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a b s t r a c t

In this paper we study the long-term dynamics of a doubly nonlinear abstract system
which involves a single differential operator to different powers. For a special choice of
the nonlinear terms, the system describes the motion of a suspension bridge where the
road bed and the main cable are modeled as a nonlinear beam and a vibrating string,
respectively, and their coupling is carried out by nonlinear springs. The set of stationary
solutions turns out to be nonempty and bounded. As the external loads vanish, the null
solution of the system is proved to be exponentially stable provided that the axial load
does not exceed some critical value. Finally, we prove the existence of a bounded global
attractor of optimal regularity in connection with an arbitrary axial load and quite general
nonlinear terms.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

An increasing attention was paid in recent years to the analysis of nonlinear vibrations of suspension bridges, and many
papers have been published in this field (see, for instance, [1,14] and references therein). Apart from a lot of works which
dealwith approximations and numerical simulations, some of them are devoted to scrutinize the periodic or longtime global
dynamics by analytical methods [6,8,9,22,26].

It is worth noting that rigorous results concerning the global dynamics of a suspension bridge system are very difficult
to achieve, especially if the coupling between the road bed and the suspension main cable is taken into account [2,7,18,21].
Most of this literature focus onmathematical models describing such a dynamics as the nonlinear coupling between a beam
(the road bed) and a string (the main cable), according to the pioneer model introduced by Lazer and McKenna [19,20].

Taking into account the midplane stretching of the beam, which is due to its elongation when both ends are hinged, a
doubly nonlinear system comes out. The former nonlinearity arises by modeling the flexible supporting stays as nonlinear
elastic springs, according to Lazer andMcKenna. The latter is a geometric nonlinearitywhich appears in the bending equation
of the road-bed by accounting for its extension when an axial load is applied (see, for instance, [13,25]).

We assume the ratios between the length of the bridge and other dimensions to be very small, which entails that the
torsional motion can be ignored, so that the road bed can be simply modeled as a vibrating one-dimensional beam. In
addition, by neglecting the influence of the towers and side parts of the bridge, such a beam can be assumed to have simply
supported ends (see Fig. 1).
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The vibrating beam with simply supported ends (road bed)
Nonlinear springs (ties)

u(x,t)

axial
load

The vibrating string (main cable)

v(x,t)

Fig. 1. Road bed hanged by the main cable.

The resulting dynamical system consists in the following coupled equations
∂ttu + ∂xxxxu + a∂tu +


p − M(∥∂xu∥2

L2(0,1))

∂xxu + F(u − v, ∂t(u − v)) = f ,

∂ttv − ∂xxv + b∂tv − F(u − v, ∂t(u − v)) = g,
(1.1)

– u = u(x, t) : [0, 1] × R+
→ R represents the downward deflection of the beam mid-line (of unitary length) in the

vertical plane with respect to his reference configuration.
– v = v(x, t) : [0, 1] × R+

→ R measures the vertical displacement of the string.
– f and g are the external loads, which are assumed to be time-independent.
– F(u − v, ∂t(u − v)) represents the nonlinear response of the stays connecting the beam and the string: each stay has a

rest reference length which corresponds to u(x) = v(x) = 0. Since the action exerted by the suspension stays is mutual,
a different sign appears in front of the term F(u − v, ∂t(u − v))within the two motion equations.

– M(∥∂xu∥2
L2(0,1)

) takes into account the geometric nonlinearity of the beam bending due to its elongation.
– p is a parameter which regards the axial force acting at one end of the beam: it is negative when the beam is axially

stretched, positive when compressed.
– a, b > 0 represent the viscous damping constants due to external resistant forces which linearly depend on the velocity.

For simplicity, the flexural rigidity of the structure and the coefficient of tensile strength of the cable are chosen equals to
one. Some special choices of F and M will be discussed in the sequel.

The unknown fields u and v are required to satisfy the following initial conditions
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x),
v(x, 0) = v0(x), ∂tv(x, 0) = v1(x).

(1.2)

Concerning the boundary conditions, the beam is considered with both pinned ends, the string has fixed ends. Accordingly,
we choose

u(0, t) = u(1, t) = ∂xxu(0, t) = ∂xxu(1, t) = 0,
v(0, t) = v(1, t) = 0. (1.3)

1.1. Constitutive assumptions

For further convenience, we list here all assumptions on the functions M and F which will be employed throughout the
paper.

Assumptions on M

M1- M ∈ C1([0,∞))
M2- M(0) = 0
M3- M ′(s) ≥ 0 (non decreasing property)
M4- lims→∞ M(s) = M∞ ∈ (|p|,∞].

As a consequence of assumptionM4 and the continuity ofM , for some positive constants k,m and γ we have (see [12])

(M(s)− p)s ≥ −k, (1.4)
M(s) ≥ γ s − m, γ > |p|, (1.5)

where

M(s) =

 s

0
M(y)dy.

In addition, it is easy to check that
M(s) ≤ sM(s). (1.6)
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Examples

Usually,M(s) = s in bending problems (see [8]). Nevertheless,M1–M4 are satisfied by a large class of increasing functions,
either convex or concave. For instance

• M(s) = sθ , θ > 0;
• M(s) = ln(1 + s).

Assumptions on F

A minimal set of assumptions on F is given by

F1- F(0, 0) = 0
F2- (Lipschitz condition) ∀ s1, s2, q1, q2 ∈ R, ∃ c0, c1 > 0 such that

|F(s1, q1)− F(s2, q2)| ≤ c0|s1 − s2| + c1|q1 − q2|

F3- (monotonicity property) ∀ s1, s2, q1, q2 ∈ R

[F(s1, q)− F(s2, q)](s1 − s2) ≥ 0,
[F(s, q1)− F(s, q2)](q1 − q2) ≥ 0.

