,), (K,,), (), converge in H;’fy(Q}) x HJ'(Q7) x H;"”/z(wr) towards
some limits V, IC, ¥. Passing to the limit in (235), for s = m, we obtain (153). Therefore
U=U+V,H=H'+K, ¢ = ¢° + isasolution on QF x Q7 of (17)—~(19).
The proof of the existence part of theorem 5 is complete.

13. Proof of the uniqueness of a smooth solution

Having in hand the existence of a smooth solution (U, H, ¢) from theorem 5, our goal now
is to prove its uniqueness. Let, on the contrary, there exists one more solution (U’, H', ¢) of
problem (17)—(19). Omitting calculations, for the differences

U=U-U, H=H-"H, g=¢—¢
we obtain the following initial boundary value problem:
~ ~ 01U’
PU, WU — {PU, \p)\y}al -+R =0 in OF, (238)
195
VH| x VU
~ 0 L
VY(H, ¥) + ~1=0 in , 239
Rhh ~H, | - VY Or 239
H,

0P+ 0,000 + V3030 — Uy =0,

i—H-H=m (240)

Hy — Hy0o§ — Hyd3¢ =0 on wr,

7 =0 onwh, vxH=0 onowry, (241)
and we may assume that

U, H, @) fort <0 (242)
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because we have the trivial initial data (l~] JH, @)|i=0 = 0. Here

R=(PWU,¥)—-PU, W)U, %= LHP,

Ty = 01 — 520, ¥ — D393, Hy = H) — Hy,0,V — H;d;,
ﬁ]\] = ﬁl — ﬁzaz\lf — 'F[333‘-IJ,

\TJI‘IJ—\I’/, Cqu—q/, lijUj—U;-, ﬁjZHj—H;, etc.
Note also that the functions W’ and @’ are defined through the function ¢’ exactly in the same
manner as the functions ¥ and & entering (17)—(19) are defined through ¢.

Since all the terms entering the differential operator P(U, V) — P(U’, ¥') contain the
differences of matrices A,(U) — A,(U’) (for a certain @ = 0, 3), by using the mean value

theorem, we can represent the rest term R in (238) in the form
R=CU (243)

where C = C(U*, U’, V') and the matrix C depends on the space—time gradients of U’, W' as
well as on the vector of ‘mean values’ U* whose components can be estimated through the
norms of U and U’. It is worth noting that both solutions (U, H, ¢) and (U’, H', ¢’) satisfy
constraints (20) and (21). This gives the following equations for the differences:

0

divhi+V x | —H] | - V¥ =0 in 0%, (244)
H,

Hy — H)d§ — Hj03¢ =0 on wr, H =0 onot, (245)

where E = (ﬁ]\], ﬁzalq)] , ﬁ3a] q)])
Now, as for the linearized problem in section 4, we pass in (238)—(245) to the ‘good
unknown’

onH (246)

for the differences of solutions (cf (35)). Taking into account (243) and omitting detailed
calculations, we rewrite (238)—(242) as follows (cf (39)):

3
AU+ A;9;U+CU = f in Q%, (247a)
j=1
VxH=yx, divh=E in 07, (247b)
3@ = Oy — V30§ — V3030 + @ 9 Dy, (247¢)
Gg="H - H—1[3:4'1¢+g. (247d)
Hy = & (HAG) + 33(H49) + g3 on wr, (247¢)
;=0 on wry, vXH=0 on wy, (2479
(U, H,$)=0 fort < 0, (2479)
where
Ag =1 Ag(U), @=0,23, A= AU, W), f=a9,
H= (H181 @1, Hay, Hey)s b= (Hy, H201 Dy, H38, D)),

Hy = Hy — Hadh W — H303 0, H, =H\ 0V +H,;, i=273,
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[01¢'1 = (31¢")|x,=0 — (H - 1 H") |1, =0, Uy = v] — 00V — Vi3V,
g21=R =3I’ = 317+ oM,

X {I‘; ’ ~ oy
Z)i=——=a{VH., v}, g3 = —¢ (divh)|o,,
= 81q>1

b= (Hu, H501 D1, H30,1 D), Hy = Hy — Hy0,W — H;03 W,

and the vector a appearing in the definition of the source term f in (247a) depends on the
space—time gradients of U’, W' as well as on the vector of ‘mean values’ U*, but its concrete
form is of no interest. Moreover, (244) and (245) are rewritten as (cf (43), (44))

divh =r in Q%, (248)
Hy — Hy§ — H}:¢+ @0 Hy =0 on wr, H =0 onwh, (249)
with
r=——-—divh, h = (Hy, Hyd, @1, Hyd @), Hy = H| — HyW — H;30.

