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Abstract. This work regards on the design of a cylindrical cam indexing mechanism with a motion 

law that passes through a positional precision point. A numerical algorithm is proposed to solve this 

problem and, particularly, a genetic algorithm. The algorithm and the encoding of the problem are 

described.  

Introduction 

A cam indexing mechanism is composed by a moving element (the cam) and by a rotating plate 

(turret), that carries a series of rollers; these realize a shape coupling in every instant with the cam [8]. 

According to the type of adopted cam [8], the most common cam indexing mechanisms are classified 

as: cylindrical, globoidal and planar. This paper examines only cylindrical cam indexing mechanisms 

and we want to focus our attention on fast mechanisms, i.e., where inertia actions are important. In 

these conditions, the system exhibits phenomena associated to compliance of mechanical components 

thus it must be designed accurately and its mechanical behavior can be properly describe with a two 

degrees model [1, 15]. 

Different requirements must be met while improving the quality of the system: reduce the 

dimension of the cylindrical cam; reduce inertia actions; reduce the motor size; reducing vibrations. 

Besides these common needs in the design of fast cam mechanisms, the movement of our indexing 

mechanisms must be coordinated with the movements of other machines that are parts of a more 

complex system, thus the turret can necessitate to pass through a precision point. This design problem 

is widely known in literature, because it is present in different industrial machines and it is commonly 

solved with cam law blending techniques [12]. A positive tolerance (also when it is small) is 

practically acceptable for this precision point, while other just mentioned requirements must be met in 

the indexing mechanism design [16], therefore this work investigates an efficient method for the 

numerical solution of this problem avoiding just known cam law blending techniques. 

More in detail, the core of indexing mechanism design is the definition of the motion law (ML) 

associated to the cam profile mixing properly different functional requirements of the system. This 

activity can be performed approximately using proper coefficients [8] or precisely with iterative 

algorithms that optimize the ML to respecting imposed constraints [1]. 

Different optimization algorithms are present in literature, they are described in the second 

paragraph of this work and particularly we will chose genetic algorithms [6], due to their interesting 

characteristics. 

Finally, different mathematical forms are shown in literature to describe ML of double-dwell fast 

cams, and some of them are [9]: cycloidal, modified sine, trapezoidal acceleration, modified 

trapezoidal acceleration (mML), polynomial (pML), trigonometric (tML), splines. 

The attention will be focused on three classes of ML: pML, mML and tML. They will be studied to 

evaluate their suitability to solve the precision point problem with the chosen optimization algorithm. 
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Definition of the problem 

We consider a cylindrical cam indexing mechanism, as shown in Fig. 1, where the follower consists 

of a turret (follower wheel) with a number of rollers spaced around a pitch circle, while the cam is 

properly shaped on its lateral cylindrical surface. 

 

 

O1 

O2 

r1 

r2 

L α 

β 

ψ 

I
 

 
Figure 1 - Cylindrical Cam Indexer. 

 

As shown in Fig. 1, the centers of the rollers are symmetrically placed on a circumference with 

radius r2, and its value is approximately equal to the center-to-centre I between mover and follower. 

The mechanism is single pass with a ψ index period equal to the angular distance between two 

subsequent rollers, as described in (1), where n is the number of rollers. 

 
2 / nψ π=  (1) 

 

To study the cam in detail, its lateral surface is fictitiously unrolled as shown in Fig. 2. Thus, if r1 is 

the median radius of the cam, the obtained strip has a length 2πr1 and a width L. On this strip the 

segment αar1 corresponds to the motion angle of the follower and the segment (2π-αa)r1 corresponds 

to its dwell. 
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Figure 2 - Unrolled cylindrical cam. 

 

The obtained mechanism is a translating mover that sets the follower in motion. The only 

difference with a usual swinging follower mechanism is that the follower rollers do not return to their 

starting position at the end of the motion cycle but they continue in the same direction and are 

replaced by the subsequent rollers. 

Then, the design of the system demands a proper definition of the ML, that consists in a sequence 

of rise and dwell phases. We focus the attention on a single rise phase and the choice of the ML. The 

ML besides allows a correct rise, must also pass through a precision point for coordinating reasons 

between the turret of the indexing mechanism and other part of the entire machine, that is extremely 

compact, thus interferences and impacts must be avoided between the turret and other moving 

elements of the entire machine. 
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Such a motion may be easily designed using the cam law blending technique [12]. The term 

“blending” is used to describe the use of contiguous periods of motion to an adjacent different type of 

motion. In this way, two different ML are designed according to a desired dynamical behavior of the 

system and, then, a local modification is realized on the rise phase due to the constraint associated 

with the precision point. 

