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In order to assess the annual mass balance of the Mandrone glacier in the Central Alps an energy-balance
model was applied, supported by snowpack, meteorological and glaciological observations, together with
satellite measurements of snow covered areas and albedo. The Physically based Distributed Snow Land
and Ice Model (PDSLIM), a distributed multi-layer model for temperate glaciers, which was previously
tested on both basin and point scales, was applied.

Verification was performed with a network of ablation stakes over two summer periods. Satellite
images processed within the Global Land Ice Measurements from Space (GLIMS) project were used to
estimate the ice albedo and to verify the position of the simulated transient snowline on specific dates.
The energy balance was estimated for the Mandrone and Presena glaciers in the Central Italian Alps. Their
modeled balances (—1439 and —1503 mm w.e. year ', respectively), estimated over a 15 year period, are
in good agreement with those obtained with the glaciological method for the Caresér glacier, a WGMS
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(World Glacier Monitoring Service) reference located in the nearby Ortles-Cevedale group.

Projections according to the regional climate model COSMO-CLM (standing for COnsortium for Small-
scale MOdeling model in CLimate Mode) indicate that the Mandrone glacier might not survive the current
century and might be halved in size by 2050.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Glaciers play a fundamental role in many natural ecosystems
and are one of the main features of an Alpine landscape. Their va-
lue though has to be appraised not only for tourism but also as a
microclimate and water resource regulation system and as a signif-
icant climate change indicator. Hydropower plants located in Al-
pine regions are mainly fed by snow- and ice-melt water
produced during the ablation season. The hydrological cycle pro-
viding the natural inflow to the reservoirs is unavoidably influ-
enced by the presence of glaciers and by their state and dynamics.

Changes in the physical and geomorphological properties of gla-
ciers are considered indicative of climate change [48,63,32]. Refer-
ence reports of the Intergovernmental Panel on Climate Change
(IPCC) have always listed continental glaciers as a key variable
for both the analysis of the global climate system and the detection
of local effects of climate change [38-44]. Since the 1980s, at the
end of a relatively cold period, these findings have raised interest
in monitoring and modelling several glaciers in different parts of
the world [36,37,61,73].
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Climatic information can be mainly obtained from two types of
data from glaciers: mass balance observations and topography
change data, such as length and terminus position [43]. A system-
atic investigation of worldwide glacial mass balance started only in
the second half of the last century and their records are generally
shorter than instrumental climate records available. For this reason
hydrological models were used starting from the 1970s in order to
simulate the mass balance of a glacier on the basis of available cli-
matic information [63,64,74].

The retreat of the Alpine glaciers has been observed for almost
two centuries: as stated in the last report of the European Environ-
ment Agency on the impacts of a changing European climate [24],
Alpine glaciers have lost two thirds of their volume since 1850.
This loss has been accelerating since the 1980s and is projected
to continue in future decades. Much information has been col-
lected so far and used to keep worldwide glacier inventories up
to date, but the effectiveness and efficiency of actions taken to
guide strategic climate change measures at the European, national,
regional and local levels could be improved with more and more
accurate information on specific case studies. In the IPCC Fourth
Assessment Report (AR4) [44] the climate change evidence refer-
ring to the last decades in Europe is well documented [1], including
remarks referring to the 2003 European heat wave which strongly
affected all the European glaciers, especially the smallest ones. The
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retreat of Alpine glaciers has been proved with direct measure-
ment of their annual mass balances since the 1960s, as reported
for instance by Kaser et al. [47].

For the Alps the climate observed in the last 250 years was
studied in detail, for instance, in the HISTALP project [3,12], where
the Greater Alpine Region (GAR) was divided into four climatic re-
gions (northwest NW, northeast NE, southwest SW, southeast SE),
plus an additional region in the vertical direction above
1500 m a.s.l. For the whole GAR a mean annual temperature in-
crease of about 2 °C was detected for the time period between
the late 19th century and the beginning of the 21st. For precipita-
tion, no clear pattern was found, in line with Beniston and Jungo
[10] or from the results of the STARDEX project [5]. For northern
Italy however, an increase in the variability of the snow cover
extension and duration was reported for the period 1920-2005
[75].