157

As in (85), system (247a) can be rewritten in terms of the vector U = (q,u, h, S) with a
corresponding new source term f which, in view of lemmata 2 and 3, can be estimated as

£ o2 2 T 12 ~ 2
Iz, o < CMFr Iz, 05 S C¥y Iz, cor) < CllOylang,,,- (250

Here and below C stays for different constants depending on Sobolev’s norms of the solutions
(U, H, ) and (U', H', ¢’). The role of the coefficients for the reduced system for the vector
U= (q,u, h, S ) is played by the solution (U, H, ¢). But, itis only important that the boundary
matrix for this system calculated at the boundary is the matrix &), (see (58)). Note also that
the ‘coefficients’ 3,0y and 9y Hy in (247¢) and (249) are unimportant in the process of getting
a priori estimates for (U , H, @) whereas the role of the rest coefficients in the boundary
conditions (247¢)—(247e), (249) is played by (U’, H').

That is, problem (247) considered as a problem for (U, H, ¢) has the same form and same
properties as the linear problem (85). It should be only noted that in the process of reduction
of problem (247) to that with go = g3 = 0, x = 0 and E = 0 we choose the zero ‘shifting’
function for H. But, then, differently from (53), we will have the non-zero r in (248) for the
reduced problem which is a counterpart of problem (52)—(54). However, in [33] equation (53)
was used only for estimating the normal derivative 9,4, of the non-characteristic unknown #
through the tangential derivatives 0,4, and d3h3. In our case with the non-zero r in (248), we
have

. . . U
10171y 11200+ < I102h2y lL2(0%) + 103h3y 12(0) + Cll@y 172

but the last L? norm in the above inequality does not affect the derivation of a basic a priori
estimate for problem (247) (see [33]).
Thus, as in theorem 15, we can derive for problem (247) the a priori estimate (86) with

g1=8=g85=0:

S, L2 T 2
V(”Uy Wy, , cop + 19v Uy cop) + 1@y thry, iplo e,
) ) ~ 2

+15y |y ”Hy”z(w»p) + @y ||Hy3/2(w1,)>

9 ro2 —~ 2 2 2
< (I om+ Wt Byl * g2 I2sm ) + N5y Iy ) - @5D)
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Taking into account lemmata 2 and 3 and the exact form of the source terms x and &, we have

= 2 7112
- . ' 252
”X]/’ )/”HE(QT) X CH(D}/”HS/Z(G)T) ( 5 )

The nonlinear term g, can be estimated as follows:

||82y||23/2(w7) < C<||H . (HV +¢”81H/)“?ﬁ/2(w7) + Z 1Z;H - (HJ/ + ‘ﬁyalH/)”ZVl/z(wT))
j=02,3

. 2 ~ 2
<C(I9lor By, + 16 1202,,,) - (253)

At last, using the decomposition
3
(div D)oy = (@ivH) o, — Y 01H 1wy 9,6,
=2

the fact that
divh' =0  in Q7.
where i) = (H)y, H301 P}, H301 D)), Hy = H] — H,0, W' — H403¥’, and the Leibniz rule

Zi(90;9) = (Z,9;9)¢ + (0;9) Zi,

o . _ B o o (254)
ZinZi(90;@) = (ZinZi0;0)P + (Z10;0) 2@ + (Z1n0;0) 2y + (L Z19) Z ;@
(m, k =0, 2, 3), we estimate the source term g3,
3
g3y Wz ary < € D 1958581320y < CNGy 17710 (255)
Jj=2
by treating the terms in parentheses in (254) as coefficients.
It follows from (250)—(253), (255)
Y2 L2 : 2 ~ 2

V <||uy ||Hlim.y(Q;‘) + ”f.))/ ”H;(Q;) + ”*6}/ |wT ”H;}/Z(wr) + ”(py ”HS/Z(CUT))
< S (1o g, + 16120, ) (256)
< Y vierllg2 g, Py H )

Absorbing the norms in the right-hand side of inequality (256) for y large enough, we get the
estimate

72 . 2 ~ 112
<
”Z/{)/ ||H[LHV(Q+T-) + ”ij ”H}J(Q;-) + ||(/7y ”H;/Z(wr) = 0

which implies U=0H=0and ¢ = 0, i.e. the uniqueness of the smooth solution (U, H, ¢).
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Appendix A. Properties of anisotropic Sobolev spaces

The next theorems deal with the product of two functions in anisotropic Sobolev spaces.