In order to obtain uniform estimates, we further assume:

H1- (decomposition) ∀s, q ∈ R, ∃G0,G,Γ0,Γ such that

F(s, q)q = G(s)q + G0(s, q) with G0(s, q) ≥ 0,
F(s, q)s = Γ0(s)+ Γ (s)q with Γ0(s) ≥ 0

(1.7)

H2- G(0) = 0,Γ (0) = 0
H3- (Lipschitz condition) ∀ s1, s2 ∈ R, ∃ cG, cΓ > 0 such that

|G(s1)− G(s2)| ≤ cG|s1 − s2|,
|Γ (s1)− Γ (s2)| ≤ cΓ |s1 − s2|

H4- (monotonicity property) ∀ s1, s2 ∈ R

[G(s1)− G(s2)](s1 − s2) ≥ 0,
[Γ (s1)− Γ (s2)](s1 − s2) ≥ 0

H5- ∀ s ∈ R

Γ0(s) ≥ 2
 s

0
G(σ ) dσ ≥ 0. (1.8)

Following these assumptions, we can easily check that s

0
Γ (η) dη ≥ 0,

 s

0
G(σ ) dσ ≥ 0, (1.9)

F(0, q)q ≥ 0, F(s, 0)s ≥ 0. (1.10)

Examples

Some examples of function F satisfying F1–F3 and H1–H5 are as follows

• FL(s, q) = k2s + hq, h ≥ 0. In such a case

G(s) = k2s, G0(q) = hq2

Γ (s) = hs, Γ0(s) = k2s2.

• FOS(s, q) = k2s+ + h1+
s q, where h ≥ 0 and

s+ =


s if s ≥ 0
0 if s < 0 , 1+

s =
s+

s
=


1 if s ≥ 0
0 if s < 0.

Accordingly,

G(s) = k2s+, G0(s, q) = h1+

s q
2

Γ (s) = h1+

s s = hs+, Γ0(s) = k2(s+)2.
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For both examples we recover the particular relation

Γ0(s) = G(s)s.

When h = 0, it is apparent that functions FL and FOS, respectively, provide simple models of Linear and One-Sided springs
with stiffness k2 (see [6,8]). On the other hand, the dissipative terms appearing when h > 0 model some damping effect
inside the springs. In the One-Sided case, this damping works only if the spring is stretched, obviously.

1.2. Outline of the paper

In Section 2 we formulate an abstract version of the problem, so proving that its solutions are bounded in the energy
norm and that the set of the steady states is nonempty and bounded. Section 3 is focused on well-posedness results and the
abstract system is shown to generate a strongly continuous semigroup (or dynamical system) on the energy space. We also
prove the exponential decay of the energy norm when f = g = 0, provided that the parameter p is smaller than a critical
value. In Section 4 we present the main result, namely the existence of the regular global attractor for a general value of p.
This is done by exploiting the existence of a Lyapunov functional and without require any assumption on the strength of the
dissipation terms. The asymptotic compactness property is shown by using a particular decomposition of the semigroup, as
devised in [15], but a final bootstrap argument is needed here, unlike [15]. The Appendix at the end of the paper is devoted
to recall some technical lemmas which are required to obtain main results.

2. Preliminary results

2.1. Functional setting

Let (H, ⟨·, ·⟩, ∥ · ∥) be a real Hilbert space, and let A : D(A) b H → H be a strictly positive selfadjoint operator. For any
r ∈ R, the scale of Hilbert spaces generated by the powers of A is introduced as follows

Hr
= D(Ar/4), ⟨u, v⟩r = ⟨Ar/4u, Ar/4v⟩, ∥u∥r = ∥Ar/4u∥.

When r = 0, the index r is omitted. The symbol ⟨·, ·⟩will also be used to denote the duality product betweenHr and its dual
space H−r . In particular, we have the compact embeddings Hr+1 b Hr , along with the generalized Poincaré inequalities

λ1∥w∥
4
r ≤ ∥w∥

4
r+1, ∀w ∈ Hr+1, (2.1)

where λ1 > 0 is the first eigenvalue of A. From (2.1) it follows

λ

∥u∥2

r + ∥v∥2
r


≤ ∥u∥2

r+2 + ∥v∥2
r+1 , (2.2)

where λ = min{λ1,
√
λ1}, for all u ∈ Hr+2, v ∈ Hr+1. We denote by en and λn, with n = 1, 2, . . . , the eigenfunctions and

the strictly positive sequence of the distinct eigenvalues of A, respectively.
In order to establish more general results, we recast problem (1.1)–(1.3) into an abstract setting. Indeed, if we define the

product Hilbert spaces

H r
= Hr+2

× Hr
× Hr+1

× Hr ,

then, for all p ∈ R, the related abstract Cauchy problem is given by
∂ttu + Au + a∂tu − (p − M(∥u∥2

1))A
1/2u + F(u − v, ∂t(u − v)) = f ,

∂ttv + A1/2v + b∂tv − F(u − v, ∂t(u − v)) = g,
u(0) = u0, ∂tu(0) = u1,
v(0) = v0, ∂tv(0) = v1.

(2.3)

Problem (1.1)–(1.3) is just a particular case, which is obtained by setting H = L2(0, 1) and A = ∂xxxx with boundary
conditions (1.3). The resulting operator is strictly positive, selfadjoint, with compact inverse. In addition, its domain is

D(∂xxxx) = {w ∈ H4(0, 1) : w(0) = w(1) = ∂xxw(0) = ∂xxw(1) = 0},

its discrete spectrum is given by λn = n4π4, n ∈ N, and en = sin nπx are the corresponding eigenfunctions.

Notation 1. Henceforth, a solution to problem (2.3) will be denoted by σ : R+
→ H ,

σ(t) = (u(t), ∂tu(t), v(t), ∂tv(t)),

and z = (u0, u1, v0, v1) summarizes its initial data. Unless otherwise indicated, initial data of the problem are assumed to
belong to a ball of radius R in H , namely ∥z∥H ≤ R. Henceforth, c will denote a generic positive constant which possibly
(but implicitly) depends on the structural constants of the problem. In addition, Q : R+

0 → R+ will denote a generic
increasing monotone function which explicitly depends only on R, but implicitly also depends on the structural constants
of the problem. The actual expressions of c and Q may change, even within the same line of a given equation.
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2.2. The energy norm

The total energy of a solution σ is defined as

E(σ ) = E(σ )+ M(∥u∥2
1)− p∥u∥2

1 + 2G(u − v)+ m,

wherem is the positive constant appearing into (1.5), E represents the energy norm of σ(t) in H , namely

E(σ (t)) = ∥σ(t)∥2
H = ∥u(t)∥2

2 + ∥∂tu(t)∥2
+ ∥v(t)∥2

1 + ∥∂tv(t)∥2

and

G(w) =

 w

0
G(η)dη, 1


.

The positivity of E is easily achieved by observing that (1.8) implies G(w) ≥ 0 and inequality (1.5) assures

M(∥u(t)∥2
1)− p∥u(t)∥2

1 + m ≥ (γ − p)∥u(t)∥2
1.