The word ‘vulnerability’ is frequently used in climate change
impact studies to define the extent to which climate change may
damage or harm a system [42]. The extent not only depends on
the sensitivity of the system but also on its ability to adapt to
new climatic conditions. If the system is a glacier, its response
(sensitivity) to climate fluctuations depends on the geomorpho-
logic characteristics, such as topography, aspect, hypsometry and
glacier surface conditions including debris cover [49]. The objec-
tive of this work is to assess the vulnerability of the largest glacier-
ized area in the Italian Alps, the Mandrone glacier which is the
major branch of the Adamello glacier, in terms of mass loss and
areal reduction induced by climate change in the 21st century.

Italian Alpine glaciers, located in the southern Alps, appear to be
very sensitive to climate change because of their size and geo-
graphical position. Their retreat has been observed since the begin-
ning of the eighties [6,14,71] with a higher intensity for the central
and eastern areas than for the western one. The terminus retreat
during the 20th century is documented also in Citterio et al. [18],
who report an average rate of length retreat in the last century
ranging from —0.5 m year ' to —24.7 myear ' for a subsample of
95 glaciers grouped into four different length categories.

The largest glacier in the southern Alps and in Italy is the Adam-
ello glacier (17.2km? in 2003). It is composed of six glacial
branches and can be considered representative of other glaciers
that are similar from a geomorphologic point of view and falling
into the same climatic subregion (SW) of the Alps, among those
identified in Auer et al. [3]. In this region a precipitation decrease
and a significant temperature increase has been observed in the
last decades. In this perspective detailed studies on the energy
and mass balances of the Mandrone glacier (13.4 km? in 2003),
the largest branch of the Adamello glacier, were recently per-
formed on the basis of available climatic data between the years
1995 and 2006 and on a physically based energy balance model
by Ranzi et al. [69]. The work presented here extends the simula-
tion period analysed in the aforementioned study up to 2009 and
takes a step forward in the analysis of the response of the glacier
to climatic fluctuations, by defining future climate change scenar-
ios and simulating the energy and mass balances projected to the
21st century, estimating the glacier’s extent evolution as a re-
sponse to climate forcing.

The geographical area and the considered hydrographic units
are presented in the next section, which is followed, in Section 3,
by the description of the selected methods (including their valida-
tion) and scenarios. Results and comparison with the mass bal-
ances of the nearby Presena and Careseér glaciers are discussed in
Section 4. This analysis is intended to support climate change im-
pact assessment for natural systems in similar climatic and geo-
morphologic conditions, and for evaluating the potential natural
or artificial adaptation strategies. Climate change adaptation is in
fact one of the key points of the sustainable development strategies

of the regions hosting the Mandrone glacier, as well as of the envi-
ronmental directives at the European and national levels [26,45].

2. Study site and data
2.1. Adamello, Mandrone, Presena and Caresér glaciers

The Adamello glacier (Fig. 1) is located on the Adamello-
Presanella mountain group [21] belonging to the Rhaetian Alps
(central southern Alps). Measuring 17.24 km? in 2003 [69], it is
the largest glacierized area of the Italian Alps. It lies on a plateau
at an average altitude of 3000 m a.s.l. with radial patches and can
be considered as a Scandinavian-type glacier [58]. It has six
hydrographical units: the Mandrone glacier is the largest in size,
covering an area of 13.38 km?.

From an administrative point of view 90% of the Adamello gla-
cier surface belongs to Lombardy, the remaining part to Trentino-
Alto Adige/Siidtirol (Fig. 1). Ice-melt feeds both the Oglio and the
Sarca river, but the Mandrone glacier is part of the Sarca river basin
only [7].