A different approach consists in the use of a ML in series, i.e. a pML, or in sequence, i.e. splines [9] 

with same free parameters, thus they can be set analytically to allow the passage through a precision 

point before the implementation of other dynamical demands for the systems, i.e.: smooth 

movements, reduced vibrations, limited accelerations, reduced motor torque. 

In both approaches, the exact crossing through a precision point is imposed to the detriment of 

other important dynamical demands of the system and this choice cannot be easily altered. Anyway, in 

practice, often the passage through a precision point is not an exact demand, but an error can be 

tolerated and, in some situations, this error can be rather wide. For this reason, we want to investigate 

a different method to realize the passage through a precision point with a positive tolerance error. This 

result can be achieved with numerical optimization methods and, particularly, with numerical 

minimization methods, that allows to minimize a general mathematical function. In our case, this 

function to be minimized can be the distance d between the ML and the precision point measured as 

the smallest segment connecting the precision point with a point on the ML (Fig. 3). Then we are 

interested in minimizing this distance to an acceptable tolerance level that is a value grater than zero. 

Proposed solution method 

The next problem is the choice of an optimization algorithm sufficiently adequate to our situation. 

Some classes of algorithms are studied to describe their pros and cons according to knowledge in 

literature [10] and to our experiences done on different problems [1, 3, 4, 14], collecting a global 

judgment in Tab. 1, where LO, GO, S, M and CO stays respectively for local optimum, global 

optimum, speed of the algorithm, memory consumed, complexity of the objective. 

 

Table 1. Comparing different search algorithms. 

Algorithm LO GO S M CO 

Gradient Based +++ --- ++ - --- 

Hessian Based +++ --- +++ -- --- 

Random Search -- +++ --- + +++ 

Stochastic Hill climbing + ++ + - + 

Simulated Annealing ++ ++ + - ++ 

Symbolic Artificial Intelligence + ++∼ - - +++ 

Genetic Algorithms ++ +++ - + +++ 

 

In our specific situation, we are interested to a global optimum problem, thus Random Search, 

Genetic Algorithms (GA) and also Symbolic Artificial Intelligence (AI) can be chosen. Symbolic Ai 

is discarded because we want to easily modify the algorithm for future works and Symbolic AI is very 

problem-specific, therefore this class of algorithms forces to restart the each time the activity. We do 

not pretend a fast computation, because this is not a real-time problem, but at the expense of a slight 

complexity, the GA allow much more computational speed than the Random Search, thus we chose 

the GA. This choice is common in literature and produced positive results [1, 4, 7 , 11-13]. 

The GA are iterative stochastic processes that operate on a family of potential solutions (called 

population) to alterate it and to pick up the global optimum of the problem to be solved. A wide 

literature is present on this subject [Goldberg, Back], where a complete treatment of GA can be found, 

whereas in the followings only basic concepts are hinted to properly describe the proposed GA and the 

exact encoding of the problem. 
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To solve different optimization problems, among which there is the passage through a precision 

point, a sufficiently general GA is implemented using different types of ML, by means of object 

oriented and virtual classes techniques. With this approach, different encoding options are set after 

that the problem to be solved and the type of ML are set. A general ML is considered as shown in (2), 

where x and y are the real spatial variables respectively at the input and at the output of the indexer, f() 

is the type of ML, ai is the i-th of n parameters that the designer can adjust with a value belonging to 

the set A (that can be real, natural, integer or a different set of values according to the type of ML). 
 

1 2 1( ; , , , , , ); , ,i i n iy f x a a a a a a A x y+= ∈ ∈ ∈… … � �  (2) 
 

It is thus evident that, chosen a type of ML f ( ), the ML can be individuate with a vector of 

parameters a, as shown in (3). 
 

1 2 1, , , , , ;i i n ia a a a a a A+=< > ∈a … …  (3) 
 

The implemented GA generate randomly m ML aj producing an initial population P
0
 (4) of n 

potential solutions to a determined problem. 
 

0
1 2 1, , , , ,j j m+=< >P a a a a a… …

 (4) 

 

The term “initial” associated to the superscript 0 of the symbol P
0
 implies that the GA ha an 

iterative nature, thus the superscript k associated to a generic generation P
k
 (5) individuates the k-th 

step of the algorithms that produced it. 
 