In addition the following energy identity holds

1
2

d
dt

E(σ (t))+ a∥∂tu(t)∥2
+ b∥∂tv(t)∥2

+ ⟨G0(u(t)− v(t), ∂t(u(t)− v(t))), 1⟩ = ⟨∂tu(t), f ⟩ + ⟨∂tv(t), g⟩. (2.4)

Lemma 1 (Energy Norm Boundedness). Let f ∈ H−2 and g ∈ H−1. For all t > 0 and initial data z ∈ H with ∥z∥H ≤ R, we have

E(σ (t)) ≤ Q (R).

Proof. We introduce the functional L : H → R given by

L(z) = E(z)− 2 ⟨u0, f ⟩ − 2 ⟨v0, g⟩ , (2.5)

where z = (u0, u1, v0, v1) ∈ H . Along any solution σ(t) to (2.3), the time function

L(σ (t)) = E(σ (t))− 2 ⟨u(t), f ⟩ − 2 ⟨v(t), g⟩

is non increasing. Actually, from the energy identity (2.4) it follows

d
dt

L(σ (t)) = −2a∥∂tu(t)∥2
− 2b∥∂tv(t)∥2

− ⟨G0(u(t)− v(t), ∂t(u(t)− v(t))), 1⟩ ≤ 0, (2.6)

which ensures that

L(σ (t)) ≤ L(z) ≤ Q (R),

for all z ∈ H , with ∥z∥H ≤ R. Since E ≥ E , from (2.5) we obtain the estimate

L ≥ E − 2 ⟨u, f ⟩ − 2 ⟨v, g⟩ ≥
1
2

E − 2

∥f ∥2

−2 + ∥g∥2
−1


,

which finally gets

E(σ (t)) ≤ 2L(σ (t))+ 4

∥f ∥2

−2 + ∥g∥2
−1


≤ Q (R). �

2.3. The steady states

The set S of stationary solutions is made of vectors z0 = (u, 0, v, 0) ∈ H , such that (u, v) ∈ H2
× H1 is a weak solution

to the system
Au − (p − M(∥u∥2

1))A
1/2u + F(u − v, 0) = f ,

A1/2v − F(u − v, 0) = g.
(2.7)

It is worth mentioning here the following lemma,

Lemma 2 (See [6, Lemma 4.5, p. 13]). Let p <
√
λ1 and Bp = A − pA1/2. Then

Bpu, u

≥ Cp ∥u∥2

2 ,

where

Cp =


1 if p ≤ 0,
1 −

p
√
λ1


if 0 < p <


λ1.

(2.8)
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As well as in proving the exponential stability of the system when the external sources vanish, this lemma is crucial to
establish the following

Theorem 3. Let f ∈ H−2 and g ∈ H. Under the assumptions on M and F , the set S is nonempty and bounded in H .

Proof. As apparent, when F1 holds, problem (2.7) with f = g = 0 admits the null solution u = v = 0. In the general case,
the operator Bp + M(∥u∥2

1)A
1/2 is (uniformly) strong elliptic for all p ∈ R and, by virtue of Lemma 2, it is coercive on H2

provided that p <
√
λ1. As a consequence, problem (2.7) has a solution which is unique when p <

√
λ1, so that the set S is

nonempty.
In order to prove the boundedness of S, we start from the steady-state energy identity

∥u∥2
2 + ∥v∥2

1 +

M(∥u∥2

1)− p

∥u∥2

1 + ⟨F(u − v, 0), u − v⟩ = ⟨u, f ⟩ + ⟨v, g⟩ , (2.9)

which follows frommultiplying (2.7) 1 by u and (2.7) 2 by v in H , then adding the results. Taking into account relations (1.4)
and (1.10) 2, for all (u, v) ∈ H we conclude

∥u∥2
2 + ∥v∥2

1 ≤ ∥f ∥2
−2 + ∥g∥2

−1 + 2k,

so that S is bounded in H . �

If we assume that (u, v) ∈ H2
× H2 and g ∈ H , then by lettingw = u − v the system (2.7) leads to the single equation

Aw +Λp(w)+ qp(∥u∥1) F(w, 0) = hp(∥u∥1), (2.10)

where

bp(∥u∥1) = M(∥u∥2
1)− p, qp(∥u∥1) = 1 + bp(∥u∥1), hp(∥u∥1) = f − A1/2g − bp(∥u∥1)g,

and

Λp(w) = bp(∥u∥1)A1/2w + A1/2
[F(w, 0)].

Each weak solution w ∈ H2 to the elliptic equation (2.10) generates a weak solution (u, v) to the original system. Indeed,
for any givenw, we recover the original fields as follows,

v = A−1/2
[F(w, 0)+ g], u = w + A−1/2

[F(w, 0)+ g]. (2.11)

Eq. (2.10) can be explicitly solved provided that F is linear (see, for instance, [7]).

3. The dynamical system

3.1. Well-posedness

We will prove here that the abstract system (2.3) defines a strongly continuous semigroup of operators on H . First, by
virtue of the interpolation inequality, namely ∥θ∥2

1 ≤ ∥θ∥, ∥θ∥2, θ ∈ H2, we can infer that

Lemma 4 (See [15]). For any p ∈ R, there exist α > 0 large enough and β = β(p, α) > 1 such that

1
2
∥θ∥2

2 ≤ ∥θ∥2
2 − p∥θ∥2

1 + α∥θ∥2
≤ β∥θ∥2

2. (3.1)

This lemma is needed to prove the following well-posedness result

Proposition 1. Let f ∈ H−2 and g ∈ H−1. For all initial data z ∈ H , the abstract Cauchy problem (2.3) admits a unique solution

σ = (u, ∂tu, v, ∂tv) ∈ C(0, T ; H),

which continuously depends on the initial data.

Proof. We omit the proof of the existence result, which is straightforward. In particular, one can apply a standard
Faedo–Galerkin approximation procedure (see, for instance [4,5,18,21]), together with a slight generalization of the usual
Gronwall lemma. Indeed, the uniform-in-time estimates needed to obtain the global existence are exactly the same as in
Lemma 1. On the contrary, the uniqueness result deserves a detailed discussion.

Let σ1 and σ2 be twoweak solutions, both of which solve the abstract problem (2.3) on the time interval (0, T )with initial
data z. By virtue of Lemma 1, both solutions fulfill the bounds

E(σi(t)) ≤ Q (R), ∥z∥H ≤ R, i = 1, 2.
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Let ω = σ1 − σ2 denotes their difference, with ω = (θ, ∂tθ, ν, ∂tν) and

θ = u1 − u2, ν = v1 − v2.

