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Nonlinear mode coupling among two beams of different wavelength that copropagate in a bimodal highly birefrin-
gent optical fiber may lead to the effect of modal attraction. Under such circumstances, the modal distribution of
light at a pump wavelength is replicated at the signal wavelength, nearly irrespective of the input mode excitation
conditions of the signal. © 2013 Optical Society of America
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Nonlinear mode coupling in few-mode optical fibers has
been studied for a long time [1], and all-optical mode
switching was experimentally demonstrated by Pitois
et al. [2]. Recently there has been a resurgency of interest
in this topic, given the potential of few-mode fibers to
enhance the capacity of optical transmission systems
via spatial multiplexing [3].
In this Letter, we numerically study the copropagation

of two beams of different polarizations and wavelengths
in a bimodal optical fiber. By supposing that at one wave-
length the input beam is split among two different lin-
early polarized fiber modes, we reveal that cross-phase
modulation leads to an unexpected capability of light
to self-organize its modal distribution at the other wave-
length. In particular, we show that at a specific distance
along the fiber the modal distribution of light at one, say,
signal wavelength is attracted, irrespectively of the rela-
tive excitation of the two modes at the fiber input, to the
same fixed input modal distribution that is imposed at the
other (pump) wavelength. In analogy with polarization
attraction that occurs in the presence of two beams of
different wavelength and arbitrary state of polarization
(SOP) in a single-mode fiber [4–6], we name the present
effect modal attraction.
In our study we consider an elliptical core bimodal

fiber: for wavelengths in the range between the cutoff
values of even and odd higher-order modes [1,7], such
fiber supports the propagation of four linearly polarized
LPn1;x and LPn1;y (n � f0; 1g) modes, which for brevity
we shall denote nx and nymodes, respectively. The input
field is provided by a x-polarized CW pump at frequency
ωp and an orthogonal y-polarized signal at ωs. All beams
copropagate in the fiber along the z direction. Un�z�
(Vn�z�) is the complex amplitude of the nx (ny) mode.
In the presence of Kerr nonlinearity, one obtains, for
the modal amplitudes at the pump frequency,
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where we neglected all nonlinear terms whose phase-
matching condition cannot be achieved in practice. In
Eq. (1) the dot denotes the z-derivative, and �n;m� �
f0; 1g, m ≠ n. Moreover, Δβu0 ≡ β1x�ωp� � β0y�ωs� −
β1y�ωs� − β0x�ωp� � −Δβu1 is a wave-vector mismatch,
and βna�ωf � is the propagation constant of the na
(a � fx; yg) mode at frequency ωf (f � fp; sg). The equa-
tions for signal mode envelopes Vn are simply obtained
from Eq. (1) by interchanging the U and V amplitudes
and considering that Δβvn � −Δβun.

In Eq. (1) Cnn � n2ω∕�cAnn� and C01 � n2ω∕�cA01� are
the nonlinear fiber coefficients, where n2 � 3.2 ·
10−16 cm2∕W is the nonlinear index, c is the speed of light
in vacuum, Ann � �Rxy M2
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modal effective area involving the LP01 and LP11
modes, whose transverse profiles M0�x; y� and
M1�x; y� are practically polarization independent. More-
over, we assume ωp ≈ ωs; hence we only considered
ω≡ �ωp � ωs�∕2 in the nonlinear coefficients. The first
term on the right-hand side of Eq. (1) is responsible
for modal energy exchanges, and it is not phase matched
whenever jΔβunjLNL ≫ 1, where LNL � 1∕�C00P� is the
nonlinear length, and P ≡ �P0 � S0�∕2 with P0 and S0
the total power at the pump and signal wavelengths,
respectively. In the absence of phase matching the
magnitudes of the modal amplitudes are preserved,
i.e., j _Unj2 � j _Vnj2 � 0.

