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We discuss the existence of nonlinear modes sustained by graphene layers in dielectric waveguides. Taking advan-
tage of the almost two dimensional nature of graphene, we introduce the nonlinear effect as a parameter in the
continuity equations. We then apply our modeling to a simple slab waveguide to enlighten how graphene can
be used to induce huge nonlinear phase shifts at easily accessible power levels. © 2013 Optical Society of America
OCIS codes: 190.4390, 130.0130.

After its experimental isolation from bulk graphite [1],
graphene has attracted increasing interest from the
scientific community. Indeed, this single layer of carbon
atoms packed into a honeycomb lattice reveals amazing
and very useful properties that have already inspired a
huge variety of devices embracing different areas ranging
from electronics to optics [2–4]. As a matter of fact, the
linear optical properties of graphene show interesting tun-
able features from the mid-infrared to the visible spectrum
and a plethora of applications ranging from photovoltaics
and light emitting devices to the realization of novel com-
ponents have already appeared in the literature [3–9].
More recently the nonlinear optical properties of gra-

phene have been enlightened both theoretically and
experimentally [10–15]. Indeed graphene might have a
very favorable figure of merit for nonlinear optical appli-
cations, with high nonlinear Kerr response together
with an overall low absorption coefficient; thus this new
material could take the scene in nonlinear photonics and
pave the way toward potentially revolutionary applica-
tions. From the theoretical viewpoint, the modeling
of graphene-based devices is not conveniently done by
borrowing the results that have been previously obtained
in the field of nonlinear guided waves using standard
bulk nonlinear media [16]; graphene-based integrated
optics asks for suited modeling techniques able to take
full advantage of the almost two-dimensional nature of
the very thin graphene layers. In this Letter, we will first
define the theoretical approach in the analysis of non-
linear guided waves in graphene-based optical wave-
guides and then apply this technique to a simple slab
waveguide used here as a prototype to determine (using
experimentally accessible parameters) the typical values
of the coefficients describing the intensity dependent
nature of the modal wave number.
In Fig. 1 we report the basic geometry we will consider

in this Letter: a single slab of silicon enriched nitride
(ϵr1 � 4.76) of width 2s � 400 nm is the waveguide core;
the cladding is made of silica (ϵr2 � 2.25) and at the
boundaries between core and cladding we have a single
graphene layer of thickness dg � 0.34 nm.

As far as the electromagnetic constants are concerned,
we write the linear contribution to the relative complex
permittivity of graphene as [3]:

ϵrC � 1� σ�1�Σ;I

dgωϵ0
− i

σ�1�Σ;R

dgωϵ0
� ϵrC;R � iϵrC;I ; (1)

where the surface complex conductivity σ�1�Σ � σ�1�Σ;R�
iσ�1�Σ;I (in Siemens) is obtained from theoretical models
now well established and experimentally validated
[17,18]. To take into account the complex nonlinear con-
tribution to the refractive index change we write:

ΔϵrKerr�jE⃗‖j2� � χ�3�
jE⃗‖j2

1� jE⃗‖j2
jEsatj2

; (2)

where E⃗‖ is the electric field on the plane of the graphene
layer and the values of the nonlinear coefficients (χ�3� and
Esat) are taken from the experimental data reported
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Fig. 1. (Color online) Schematic of the slab waveguide of total
width 2s: the core (silicon enriched nitride) has permittivity
ϵr1 � 4.76 and the cladding (silica) has permittivity ϵr2 �
2.25. At the boundaries between core and cladding we have
the graphene layers of thickness dg � 0.34 nm.
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in [15]. In the nonlinear problem we will experience the
sum of the linear and nonlinear contributions to give
rise to a total surface complex relative permittivity
written as:

ϵrS�jE⃗‖j2� � dg�ϵrC � ΔϵrKerr�jE⃗‖j2��: (3)

At the graphene boundary we set the following condi-
tions on the tangential components of the electromag-
netic field:

�E⃗2 − E⃗1� × x̂ � 0

�H⃗2 − H⃗1� × x̂ � iωϵ0ϵrS�jE⃗‖�x � �s�j2�E⃗‖�x � �s�; (4)

where, thanks to the extremely small thickness of the
graphene layer, the nonlinearity has become a parameter
embedded into the coefficients describing the continuity
of the tangential components of the electromagnetic
field. Using the above described approach, the results
we will present in the rest of the Letter have been ob-
tained by modeling the graphene layer as a zero thick-
ness nonlinear medium; however, we have always
verified their soundness by resorting to COMSOL finite
element simulations [19] where the graphene layer has
a nonzero thickness of 0.34 nm.
To describe mode propagation along z, we first note

that, at first-order, the y dependence of the electromag-
netic field can be neglected; we then look for guided
modes with harmonic temporal dependence exp�iωt�
and spatial variation E⃗1;2�x; z�, H⃗1;2�x; z� ∼ exp�−iβz�
κ1;2x� with κ21 � β2 − ϵr1k20 � −κ2n and κ22 � β2 − ϵr2k20 �
Γ2
m. Obviously the complex wavenumber β, through its