Theorem 39. Let n > 2 and y > 1. Moreover let m > 1 be an integer and s =
max {m, (%] +2}. Forany u € H',(R}) and v € H,(RY) one has uv € H",(R}).
Moreover, there exists a constant C independent of y such that

s—(n+1)/2

14 luv||ap, @y < Cllullay, @l @, vy 2 1. (257)

Proof. See [27, theorem 34]. U
Let us define the space

WIPRY = (ue L°R") : Ziue LR, i=1...,n}, (258)
equipped with its natural norm. We have the following Moser-type inequalities.

Theorem 40. Let n > 2 and y > 1. If m is I or even, for all functions u and v in
H' (R}) N L*(RY) one has

luvll e @y < CUlullay @ llvllzems + lullLe@n vl @), vy =2 1. (259)
If m > 3 is odd, for all functions u and v in H:’V RN W)}“’(Rﬁ) one has

vl ety < CClull ey [0l gy + ey 10l y)e Yy =1 (260)

Proof. See [26, theorem B.3]. O

Theorem 41. Let n > 2 and y > 1. For every integer m > [”—;1] + 1 the continuous
imbedding H, (R}) — Cg (R?) holds. Moreover, there exists a constant C such that for
everyu € HJ, (RY)

YDl ey < Cllul |y ey Vy > 1. (261)
From theorems 40 and 41 we get

Corollary 42. For every even integer m > [%] + 1, for all functions u and v in H;",(R})
one has

1/2
uvllgn &y < Clullgn @yllvll jusy, + lull (ns, v|lgn @), Yy =1,
Y Cluvllgy, @ < Clullay, @yl ”H*‘,;“( " l ”Hi‘f“(m)” |, @) y 2
(262)
For every odd integer m > [%] + 2 and for all functions u and v in H}", (RY}) one has
1/2
uv n ry < C(||u m (R*) ||V ntl .. + ||[u ntl ), v m (R ), Vy > 1.
7ol e < Ol w0 g+l i 0l ) y >
(263)

A version of (259), (260) only involving conormal derivatives is given in the following theorem.

Theorem 43. Let m > 1 be an integer. If u and v are in HJ, (R}) N LC(R}) then

tan,y +
uv € Hy, , (RY) and there exists a constant C such that

®y < C(llull gn

tan,y

vl my

tan,y

@) Il ey + lull L@ vl mg, @), Vy 2 L. (264)
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Proof. The result is proved by induction. For m = 1 itis obvious; assuming it is true for m — 1
let us take o with |«| = m. By Leibniz’s rule we have

12 @o)l| 2y < € Y NZPu ZPvl| 2y = I + Lo,

B<a
where we have denoted
L= C (v Z°ull 2@y + lu Z0ll o) - L=C > 1Z2°7PuZPv| ).
BeK (@)

Ki(@)={f<a, I <[Bl<m—1}
It is clear that I} may be readily estimated by the right-hand side of (264). As for I,, from the
Holder’s inequality we get

1Z¢Pu ZPvl| 2@y < CNZ*Pull pone-s gy | ZP | 2w ey
because | — B|/2m + |B|/2m = 1/2. Here we apply the interpolation formula (see (B.4)
in [26])

1—18 s
1Z°ul ey < Cllull oy Y NZ%ullpigy, 1<l <m—1,
1<lo|<m
and obtain
_ 1 1
12 Pu ZPoll gy < Cllullf gy el ey 0N Gy 101t
< Cllulle@n Mol g, @ + el bz, @ lvllze ). (265)
Adding over «, B completes the proof. (|
From theorems 41 and 43 we get
1
Corollary 44. For every integer m = 1, for all functions u and v in Hy, ,(R}) N H. [ v 2 R
one has
v Pluv| <C( Vy > 1
Hpy, o (RY) u”Ha“ i)”U” 2l + [|ull [l 34 ” ”H{Q’n (R”)) y =z 1.
o fn Hy'  (RY H/  (RY y
(266)

Instead of theorem 43 may be convenient the following one.