Then, the unknown field ω solves the following homogeneous abstract problem∂ttθ + Aθ + a∂tθ − p A1/2θ + N(u1)− N(u2)+ F(u1 − v1, ∂t(u1 − v1))− F(u2 − v2, ∂t(u2 − v2)) = 0,
∂ttν + A1/2ν + b∂tν − F(u1 − v1, ∂t(u1 − v1))+ F(u2 − v2, ∂t(u2 − v2)) = 0,
θ(x, 0) = ∂tθ(x, 0) = ν(x, 0) = ∂tν(x, 0) = 0,

(3.2)

where N(u) = M(∥u∥2
1) A

1/2u. By letting χ(ρ) = ρu1 + (1 − ρ) u2, ρ ∈ [0, 1], we have χ(1) = u1, χ(0) = u2, χ
′(ρ) =

u1 − u2 = θ and

∥χ(ρ)∥r ≤ ∥u1∥r + ∥u2∥r , r = 0, 1, 2.

This allows the following representation,

N(u1)− N(u2) = 2B(u1, u2, θ)+ D(u1, u2) A1/2θ,

where

B(u1, u2, θ) =

 1

0
M ′


∥χ(ρ)∥2

1


⟨χ(ρ), θ⟩1 A1/2χ(ρ) dρ,

D (u1, u2) =

 1

0
M


∥χ(ρ)∥2

1


dρ.

(3.3)

By virtue of Lemma 1 and assumptionM3, we obtain the following estimates,D(u1, u2)

A1/2θ, ∂tθ

 ≤ 2M


∥u1∥
2
1 + ∥u2∥

2
1


∥θ∥2 ∥∂tθ∥ ≤ Q (R) E(ω),

|⟨B(u1, u2, θ), ∂tθ⟩| =

  1

0
M ′


∥χ(ρ)∥2

1


⟨χ(ρ), θ⟩1


A1/2χ(ρ), ∂tθ


dρ


≤ Q (R) ∥ θ∥2 ∥∂tθ∥ ≤ Q (R) E(ω),

which in turn imply

|⟨N(u1)− N(u2), ∂tθ⟩| ≤ Q (R) E(ω).

On the other hand, by virtue of the Lipschitz condition F2 we easily obtain

|⟨F(u1 − v1, ∂t(u1 − v1))− F(u2 − v2, ∂t(u2 − v2)), ∂tθ − ∂tν⟩|

≤ ĉ (∥θ∥ + ∥ν∥ + ∥∂tθ∥ + ∥∂tν∥) (∥∂tθ∥ + ∥∂tν∥) ≤ c̄ E(ω).

Now, wemultiply (3.2) 1 by ∂tθ and (3.2) 2 by ∂tν inH . After adding the resulting equations and taking into account previous
estimates we obtain

1
2

d
dt


E(ω(t))− p ∥θ(t)∥2

1


≤ Q (R)E(ω(t)). (3.4)

Then, adding and subtracting the term α ⟨θ, θt⟩, with α > 0, we have

d
dt

I(ω(t)) ≤ Q (R)E(ω(t)), (3.5)

where

I(ω) = E(ω)− p ∥θ∥2
1 + α ∥θ∥2 .

Provided that α is large enough, according to Lemma 4 we have

1
2

E(ω) ≤ I(ω) ≤ β E(ω), (3.6)

where β is chosen as in (3.1). Then from (3.5) it follows that

d
dt

I(ω(t)) ≤ Q (R)I(ω(t)).

Now, since ω(0) = (0, 0, 0, 0) and I(ω(0)) = 0, an application of the Gronwall lemma leads to I(ω(t)) = 0 for all t > 0.
Finally, by virtue of (3.6), E(ω(t)) = ∥ω(t)∥2

H = 0, so that σ1(t) = σ2(t) and the uniqueness follows.
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The same strategy leads to the continuous dependence of the solution on the initial data in H . Indeed, if σ1 and σ2 are
two solutions corresponding to initial data z1 and z2, respectively, then (3.4) holds with ω(0) = z1 − z2 and implies

∥σ1(t)− σ2(t)∥2
H ≤ eQ (R)T ∥z1 − z2∥2

H , ∀t ∈ (0, T ). �

As a consequence of Proposition 1, the abstract system (2.3) generates a strongly continuous semigroup (or dynamical
system) S(t) onH . That is to say, for a given initial data z ∈ H , the function σ(t) = S(t)z, t ≥ 0, is the uniqueweak solution
to (2.3) and its related energy norm is given by E(t) = ∥S(t)z∥2

H .

3.2. The exponential decay

By virtue of Lemma 2, when p <
√
λ1 we are able to prove the uniform decay of the special semigroup S0(t), which is

generated by the system (2.3) under the restrictive assumptions f = g = 0.

Theorem 5. Let z ∈ H, ∥z∥H ≤ R. Provided that p <
√
λ1, the solutions S0(t)z to (2.3) with f = g = 0 decay exponentially,

i.e.

E(t) ≤ Q (R) e−ct ,

where c is a suitable positive constant and E(t) = ∥S0(t)z∥2
H .

Proof. We introduce the functional

Φ = E + ε ⟨u, ∂tu⟩ + ε ⟨v, ∂tv⟩ + εN (u − v)− m, (3.7)

where

N (w) =

 w

0
Γ (η)dη, 1


is positive by virtue of (1.9).

The first step is to prove the equivalence between E andΦ , that is

Cp

2
E ≤ Φ ≤ Q (R) E . (3.8)

Taking into account (2.8), the constant

µ = min{λCp, 1}

is positive provided that p <
√
λ1. Hence, by virtue of Lemma 2 and (2.2), the choice ε ≤ µ in (3.7) provides the following

lower bound (see [8]),

Φ ≥
1
2


∥∂tu∥2

+ ∥∂tv∥
2

+
Cp

2


∥u∥2

2 + ∥v∥2
1


≥

Cp

2
E .

On the other hand, by applying the Young inequality and using (2.2) we get the following inequality

Φ ≤


2 +

1
2 λ

+
ε2

2
−

p
λ


E + M(∥u∥2

1)+ 2G(u − v)+ εN (u − v).

From (1.6) and Lemma 1, we obtain

M(∥u∥2
1) ≤ M(∥u∥2

1)∥u∥
2
1 ≤ Q (R)E .