The computation spatial domain of the hydrological model was
defined according to the boundaries of the Mandrone glacier
(coded as 1-4L01011-15 in the World Glacier Inventory), forming
an ice tongue that developed in the northeast direction. Its altitude
ranges between 2586 and 3406 m a.s.l. The equilibrium line alti-
tude (ELA) was estimated for the 1990s by Baroni and Carton [7]
at 2994 + 18/—23 m and for the whole Adamello glacier ELA was
estimated equal to 3014 +17/—18 m.

Presena is a small north-facing glacier belonging to the
Adamello-Presanella group. Its altitude ranges between 2700 and
3000 m a.s.l. Recent attempts were undertaken to protect this
glacier by covering it with reflecting covers and by artificial snow
generation. These measures were effective in reducing the ice mass
loss of the glacier.

Focusing attention on the area of the Central Italian Alps around
the Adamello-Presanella mountain group, the Caresér glacier is a
fundamental reference. For this glacier, which faces southward
and had an extension of about 2.8 km? in 2011, the mass balance
has been measured with the glaciological method systematically
since 1967 [31,79] and it is still performed today [17], thus provid-
ing the longest time series of mass balance for the Italian Alps and
a precious reference for mass balance studies in the Central Alps.
Shorter time series are available for other glaciers close to the
Adamello group (see for example [23,46]).

After the glacial advance in the Little Ice Age, for the majority of
Alpine glaciers a retreat began and is still going on today in most
cases. For the Mandrone glacier a retreat of about 2 km and an in-
crease of 880 m in the elevation of the front were observed in the
period 1820-2002. Recently Maragno et al. [55] compiled changes
in the areal extent of the Adamello group glaciers, resulting in a
19% surface reduction from 1983 to 2003, which was faster than
the 22% average reduction in the Alpine glacier cover estimated
over the 1970-2000 period, as reported in [78]. For the Mandrone
glacier in 1997 the terminus was located at an altitude of
2520 m a.s.l. [56,57,69]. In the 1960s, seismic measurements along
four different profiles determined a maximum thickness of 260 m
[15]. The maximal ice thickness in the Pian di Neve, close to Passo
Adame, was assessed to be 240 m and total ice volume was esti-
mated to be 870 x 10° m?, through radio-echo sounding conducted
between 1997 and 1998 [28].

For the Careseér glacier, mass balance series since 1967 have been
presented by Carturan and Seppi [17], completing the time series of
mass balances estimated with the glaciological method by Zanon
[79] and Giada and Zanon [29]. During the period from 2002 to
2005, an average negative mass balance of 2008 mm year~! was



192 G. Grossi et al./Advances in Water Resources 55 (2013) 190-203

jj ======= Glacierised area

Fig. 1. Location of the investigated glaciers (Adamello, Mandrone, Presena and Caresér). Administrative and hydrologic boundaries are also outlined. The central picture is a

quick-look at the ASTER satellite image of 25.08.2007.

recorded, while the corresponding value for the period from 1981
to 2001 was 1195 mm year~'. The Authors observe that there is a
strong correlation between ablation season temperatures and mass
balance series, while the relationship with winter accumulation is
not so clear. Positive feedback has also contributed to the fast gla-
cial retreat, so that in a few decades it is expected to disappear, a
fate that might be common to many glaciers in the Alps [80].

2.2. Meteorological, snow, ablation and satellite measurements for the
Mandrone glacier

For the time period 1995-2009, hourly meteorological observa-
tions were recorded at 17 weather stations located in the study
area and in its surroundings, as shown in [69]; 15 sets of point
observations of snow depth and density were also collected every
15 days in April and on a monthly basis from January to the end of
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May. These data were used to assess the snow water equivalent at
the end of the accumulation season. Most of the monitoring sites
are situated at altitudes between 900 and 2000 m a.s.l., some are
located above 2000 m a.s.l.