Theorem 45. Let m > 1 be an integer and s = max{m, [” 1+4}) Ifu € K, (RY) and
vEH], (R?}) then uv € HY | (R}) and there exists a constant C such that

tan,y
—@D))2
v vl @y < Cllullgn @ l1v]las, @2 - Vy = L (267)

If m = 2 the same result holds with s = [%] + 3 and ||”||Hén,y(R2) instead 0f||M||1<3AV(R';)~
Finally, we give some other lemmata used in the proof of section 8.

Lemmad6. Let 0 > [(n+1)/2] + 3 and let A be a matrix-valued function such that
A€ H] (R}) and A =0 if x; = 0. Then, for each regular enough vector-valued function u

lAdull 2wy < cllAllag, @yl Ziull 2@ - (268)
Proof. See [26, lemma B.9]. (|

Lemma 47. Let m > 2. Let A € H]'(R!) be a matrix-valued function such that A = 0 if
x;1 =0andlet M be defined by

M(x1,x") = A(x1, x") /o (x1),
so that Adoyu = MZu. Then
1M o2 gy < cll Al -

Proof. See [40]. O
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Appendix B. Some estimates

B.1. Commutator estimates

Lemma 48. If s > 1 and « is a n-uple of length || < s, there exists C > 0 such that for all
u and a in H® with Vu and Va in L™

110% a V]ull: < CIValr=llullgs + I1Vull<llallys) .

Ifs > 1 and a is a n-uple of length |a| < s, there exists C > 0 such that for all u in H*~' N L*>
and a in H® with Va in L™

110% alull: < CUVallp<llull g + lulliellallms) -

If s > n/2+ 1 and « is a n-uple of length || < s, there exists C > 0 such that for all
ue H" Vanda € H*

I10% alull: < Cllullge-illallms.

Proof. See e.g. [4,19]. O

B.2. Moser-type calculus inequalities

Lemma 49. For all s > 0 there exists C > 0 such that for all u and v in H* N L™
luviigs < CUlullasllviiee + llulles vl m). (269)

Proof. See e.g. [4]. U

Appendix C. Adaptation of the result of [33] to the case with outer boundaries

Unlike the reduced linearized problem from [33] formulated in the whole space domain,
problem (60) contains the additional boundary conditions (60f),

vy =0 on oy, H,=H3=0 onw;, (270)

on the outer boundaries w} and w; . In[33], for the reduced linearized problem the basic energy
a priori estimate was derived and the existence of solutions was proved by using a ‘hyperbolic
regularization’ of the elliptic system (60b). Namely, this regularization was inspired by a
corresponding problem in relativistic MHD [45] containing the vacuum electric field E as the
additional unknown obeying the vacuum Maxwell equations. Introducing the small parameter
of regularization ¢ and the new auxiliary unknown E*, here we just complete the regularized
problem from [33] for the unknown (U*, V¥, ¢°), with V¢ = (H®, E?), by adding the boundary
conditions (270) written for v{, 15 and H5:

3
Ad U + Y (A + Ejp)d U +CUS=F  in QF, (271a)
j=1
ed,h° +V x & =0, ede —VxH =0 in Q7. (271b)
09" = uj — 020,0° — 03039 + ¢° 01Dy, (271¢)
¢ =H -H —[dGle° —¢E - E, 271d)

Ef, =& 0,(Hag*) — e a(E19%). (271e)
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Ef, = —£ 8 (Hap®) —e (E19°)  onor, 271f)
v; =0 on oy, H, =H5;=0 on wy, (271g)
U, ve, ) =0 fort <0, (271h)

where

E® = (Ej,E5, E5), E=(E ExyEs), € =(E8®,E:, E),

¢ = (B, E50,®y, E50,D1), E = Ef — E50,V — ES0;0,
Ef = E{uV + Ef, k=2,3,

the coefficients E j are given functions which are chosen in [33] so that the boundary conditions
(271c)—~(271 f) on wr are maximally non-negative if we neglect in them the zero-order terms
for ¢°. All the other notations for H* (e.g., H°, h®) are analogous to those for H.