In addition, by the Lipschitz condition H3, we have

G(u − v) ≤ cG∥u − v∥2
≤ Q (R)E,

N (u − v) ≤ cΓ ∥u − v∥2
≤ Q (R)E .

Then, by collecting all previous results, we can write the upper estimate ofΦ as

Φ ≤


2 +

1
2 λ

+
ε2

2
+ Q (R)+ εQ (R)


E = Q (R) E .

In order to prove the exponential decay ofΦ , we start from the identity

d
dt
Φ + εΦ + 2a ∥∂tu∥2

+ 2b ∥∂tv∥
2
+ 2 ⟨G0, 1⟩ − 2ε


∥∂tu∥2

+ ∥∂tv∥
2

+ ε ⟨a∂tu, u⟩

+ ε ⟨b∂tv, v⟩ − ε2 (⟨∂tu, u⟩ + ⟨∂tv, v⟩)+ ε ⟨Γ0(u − v), 1⟩
+ εM(∥u(t)∥2

1)∥u(t)∥
2
1 − εM(∥u(t)∥2

1)− 2εG(u − v)− ε2N (u − v) = 0.
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Exploiting the Young inequality along with (1.6), (1.8), (2.1), (3.8) and the Lipschitz condition H3 on Γ , we have

d
dt
Φ + εΦ + (γ0 − ε)


∥∂tu∥2

+ ∥∂tv∥
2

≤
ε2 (~ − ε)

4λ


∥u∥2

2 + ∥v∥2
1


≤
ε2~

2λCp
Φ, (3.9)

provided that

ε ≤ min

λCp, 1, γ0,

2λCp

~


, (3.10)

where γ0 = min{a, b}, ~ = γ1 + cΓ and γ1 = max{a, b}. From (3.9) it follows

d
dt
Φ +

ε

2λCp


2λCp − ε~


Φ ≤ 0.

Letting c = ε

2λCp − ε~


/2λCp, which is positive because of (3.10), we conclude

Cp

2
E(t) ≤ Φ (t) ≤ Φ (0) e− c t

≤ Q (R) e− c t . �

4. The global attractor

In this section,we prove the existence of a regular global attractor by exploiting a suitable Lyapunov functional and taking
advantage from some technical lemmas which will be presented into the Appendix.

We begin to exhibit a Lyapunov functional L for the semigroup S(t), that is a function L ∈ C(H,R) satisfying the
following conditions

(i) L(z) → ∞ if and only if ∥z∥H → ∞;
(ii) L(S(t)z) is non increasing for any z ∈ H ;
(iii) L(S(t)z) = L(z) for all t > 0 implies that z ∈ S.

Proposition 2. Let f ∈ H−2 and g ∈ H−1. The functional L defined in (2.5) is a Lyapunov functional for S(t).

Proof. By the continuity of L and by means of the estimates

1
2
E(z)− c ≤ L(z) ≤

3
2
E(z)+ c, ∀z ∈ H,

assertion (i) can be easily proved.
The non increasing monotonicity of L along the trajectories departing from z, namely (ii), has been yet shown in the

proof of Lemma 1.
Finally, if L is constant in time, from (2.6) we have ∂tu(t) = ∂tv(t) = 0 for all t > 0, which implies that u(t) = u0 and

v(t) = v0 are constants and satisfy (2.7). Hence, z = S(t)z = (u0, 0, v0, 0) for all t > 0, and then z ∈ S. �

As apparent, the existence of a Lyapunov functional ensures that E(t) is bounded for all t > 0. In particular, bounded
sets of initial data have bounded orbits. In addition, the set S of all stationary solutions,

S = {z ∈ H : S(t)z = z, ∀t > 0}

is nonempty and bounded in H (see Theorem 3). All these facts allow us to prove the existence of the global attractor by
showing a suitable (really, exponential) asymptotic compactness property of the semigroup. Such a propertywill be obtained
exploiting a particular decomposition of S(t) devised in [15] and then applying a general result (see, for instance, [10]),
tailored to our particular case. The existence of a bounded absorbing set in H can be obtained as a byproduct.

4.1. The global attractor

The main result of the paper is the following

Theorem 6. Let f ∈ H and g ∈ H1. The semigroup S(t) acting onH possesses a connected global attractor A ⊂ H . In particular,
A is bounded in H2, so that its regularity is optimal.

By standard arguments of the theory of dynamical systems (cf. [3,17,24]), this result can be established by exploiting the
following lemma (cf. [15, Lemma 4.3]).
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Lemma 7. Assume that S(t) fulfills the asymptotic compactness property. Namely, for every R > 0, there exist a function
ψR : R+

→ R+ vanishing at infinity and a bounded set KR ⊂ H2 such that the semigroup S(t) can be split into the sum
L(t)+ K(t), where the one-parameter operators L(t) and K(t) fulfill

∥L(t)z∥H ≤ ψR(t), K(t)z ∈ KR,

whenever ∥z∥H ≤ R and t ≥ 0. Then, S(t) possesses a connected global attractor A. Moreover, A ⊂ KR0 for some R0 > 0.

Theorem 6 is proved if S(t) satisfies all assumptions required by this lemma. According to the scheme first devised in [15],
we decompose the solution S(t)z into the sum

S(t)z = L(t)z + K(t)z,

where

L(t)z = (η(t), ∂tη(t), ξ(t), ∂tξ(t)) and K(t)z = (ϑ(t), ∂tϑ(t), ζ (t), ∂tζ (t))

respectively solve the systems
∂ttη + Aη + a∂tη −


p − M(∥u∥2

1)

A1/2η + αη = 0,

∂ttξ + A1/2ξ + b∂tξ = 0,
(η(0), ∂tη(0), ξ(0), ∂tξ(0)) = z,

(4.1)

and ∂ttϑ + Aϑ + a∂tϑ −

p − M


∥u∥2

1


A1/2ϑ − αη + F(u − v, ∂t(u − v)) = f ,

∂ttζ + A1/2ζ + b∂tζ − F(u − v, ∂t(u − v)) = g,
(ϑ(0), ∂tϑ(0), ζ (0), ∂tζ (0)) = 0,

(4.2)

where α > 0 is large enough so that (3.1) holds.
The asymptotic compactness property of the semigroup S(t) is shown thereafter by virtue of the following two

subsections. In the former,we prove the exponential decay of L(t). In the latter, we prove the asymptotic smoothing property
of K(t) and then we achieve the boundedness into H2 of the set

{K(t)z : ∥z∥H ≤ R, t ≥ 0}

by virtue of a bootstrap argument. Accordingly, on account of the compact embeddingH2 b H , the existence ofKR follows.
In the sequel of this section, R > 0 is fixed and ∥z∥H ≤ R.