1 2 1, , , , ,
k k k k k k

j j m+=< >P a a a a a… …
 (5) 

 

Therefore, in analogy with evolutive processes, the population P
k
 is also called k-th generation of 

the GA, the element aj
k
 of the population P

k
 is also called j-th individual of the k-th generation, while 

the I-th element of the j-th individual is called gene. 

After the definition of a specific problem, the k-th generation is ordered according to a proper 

quality indicator that measures the fitness of an individual aj
k
 to the problem to be solved. Thus the 

population P
k
 is an ordered vector in decreasing order of fitness to the problem. The sorting is realized 

either with a bubble sort algorithm for populations with a reduced number of individuals or with a 

quick sort algorithm for populations with a wide number of individuals. The generation P
k+1

 is 

produced from the generation P
k
, with proper operators that act in the following sequence: 

1 – coupling, 

2 – heredity, 

3 – cross-over, 

4 – mutation. 

The coupling consists in picking up two individuals (aj1
k
,aj2

k
) on which the other three operators 

will be applied to generate a single individual aj
k+1

. The couple of individuals (aj1
k
,aj2

k
) is chosen 

according to (6). 
 

{ } ( )1 1,2, , , 1, , 2 1, 1j j j m j random j∀ ∈ + = ∈… … �
 (6) 

 

Thus the j1-th element is chosen scanning the population of individuals and each individual 

assumes at least one time the j1-th role, while the j2-th element is chosen randomly among a group of 

individuals between the first and the j1-th. Because the vector P
k
 is sorted with a decreasing fitness to 

the problem, the best individuals have a higher coupling probability. Particularly, the first individual 

is coupled at least one time with itself and the population P
k+1

 has the same number of individuals of 

the population P
k
. If two individuals in the couple have the same number of genes, the descendant 
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individual has generally the same number of genes of the parents, but it is also provided the possibility 

of incrementing or decrementing randomly the number of genes of the descendant. When the two 

parents have different numbers of genes, the parent with a higher number of genes is divided 

(randomly or not) in two parts. The part with the same number of genes of the other parent is coupled 

as just described, while the remaining part is coupled with itself or with a sub-individual randomly 

generated; thus the descendant has generally the same number of genes of the parent with a higher 

number of genes. 

Once defined the couple of parents and the number of genes of the unique descendant, the 

subsequent operators can be applied. The heredity consists in the random selection of a parent of the 

couple and it donates a single gene (among the undonated genes), then the gene is copied directly in 

the descendant in the same vector position assumed in the selected parent. This process is repeated e 

times, equal to the number e of inherited genes. 

Then, the cross-over operator is applied. It is realized choosing randomly a parent and extracting 

from it a gene among those not inherited and not crossed-over. This gene is copied in the descendant 

in a random position (not necessarily the same vector position assumed in the selected parent). This 

process is repeated r times, equal to the number r of crossed-over genes. 

Finally the mutation operator is applied: selecting randomly the donating parent and again 

randomly a gene of this parent among those not inherited, not crossed-over and not mutated. Then this 

gene is varied randomly around the value assumed in the parent individual and the descendant inherits 

it. The process is repeated u times, equal to the number u of mutated genes. 

The application of these three operators is better explained with the example in Fig. 4. 
 

 

0.14 0.09 0.19 0.15 0.10 0.07 0.26 

0.19 0.09 0.04 0.16 0.26 0.06 0.25 

0.04 0.04 0.26 0.11 0.27 0.06 0.22 

aj1
k 

aj
k+1 

aj2
k 

 
Fig. 4. Example of individual production 

 

The individual aj
k+1

 generated in this way can sometimes be not belonging to the set A. For 

example, if A is the set of real numbers respecting (7), it can happen that the GA generates a real 

number that do not respect (7), thus it is necessary to put aj
k+1

 into the set A, through a proper 

transformation technique as proposed in (8). 
 

1
,

1

1

n
k
j i

i

a
+

=

=∑
 

(7) 

1 1 1
, , ,

1

, 1,2,

n
k k k
j i j i j h

h

a a a i n
+ + +

=

′ = =∑ …

 
(8) 

 

Conclusions 

The problem of the passage through a precision point was studied for cylindrical cam indexers with 

an iterative automatic numerical approach providing for the possibility, in the next future, to solve 

more complex problems. A class of algorithms was individuated that is adapt to the demand of our 

problem and these are the genetic algorithms, an encoding was proposed for these algorithms and the 

precision point problem was solved for different classes of motion laws. Numerical simulations must 

be performed to obtain further results. 
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