The crucial role in the process of deriving the energy estimate in [33] was played by the
secondary symmetrization

3
MW+ M50, W+ M{WE =0 (272)
Jj=1

of the Maxwell equations (271b), where W¢ = ($°, €?),

1 T R 1 T
Mi= —— KBKT >0, K=L®# M =——KBK' (j=23),
0T 5%, 0 2@, M=o KBK U )

3
. ~ 1 _
Mi= —KBKT, B = (- Bad),

019 019 =
M = K (B0, + B50) + B0, + B50; + B By) (% KT> ,
11
1 0 0 0 gV —&Vy vi v» vz 0 O 0
0 1 0 —ev3; 0 ey v, —v; 0 0 0 —g!
Bt — 0 0 1 gv, —ev; O Bt — v 0 —v; 0 &l 0
0= 0 —&V3 €V 1 0 0 ’ L= 0 0 0 Vi V2 V3 ’
£V3 0 —evyy O 1 0 0 0 e&! v, —v; 0
—&Vy €&V 0 0 0 1 0 -1 0 vz 0 —y
—Vy Vp 0 0 0 ¢! —V3 0 v O —e 10
Vi V2 V3 0 0 0 0 —V3 g ! 0 0
B — 0 vy —u —e 10 0 e V1 v, vz O 0 0
L 0 0 —e! —v, v O ’ 3T 0 el 0 —V3 0 vi |’
0 o0 0 Vi vy 13 — 10 0 0 —V3
el 0 0 0 V3 —Vp 0 0 0 v V2 V3

I, is the unit matrix of order 2, the matrix 7 is defined in (55), and v; (¢, x) are functions
chosen in appropriate way (see below). It was proved in [33] that systems (271b) and (272)
are equivalent, provided that the hyperbolicity condition

ey < 1 (273)
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for system (272) is satisfied, where v = (vy, vy, v3). Clearly, inequality (273) holds for any
given v and small &.
The choice of v; in [33] was the following:
Vv = 13282(5 + 13383(/3, Vi = ﬁk, k= 2, 3.
However, it was important that v; have this form only on the boundary wr, i.e. at x; = O.
Therefore, here we may modify the above choice as follows:
Vi = X (02020 + 03039), vp=x0, k=23, (274)

where the cut-off function x (x;) € C*(—1, 0) is such that x(0) = 1 and x(—1) = 0. Then,
for our present case with the outer boundaries w* = R x I'y the boundary integral for the
inner boundary v = R x I appearing in the energy identity (in L?) for the symmetric systems
(271a) and (272) stays the same as in [33]:

/Ag dx’ dt,

where

AT = =3 (Enlly U)o + 3 (M{WS, WD), U, = e 7U°, ete,
and thanks to the choice in (274) (see [33])
AP = —qfuf + &7 (H5E5 — H5ES) + (0295 + D305 HS + (0,85 + 0:E5) ES,  on w.

But in our case the energy identity contains also the boundary integrals
5t — %/+(€12U€,Uﬁ)|w+ dx'dt = /+ q° v+ dx’dr
and ’ ’
J = —% ./w*(MfW;’ W), dx’dt

for the top and bottom boundaries, where it is worth noting that thanks to the choice in (274)
we have v;|,,—_; = 0 and so one can check that

—

-1
Mo~ = Bili=o = B = ¢

coococoo
coocoo
o~ ococoo
coococoo
cocoo~o o
cocoo !

Then,
3= 3—1/ (ESHS — ESHS) |- dx'dr.

Thanks to the boundary conditions (271g) the both boundary integrals above vanish: J* = 0.

The remaining arguments are the same as in [33] and we just refer the reader to [33] for
more details. For our case (with the added outer boundaries), for the existence of solutions
of problem (271) it is only important to note that the number of the boundary conditions in
(271g) is in agreement with the number of incoming characteristics for the boundaries I' ;. (this
is easily checked by calculating the eigenvalues of the matrices £;, and Bf). Then, we again
refer to [33] for the energy a priori estimate for the regularized problem (which is the same
as that for problem (271)), the proof of the existence of solutions for it and the passage to the
limit as ¢ — 0.
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