4.2. The exponential decay of L(t)

As well as in Section 3.2, the exponential decay of L(t) can be achieved by means of a suitable (generalized) uniform
Gronwall lemma. In this case, however, some control on the dissipation of the original semigroup, and hence Lemma 11 (see
Appendix), is needed because of the nonlinear (in u) term which appears into (4.1).

Now we start by proving that the first condition of Lemma 7 holds true.

Lemma 8. Let ∥z∥H ≤ R. There isϖ = ϖ(R) > 0 such that

∥L(t)z∥H ≤ Q (R)e−ϖ t .

Proof. Let E0(t) be the energy norm of the one-parameter operator L(t), namely

E0(t) = E0(L(t)z) = ∥L(t)z∥2
H = ∥η(t)∥2

2 + ∥∂tη(t)∥2
+ ∥ξ(t)∥2

1 + ∥∂tξ(t)∥2.

We introduce the functional

Φ0(t) = Φ0(L(t)z, u(t)),

where u(t) is the first component of S(t)z and

Φ0(L(t)z, u(t)) = E0(L(t)z)− p∥η(t)∥2
1 + α∥η(t)∥2

+ M(∥u(t)∥2
1)∥η(t)∥

2
1 + ε⟨∂tη(t), η(t)⟩ + ε⟨∂tξ(t), ξ(t)⟩.

In light of Lemma 1 and (3.1), we obtain the following lower and upper bounds forΦ0,

1
4

E0 ≤ Φ0 ≤ Q (R)E0. (4.3)
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The time-derivative ofΦ0 along a solution to system (4.1) reads

dΦ0

dt
= −εΦ0 − 2a ∥∂tη∥

2
− 2b ∥∂tξ∥

2
+ 2


∂tu, A1/2u


M ′


∥u∥2

1


∥η∥2

1

+ 2ε

∥∂tη∥

2
+ ∥∂tξ∥

2
− ε (⟨a ∂tη, η⟩ + ⟨b ∂tξ, ξ⟩)+ ε2 (⟨ ∂tη, η⟩ + ⟨ ∂tξ, ξ⟩) .

SinceM ∈ C1([0,∞)), from Lemma 1 we get the boundM ′

∥u∥2

1


≤ C . Hence

dΦ0

dt
+ εΦ0 + 2(γ0 − ε)


∥∂tη∥

2
+ ∥∂tξ∥

2
≤ 2


∂tu, A1/2u


C ∥η∥2

1 − ε (⟨a ∂tη, η⟩ + ⟨b ∂tξ, ξ⟩)

+ ε2 (⟨ ∂tη, η⟩ + ⟨ ∂tξ, ξ⟩)

≤ 2

∂tu, A1/2u


C ∥η∥2

1 − ε(γ0 − ε) (⟨ ∂tη, η⟩ − ⟨ ∂tξ, ξ⟩) ,

where the r.h.s. can be estimated in terms of E0 as follows

2

∂tu, A1/2u


C ∥η∥2

1 − ε(γ0 − ε) (⟨ ∂tη, η⟩ − ⟨ ∂tξ, ξ⟩)

≤ C
1

ε2
√
λ1

∥∂tu∥2
∥η∥2

2 + C
ε2

√
λ1

A1/2u
2

∥η∥2
2 + (γ0 − ε)


∥∂tη∥

2
+ ∥∂tξ∥

2
+ ε2 (γ0 − ε)


∥η∥2

+ ∥ξ∥2
≤

1
ε2

Q (R) ∥∂tu∥ E0 + ε2 Q (R) E0 + (γ0 − ε)

∥∂tη∥

2
+ ∥∂tξ∥

2
+
ε2 (γ0 − ε)

λ
E0.

Choosing ε as small as needed in order that εQ (R)+
ε(γ0−ε)

λ
< 1

8 , we obtain

d
dt
Φ0 + εΦ0 ≤

1
ε2

Q (R) ∥∂tu∥ E0 +
ε

8
E0

and finally, since 1
4E0 ≤ Φ0, we infer

d
dt
Φ0 +

ε

2
Φ0 ≤

1
ε2

Q (R) ∥∂tu∥ Φ0.

The exponential decay of Φ0 is entailed by exploiting Lemma 11 with ϵ = ε3/Q (R) and then applying the generalized
Gronwall Lemma 12 (see Appendix). Finally, from (4.3) the desired decay of E0 follows. �

4.3. The smoothing property of K(t)

On account of the compact embedding H2 b H , the next result provides the existence of a compact set KR which
contains all orbits K(t)z, ∥z∥H ≤ R, t ≥ 0.

Lemma 9. Let z ∈ H, ∥z∥H ≤ R. Then, there exists KR ≥ 0 such that the estimate

∥K(t)z∥H2 ≤ KR (4.4)

holds for every t ≥ 0.

Unfortunately, a direct proof of this lemma seems out of reach. This is due to the extremely weak smoothing of solutions
performed by the nonlinear damped wave equation (4.2) 2. So, we have to take advantage from a bootstrap argument, by
paralleling some results devised in [10,16]. Precisely, taking advantage of the control in Lemma 13, we prove the smoothing
property of K(t), which in turn entails the desired proof of Lemma 9 by repeated applications.

In the next lemma we prove the smoothing property of K(t), which means the boundedness of K(t)z in a space, Hδ+1/4,
which is more regular than the space Hδ where the initial data z are bounded. Its proof strictly follows the arguments of
Lemma 13 with K(t) in place of S(t), but working with the exponent δ + 1/4 rather than τ .

Lemma 10 (Smoothing Property). Let δ ∈ [0, 7
4 ] be fixed, and assume that ∥z∥Hδ ≤ R, for some R > 0. Then there exists K δR ≥ 0

such that

∥K(t)z∥Hδ+1/4 ≤ K δR , ∀ t ≥ 0.

Proof. Hereafter, some estimates are performed in a formal way. Nevertheless, they can be rigorously justified within a
suitable (but cumbersome) approximation scheme.