For describingmodal attraction, it proves convenient to
introduce a set of nonlinear parameters, say, P and S, that
we call modal Stokes vectors since they are defined in
analogy with the usual Stokes parameters that describe
the light SOP. The vector P � �P1; P2; P3�T has compo-
nents P1 � U0U�

1 � U1U�
0 , P2 � −iU0U�

1 � iU1U�
0 ,

P3 � jU0j2 − jU1j2; the vector S � �S1; S2; S3�T is similarly
obtained by exchanging the U and V labels. Both P and S
conserve their magnitudes P0 � �P2

1 � P2
2 � P2

3�1∕2 �jU0j2 � jU1j2 and S0 � �S2
1 � S2

2 � S2
3�1∕2 � jV0j2 � jV1j2

along z. Hence we may define the unitary modal Stokes
vectors P̄ � P∕P0 and S̄ � S∕S0 that evolve on the modal
Poincaré sphere. By supposing perfect phase matching

June 15, 2013 / Vol. 38, No. 12 / OPTICS LETTERS 2029

0146-9592/13/122029-03$15.00/0 © 2013 Optical Society of America

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Brescia

https://core.ac.uk/display/53617204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1364/OL.38.002029


(i.e., whenever jΔβunjLNL ≈ 0), Eq. (1) can be rewritten in
terms of modal Stokes vectors as

_P � P × �AI1P� BI1S� Cp
1I1U� Cp

2I2S�; (2)

where A � 2C01 − �C00 � C11�∕2, B � �2∕3��A − C01�,
Cp

1 � �1∕2��C11 − C00��P0 � �2∕3�S0�, Cp
2 � −�2∕3�C01,

I1 � diag�0; 0; 1�, I2 � diag�1; 1; 0�, and U � �0; 0; 1�T . A
similar equation is obtained for S after the mutual ex-
change of the P and S labels in Eq. (2), and setting
Cs

1 � �1∕2��C11 − C00��S0 � �2∕3�P0�, Cs
2 � Cp

2 . Hence-
forth we consider the dimensionless distance ξ≡ z∕LNL.
Since the total pump power P0 is a conserved quantity,
P̄3�ξ� � P3�ξ�∕P0 describes the pumpmodal power distri-
bution (MPD) among the 0x and 1x modes at any z.
Similarly, S̄3�ξ� � S3�ξ�∕P0 defines the signal MPD among
the two y-polarized modes. Whenever S̄3 � 1 (S̄3 � −1),
all signal power is carried by mode 0y (mode 1y). Other-
wise when S̄3 � 0 the signal power is equally distributed
among the two LPmodes. In full analogywith polarization
attraction, where the output signal SOP is attracted to-
ward the input pump SOP, we may introduce the concept
of modal attraction: here the signal MPD S̄3�ξ� is attracted
toward the input pumpMPD P̄3�0�. As we shall see, modal
attraction only occurs at a particular value of the distance
z, e.g., for ξ � ξc, such that S̄3�ξc� → P̄3�0� for any value of
the input signal MPD S̄3�0�.
In order to identify and quantify the occurrence of

modal attraction, we fixed the input pump modal vector
P�0�, and numerically solvedEq. (2) for a set ofN different
input signal mode vectors S�k��0� (1 ≤ k ≤ N) that are dis-
tributed over the modal Poincaré sphere. Next we evalu-
ated the ensemble average signal MPD μ�ξ� � hS̄3�ξ�i
along with its standard deviation σ�ξ� � hS̄3�ξ�2 − μ�ξ�2i.
Note that Eq. (2) is invariant upon rotation about the

third (i.e., P3 and S3) modal axis. As a result, an arbitrary
rotation of both the input pump and the signal modal
Stokes vectors about this axis simply rotates the output
pump and signal modal Stokes vectors by the same
amount. Hence, without loss of generality we may fix
P2�0� � 0, so that jP�0�j is fully determined by the value
of P3�0�. Note that the condition S̄2�0� � P̄2�0� � 0
means that the phase difference among the two modal
amplitudes at the signal and pump frequencies is either
zero or π.
According to the previous definition, complete modal

attraction occurs whenever at some distance along the
fiber the MPD S̄�k�

3 �ξ� of all output signals converges to
just one and the same value: in this case, the standard
deviation σ�ξ� � 0. In contrast, no modal attraction
occurs whenever the probability density function of the
output signal MPD S̄3�ξ� has uniform distribution be-
tween −1 and 1, so that σ � 1∕