real and imaginary parts, describes the evolution of both
the phase and the amplitude of the guided modes. We
now apply the above modeling to derive the dispersion
relation of TE and TM modes of the symmetric slab wa-
veguide and we then solve them for λ � 1.55 μm; note
that, since we have Re�ϵrC� > 0, graphene plasmons
are forbidden here [20,21]. In the following we use the
system parameters described in Fig. 1 and the graphene
electromagnetic constants as obtained from Eqs. (1) and
(2); in particular to determine the nonlinear constants
we make reference to [15] to get a self-focusing Kerr
coefficient n2 � 10−11 m2∕W, a two photon absorption
coefficient k2 � −5 · 10−11 m2∕W and a saturation of
the nonlinear response Isat � 6 · 1010 W∕m2 [22].
When dealing with TE modes, the only nonzero com-

ponents of the electromagnetic field are Ey, Hx, and
Hz; matching the field components at the core-
cladding interface and taking into account the graphene
contributions we get: Hz1�x � �s� −Hz2�x � �s� � �
iωϵ0ϵrS�jEy�x � �s�j2�Ey�x � �s�. The dispersion rela-
tions of even and odd TE modes are then easily obtained
and they read, respectively:

tan�κns� �
Γm

κn

�
1 −

ω2μ0ϵ0ϵrS�jEy�x � �s�j2�
Γm

�
; (5)

1
tan�κns�

� −
Γm

κn

�
1 −

ω2μ0ϵ0ϵrS�jEy�x � �s�j2�
Γm

�
: (6)

In Fig. 2 we report the solution of the dispersion rela-
tion of the fundamental TE mode, as a function of the
peak intensity I � −�1∕2�Ey�x � 0�H�

x�x � 0�; since
the graphene layer has n2 > 0, the real part of the modal
effective refractive index (ne � Re�β∕k0�) increases for
increasing intensities. Remarkably peak intensities well
below 0.1 GW∕cm2 are sufficient to cause important
changes: for I � 7 MW∕cm2 we get Δne ≃ 7.75 · 10−4 and
thus a phase change of π is achieved for a device length of
L � 1 mm. In Fig. 2 the dashed curve corresponds to the
imaginary part of the modal effective refractive index
(k � Im�β∕k0�); note that, having k2 < 0, the graphene
layer acts as a saturable absorber and the overall mode
losses decrease for increasing intensities.

When dealing with TM modes, the only nonzero com-
ponents of the electromagnetic field are Ex, Hy, and Ez;
matching the field components at the core-cladding inter-
face and taking into account the graphene contributions
we get:Hy1�x � �s� −Hy2�x � �s� � ∓iωϵ0ϵrS�jEz�x �
�s�j2�Ez�x � �s�. The dispersion relations of even and
odd TM modes are then easily obtained and they read,
respectively:

tan�κns� �
ϵr1
ϵr2

Γm

κn

�
1

1� ϵrS�jEz�x��s�j2�Γm
ϵr2

�
; (7)

1
tan�κns�

� −
ϵr1
ϵr2

Γm

κn

�
1

1� ϵrS�jEz�x��s�j2�Γm
ϵr2

�
: (8)

In Fig. 3, we report the solution of the dispersion
relation of the fundamental TM mode as a function of
the peak intensity I � �1∕2�Ex�x � 0�H�

y�x � 0�; we find
here similar features with respect to what we saw in
Fig. 2: in Fig. 3 we note that peak intensities well below

Fig. 2. Effective refractive index of the TE0 mode versus peak
intensity I: continuous and dashed curves correspond to the
real and imaginary part, respectively.
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0.1 GW∕cm2 are sufficient to cause important changes on
the real part of the modal effective refractive index ne;
however, it is interesting to observe that the TM case
is less efficient than the TE case due to the fact that
the nonlinear response depends on the longitudinal elec-
tric field (Ez). In Fig. 3, the dashed curve shows the in-
tensity dependent mode losses; the saturable absorption
mechanism is clearly visible and the overall mode losses
decrease for increasing intensities.
Obviously the approach we have presented here can

be used also to analyze the behavior of different struc-
tures. As far as symmetrical one-dimensional waveguid-
ing geometries are concerned, for example, a single
graphene layer in the waveguide core center could prove
useful in order to couple the nonlinear layer with the
strongest electric field lines. Another very interesting si-
tuation corresponds to the one-dimensional asymmetric
slab waveguide with a graphene layer located at the
interface between the core and the upper cladding. Even
more interesting situations could arise if one considers
coupled waveguides where the possibility of tuning the
wave number through the input intensities could be
exploited for all optical beam shaping [23].
In conclusion, we have discussed nonlinear modes

sustained by graphene layers in dielectric waveguides.
We have first introduced the modeling technique where
we have shown that graphene nonlinearity can be dealt
with by mapping the nonlinear effect into a parameter
in the boundary conditions; we have then applied our
modeling to a simple slab waveguide and shown that

graphene can be used to induce huge nonlinear phase
shifts into guided modes. With experimentally accessible
parameters we have proved the possibility to obtain π
phase shifts with very small footprint at easily accessible
power levels.
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Fig. 3. Effective refractive index of the TM0 mode versus peak
intensity I: continuous and dashed curves correspond to the
real and imaginary part, respectively.
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