After introducing the energy of order δ + 1/4 of K(t), namely

EK
δ = ∥ϑ∥

2
δ+9/4 + ∥ζ∥2

δ+5/4 + ∥∂tϑ∥
2
δ+1/4 + ∥∂tζ∥

2
δ+1/4 ,
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for any ε ∈ (0, 1)we define the functional

JKδ = EK
δ + FK

δ + 2 ε ⟨∂tϑ, ϑ⟩δ+1/4 + 2 ε ⟨∂tζ , ζ ⟩δ+1/4 ,

where

FK
δ =


M


∥u(t)∥2

1


− p


∥ϑ∥

2
δ+5/4 − 2 ⟨f , ϑ⟩δ+1/4 − 2 ⟨g, ζ ⟩δ+1/4 .

Choosing ε small enough, the following bounds hold true

1
2

EK
δ − Q (R) ≤ JKδ ≤ 2EK

δ + Q (R). (4.5)

As in the proof of Lemma 13 (see Appendix), we estimate the time derivative of JKδ along a solution K(t)z. To this end we
first compute

d
dt


EK
δ + FK

δ


= −2a ∥∂tϑ∥

2
δ+1/4 − 2b ∥∂tζ∥

2
δ+1/4 + 2α ⟨∂tϑ, η⟩δ+1/4

+ 2M ′(∥u∥2
1) ∥ϑ∥

2
δ+5/4 ⟨u, ∂tu⟩1 − 2 ⟨F(u − v, ∂t(u − v)), ∂t(ϑ − ζ )⟩δ+1/4 .

By virtue of the interpolation inequality⟨φ,ψ⟩ℓ

 ≤ ∥φ∥ℓ+1 ∥ψ∥ℓ−1 , (4.6)

taking into account (2.1) and Lemma 1, we easily obtain

M ′(∥u∥2
1) ∥ϑ∥

2
δ+5/4 ⟨u, ∂tu⟩1 ≤

C
√
λ1

∥ϑ∥
2
δ+9/4 ∥u∥2 ∥∂tu∥ ≤ Q (R) ∥∂tu∥ EK

δ .

Moreover, letting τ = δ + 1/4, from assumption F2 it follows⟨F (u − v, ∂t(u − v)) , ∂t (ϑ − ζ )⟩δ+1/4

 ≤ c0 ∥u − v∥δ+1/4 ∥∂t(ϑ − ζ )∥δ+1/4

+ c1 ∥∂t(u − v)∥δ+1/4 ∥∂t(ϑ − ζ )∥δ+1/4

≤ Q (R)


EK
δ + c h(t)


EK
δ ,

where h(t) = ∥∂tu(t)∥τ + ∥∂tv(t)∥τ . Finally, we get

⟨∂tϑ, η⟩δ+1/4 ≤
α

ε
∥η∥2

δ+1/4 +
ε

4α
∥∂tϑ∥

2
δ+1/4 ≤

cδ
ε

∥η∥2
2 +

ε

4α
EK
δ ≤ Qε(R)+

ε

4α
EK
δ .

In addition, a straightforward calculation leads to

d
dt

⟨∂tϑ, ϑ⟩δ+1/4 +
d
dt

⟨∂tζ , ζ ⟩δ+1/4 = ∥∂tϑ∥
2
δ+1/4 + ∥∂tζ∥

2
δ+1/4 − ∥ϑ∥

2
δ+9/4 − ∥ζ∥2

δ+5/4

− ⟨a∂tϑ, ϑ⟩δ+1/4 − ⟨b∂tζ , ζ ⟩δ+1/4 + ⟨ϑ, αη⟩δ+1/4 + ⟨ϑ, f ⟩δ+1/4

+ ⟨ζ , g⟩δ+1/4 − ⟨F(u − v, ∂t(u − v)), ϑ − ζ ⟩δ+1/4

+

p − M


∥u∥2

1


∥ϑ∥

2
δ+5/4 .

From assumption F2 and interpolation inequality (4.6), we have⟨F (u − v, ∂t(u − v)) , ϑ − ζ ⟩δ+1/4

 ≤ ∥F(u − v, ∂t(u − v))∥δ−3/4 ∥ϑ − ζ∥δ+5/4

≤ ∥ϑ − ζ∥δ+5/4

c0 ∥u − v∥δ−3/4 + c1 ∥∂t(u − v)∥δ−3/4


≤ Q (R)


EK
δ + cδ h(t)


EK
δ ,

hence
d
dt

⟨∂tϑ, ϑ⟩δ+1/4 +
d
dt

⟨∂tζ , ζ ⟩δ+1/4 ≤ (1 + γ1)

∥∂tϑ∥

2
δ+1/4 + ∥∂tζ∥

2
δ+1/4


−

1
2

∥ϑ∥
2
δ+9/4

−
1
2

∥ζ∥2
δ+5/4 + Qε(R)+ Q (R)


EK
δ + cδ h(t)


EK
δ .

Collecting all these inequalities we end up with

d
dt

JKδ + 2 [γ0 − ε(1 + γ1)]

∥∂tϑ∥

2
δ+1/4 + ∥∂tζ∥

2
δ+1/4


+ ε


∥ϑ∥

2
δ+9/4 + ∥ζ∥2

δ+5/4


−
ε

2
EK
δ

≤ Qε(R)

1 + h EK

δ


+ (Qε(R)+ c̄δh)


EK
δ .
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Choosing now ε = ε0 > 0 small enough, in light of (4.5) this turns into

d
dt

JKδ +
ε0

2
JKδ ≤ Q (R)


1 + h + h JKδ


+ (Q (R)+ c̄δ h)


JKδ .

Notice that from Lemmas 11 and 13 (see Appendix) we have

Q (R)
 t

s
h(y) dy ≤ ε0(t − s)+ Qε0(R).

Once again, from the generalized Gronwall Lemma 12 we get the thesis. �

The following bootstrap argument entails the desired result.

Proof of Lemma 9. In order to prove (4.4), we repeatedly apply Lemma 10 with δ = 0, 1/4, 1/2, . . . and at the final stage,
δ = 7/4, the result follows by letting KR = K 7/4

R . �

Appendix. Technical lemmas

Three technical results are needed to prove the existence of the global attractor of the previous section. The first lemma
provides some integral control on the dissipation of the original semigroup. By virtue of the second lemma,we first obtain the
boundedness of the semigroup S(t) in amore regular space and, as a consequence, an integral control of the total dissipation
in the same space. The last lemma is a generalized version of the Gronwall lemma.