��
�

p
3�. We may thus define

the degree of modal attraction (DOMA) as DOMA�ξ� �
1 −

���
3

p
σ�ξ�, so that DOMA � 1when full modal attraction

is achieved, and DOMA � 0means that there is no modal
attraction. Note that the DOMA has a lower bound equal
to DOMA � 1 −

���
3

p
< 0. Such a negative value is ob-

tained whenever the probability density function of S3�ξ�
is a bimodal Bernoulli distribution, where the two MPD
values S̄3�ξ� � �1 have equal probability.

Numerical solutions of Eq. (2) show that the signalMPD
S̄3�ξ� exhibits periodic oscillations with distance. More-
over, modal attraction is maximized for equal pump
and signal powers (i.e., with P0 � S0), and whenever
S̄2�0� � P̄2�0�. The corresponding evolutions of S̄3�ξ� are
shown in Fig. 1 for an input pump MPD P̄3�0� � 0.2, and
for a set of input signal S̄3�0� values distributed between
−1 and 1. In Fig. 1(a) we have set C01 � C11 � 0.1C00: as
can be seen, the MPD values S̄�k�

3 �ξ��1 ≤ k ≤ 9� periodi-
cally evolve with distance, with a different oscillation
period for each trajectory. Modal attraction does not
occur here since there is no particular distance where
all trajectories coalesce to the same value of S̄3. On the
other hand, the periodic modal evolution trajectories in
Fig. 1(b) (which is obtained for C01 � 0.2C00 and
C11 � 0.16C00) exhibit a nearly identical oscillation
period. Moreover, at a certain coalescence point, say, ξ �
ξc � 21 along the fiber, one obtains that S̄�k�

3 �ξc� → P̄3�0�,
which means that full modal attraction is attained. In real
units, forP � 2 WandC00 � 2 W−1 km−1, one obtains that
the distance ξ � ξc � 21 corresponds to L � 5.25 km.

The comparison among the signal MPD evolutions in
Figs. 1(a) and 1(b) reveals that modal attraction occurs
only as long as the nonlinear cross-coupling coefficient
C01 ≥ C01;c, where C01;c is a critical cross-coupling value.

We obtained the nonlinear modal coefficients corre-
sponding to Fig. 1(b) by considering the case of a highly
birefringent, elliptical core bimodal fiber with core and
cladding refractive indexes equal to 1.450 and 1.445,
respectively. The two elliptical core axes are equal to
5.8 and 3 μm. Numerical finite element simulations
using COMSOL show that such fiber is truly bimodal
in the telecom band from 1480 to 1560 nm. In addition,
over this wavelength range the phase matching condition
jΔβunj � jΔβvnj ≈ 0 is verified for pump–signal wavelength
separations of about 3 nm.

In Fig. 2(a) we illustrate some examples of DOMA evo-
lution along the fiber when C01 � 0.2C00, C11 � 0.16C00.
Here we consider an input set of N=45 signal modal
Stokes vectors S̄�k��0� which are situated on the meridian
circle of the modal Poincaré sphere defined by the
condition S2 � P̄2�0� � 0 [see Fig. 3(a)]. Clearly the
corresponding input signal DOMA�0� � 0. As could be
expected from the individual signal MPD evolutions of
Fig. 1(b), nearly unitary DOMA is achieved whenever
ξ ≅ ξc � 21, for most of the input pump MPD P̄3�0�. Note,