Lemma 11 (Integral Control of Dissipation). For any ϵ > 0 t

s
(∥∂tu (y)∥ + ∥∂tv (y)∥) dy ≤ ϵ(t − s)+ Qϵ(R),

for every t ≥ s ≥ 0.

Proof. After integrating (2.6) over (s, t) and taking Lemma 1 into account, we obtain

L(S(t)z)+ 2
 t

s


a ∥∂tu (y)∥2

+ b ∥∂tv (y)∥2 dy = L(S(s)z) ≤ L(z) ≤ Q (R),

from which it follows t

s


a ∥∂tu (y)∥2

+ b ∥∂tv (y)∥2 dy ≤
1
2

[L(z)− L(S(t)z)] ≤ Q (R).

Thanks to the Hölder inequality, this bound yields t

s
(∥∂tu (y)∥ + ∥∂tv (y)∥) dy ≤ Q (R)

√
t − s ≤ ϵ(t − s)+ Qϵ(R),

for any ϵ > 0. �

Lemma 12 (See [10, Lemma 2.1] and [11, Lemma 3.7]). Let Φ be a nonnegative absolutely continuous function on [0,∞)which
satisfies, for some ε > 0 and 0 ≤ σ < 1, the differential inequality

d
dt
Φ + εΦ ≤ h1Φ + h2Φ

σ
+ h3

where t

s
h1 (τ ) dτ ≤ ε(t − s)+ c

for all s ∈ [0, t] and

sup
 t+1

t
hi (τ ) dτ < mi, i = 2, 3

for some constants c,mi > 0. Then there exist C1, C2 ≥ 0 such that

Φ(t) ≤
C1

1 − σ
e−εt

+ C2.

Moreover, if m3 = 0 (that is, if h3 = 0), it follows that C2 = 0.
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Lemma 13 (See [11,23]). Let τ ∈ [0, 2] be given and let

z = (u0, u1, v0, v1) ∈ H τ , H τ
= H2+τ

× Hτ × H1+τ
× Hτ ,

such that ∥z∥Hτ ≤ R for some R > 0. Then,

∥S(t)z∥Hτ ≤ Q (R), ∀t ≥ 0. (A.1)

Moreover, for all ϵ > 0 and for every t ≥ s ≥ 0 t

s
(∥∂tu(y)∥τ + ∥∂tv(y)∥τ ) dy ≤ ϵ(t − s)+ Qϵ(R). (A.2)

Proof. When τ = 0 the result is already known (see Lemmas 1 and 11). Therefore, hereafter we consider τ ∈ (0, 2]. We
define the functional

Jτ = Eτ + Fτ + 2 ε ⟨∂tu, u⟩τ + 2 ε ⟨∂tv, v⟩τ + 2εNτ (u − v),

where ε > 0,

Eτ = ∥u∥2
2+τ + ∥v∥2

1+τ + ∥∂tu∥2
τ + ∥∂tv∥

2
τ ,

Fτ = 2Gτ (u − v)− 2 ⟨f , u⟩τ − 2 ⟨g, v⟩τ −

p − M


∥u∥2

1


∥u∥2

1+τ

and

Nτ (w) =

 w

0
Γ (η)dη, 1


τ

, Gτ (w) =

 w

0
G(η)dη, 1


τ

.

By evaluating these functionals along a solution S(t)z, it is straightforward to check that

d
dt
(Eτ + Fτ ) = −2


a ∥∂tu∥2

τ + b ∥∂tv∥
2
τ


+ 2M ′


∥u∥2

1


∥u∥2

1+τ ⟨u, ∂tu⟩1 − 2 ⟨G0, 1⟩τ . (A.3)

We first observe that ∥z∥Hτ ≤ R implies ∥z∥H ≤ Q (R). Then, by virtue of the interpolation inequality (4.6) we obtain the
following estimates of all terms on the r.h.s. of (A.3). First, taking advantage of (2.1) and Lemma 1, it follows

∥u∥2
1+τ M ′


∥u∥2

1


⟨u, ∂tu⟩1 ≤

C
√
λ1

∥u∥2
2+τ ∥u∥2 ∥∂tu∥ ≤ Q (R) ∥∂tu∥ Eτ .

Then it follows
d
dt
(Eτ + Fτ ) ≤ −2γ0


∥∂tu∥2

τ + ∥∂tv∥
2
τ


+ Q (R) ∥∂tu∥ Eτ .

Finally, taking into account that

d
dt

⟨∂tu, u⟩τ +
d
dt

⟨∂tv, v⟩τ +
d
dt

Nτ (u − v) ≤ (1 + γ1)

∥∂tu∥2

τ + ∥∂tv∥
2
τ


−

1
2


∥u∥2

2+τ + ∥v∥2
1+τ


+ Q (R)

this inequality holds for all ε > 0

d
dt

Jτ +2[γ0 − ε(1 + γ1)]

∥∂tu∥2

τ + ∥∂tv∥
2
τ


+ ε


∥u∥2

2+τ + ∥v∥2
1+τ


≤ Q (R) ∥∂tu∥ Eτ + ε Q (R). (A.4)

Choosing ε small enough, the following bounds hold true

1
2

Eτ − c ≤ Jτ ≤ Q (R)Eτ + Q (R).

Therefore, applying Lemma 1 again, we end up with

d
dt

Jτ +
ε0

Q (R)
Jτ ≤ Qε0(R) ∥∂tu∥ Jτ + Qε0(R),

where ε0 = min{ε, 2[γ0−ε(1+γ1)]}. By virtue of Lemma 11, with ϵ = ε0/Qε0(R), and the generalized Gronwall Lemma 12,
we get the first part of the thesis.

To obtain the integral control, we consider (A.4) with ε < 2γ0−1
1+γ1

. Now, the bound Eτ ≤ Q (R) holds true by virtue of (A.1).
Then, we are lead to

d
dt

Jτ + ∥∂tu∥2
τ + ∥∂tv∥

2
τ ≤ Q (R) ∥∂tu∥ + ε Q (R).
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An integration on (s, t), along with further applications of (A.1) and Lemma 11 leads to t

s


∥∂tu(y)∥2

τ + ∥∂tv(y)∥2
τ


dy ≤ ε Q (R)(t − s)+ Qε(R),

from which it follows t

s
(∥∂tu (y)∥τ + ∥∂tv (y)∥τ ) dy ≤

√
ε Q (R)(t − s)+ Qϵ(R).

For all ϵ > 0, (A.2) follows by properly choosing
√
ε, and the argument is completed. �
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