Fig. 1. Evolution with distance ξ of the signal MPD S̄�k�
3 for two

different sets of nonlinear coefficients. (a) Oscillations have
different periods and ranges and (b) oscillations have almost
the same period and coalesce at ξc � 21 as marked by the
dotted–dashed vertical line.
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however, that a degradation of the signal DOMA is
observed whenever P̄3�0� → �1.
The strength of modal attraction is well illustrated by

the plot of Fig. 3(b): here we show all output signal modal
Stokes vectors at ξ � ξc for the input MPD P̄3�0� � 0.2.
All S̄�k�

3 �ξc� values are found within the range 0.18–0.22,
which means that the tips of all output signal modal
Stokes vectors are found in a narrow ring centered
around the parallel with S3 � P̄x3�0� � 0.2. A similar re-
sult is also found for other values of the pumpMPD P̄3�0�.
Note that in all cases the modal attraction point remains
fixed at ξc ≈ 21, where the signal MPD values coalesce
toward the input pump MPD.
In their evolution over the modal Poincaré sphere, the

tips of the signalmodal Stokes vectors from the fiber input
ξ � 0 [Fig. 3(a)] up to the coalescence point ξc [Fig. 3(b)]
trace a set of closed trajectories. However unless the
input signal Stokes vectors S̄�k��0� are arranged on the
meridian circle S2 � 0, no single coalescence distance
can be found such that their output tips are arranged
on a parallel circle with S3 � const. Therefore, whenever
the input set of signal modal Stokes vectors S̄�k��0� covers
the entire modal Poincaré sphere [see Fig. 4(a)], a unitary
output DOMA is no longer obtained. This case is illus-
trated by Fig. 2(b) (N � 264): the peak output DOMA ≈
0.65 at ξ ≅ 26. The tips of the output signal modal Stokes
vectors at ξ � 26 are shown in Fig. 4(b) for P̄3�0� � 0.2. As
can be seen, the overall DOMA is reduced with respect to
the example of Fig. 3(b). Nevertheless, significant modal
attraction can still be achieved even in this case, since for
90% of the values of the output signal modal Stokes vec-
tors one has 0 ≤ S̄�k�

3 �ξ � 26� ≤ 0.4, whereas the average
MPD value is μ�ξ � 26� ≈ P̄3�0� � 0.2.
Whenever short signal pulses are used, the robustness

of modal attraction in the presence of dispersive effects
remains to be assessed. However, for the range of
wavelengths that provides two guided modes, their
group velocities have similar values in spite of their dif-
ferent phase velocities [7]. Moreover, recent results for

polarization attraction indicate that modal attraction
could even benefit from temporal walk-off between sig-
nal pulses and a CW pump [8]. In conclusion, we have
shown that, with proper design of the fiber nonlinear
coupling coefficients, a beam at a signal wavelength
may replicate at the fiber output the relative mode distri-
bution that is imposed at the input pump wavelength,
irrespective of the input signal modal content.
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Fig. 2. DOMA versus distance ξ for different input pump mo-
dal power distributions: P̄3�0� � 0 (bold line), P̄3�0� � �0.2
(bold dashed–dotted line), P̄3�0� � �0.6 (thin line), and
P̄3�0� � �1 (thin dashed–dotted line). (a) The input set of vec-
tors covers the circle S2 � 0 [Fig. 3(a)]. (b) The input set covers
the whole sphere [Fig. 4(a)].

Fig. 3. Poincaré sphere distributions of (a) input and (b) out-
put unitary modal Stokes vectors (black dots) in the case of
full modal attraction, P0 � S0. The input signal modal Stokes
lies on the circle S2 � 0. Black horizontal and vertical circles
represent S3 � 0 and S2 � 0, respectively.

Fig. 4. Poincaré sphere distribution of (a) input and (b) output
unitary modal Stokes vectors for the case with modal attraction
and P0 � S0. Here the input signal modal Stokes vectors uni-
formly covers the sphere.
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