Priority was given to physical and meteorological data measured
at higher altitudes. The reference meteorological stations were Pas-
so Adame (3150 m a.s.l.) for the years 1995 and 1996, Cima Presena
(3015 m a.s.l.) between 1997 and 2000 and for years 2008 and
2009, and Passo della Lobbia Alta (3020 m a.s.l.) from 2001 to
2006. The last reference station was placed between the Adamello
glacier (just a few tens of metres apart) and the adjacent Lobbia
glacier and recorded air temperature and humidity, net radiation
(both shortwave and longwave) and incident and reflected global
radiation. In the summer 2007 a station was installed on the
Mandrone glacier at 2780 m a.s.l. (Fig. 2). The meteorological data
of the surrounding stations (Cima Presena, Capanna Presena,
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Fig. 2. Mean annual mass balance (mm w.e.) for the Mandrone glacier for the control period 1995-2009.
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Pantano d’Avio, Passo del Tonale) were used to fit linear regression
curves to fill data gaps of time series recorded by the glacier stations
(Passo Adamé, Passo della Lobbia Alta, Mandrone) which were used
in this study.

Discharge observations are available for the Sarca river at Ponte
Maria, located at 1100 m a.s.l. The drainage basin, including the
Mandrone glacier, has an area of 77.52 km? and a glacierization
of 25%. Ablation stake measurements were also performed during
two melt seasons and were used for model validation as described
in the next section.

An ice albedo map was estimated by processing radiation maps
derived from a 15 m resolution ASTER (Advanced Spaceborne Ther-
mal Emission and Reflection Radiometer, installed on TERRA satel-
lite) image acquired on 23 August 2003 [69] and made available
within the GLIMS project (www.glims.org).

3. Methods

The hydrologic vulnerability of the Mandrone glacier was inves-
tigated by projecting the 15-year meteorological observations for
the 1995-2009 ‘control period’ on the glacierized area into two fu-
ture time periods of 20 years (2040-2060 and 2079-2099) accord-
ing to two different scenarios, B1 and A1B, as defined by the IPCC
special report on emission scenarios [59]. The meteorological input
to the Physically based Distributed Snow Land and Ice Model
(PDSLIM), that is an hourly time series of precipitation, wind veloc-
ity, global radiation, air temperature, pressure and humidity, was
derived from the output of a regional climate model called COS-
MO-CLM (standing for COnsortium for Small-scale MOdeling mod-
el in Climate Mode (developed by Deutscher Wetterdienst).

Statistical analysis of CLM output provided the information
needed to modify the meteorological forcing for PDSLIM. The time
series of meteorological data measured in the 15-year control per-
iod were transformed in order to build the meteorological forcing
to PDSLIM in a modified climate scenario, as explained in Sec-
tion 3.2. Therefore the modified climate forcing is not the result
of pure modeling simulations, but the outcome of transformations
of real recorded values. This is an advantage of the technique used
with respect to using time series provided directly by regional
climate models, which could be inaccurate in reproducing local cli-
mate. Indeed, beyond the average variation of each meteorological
variable, several features characterizing local meteorological con-
ditions are maintained: extreme cold or hot periods, very intense
rainfall or drought, as well as intermediate states, assuming that
such patterns will be repeated, on average, in the future. The use
of two scenarios, an optimistic one, B1, and a moderately pessimis-
tic one, A1B, and the selection of two time windows led to the def-
inition of four different possible evolution scenarios of the glacier:
(i) scenario B1 at 2050, (ii) scenario B1 at 2090, (iii) scenario A1B at
2050 and (iv) scenario A1B at 2090. The response of the glacier to
the projected change in climate is finally evaluated and compared
to actual conditions on the basis of the mass balance, both distrib-
uted and averaged over the glacierized area, resulting from the
application of the hydrological energy-balance model. Mass bal-
ance evaluation was also used to predict the change in size of
the glacier with a simplified ice flow model as described in detail
in Section 3.4.

3.1. The regional climate model CLM

Detailed studies on the future climatic evolution in the Alpine
area until the end of the 21st century were conducted for instance
by the European Environment Agency (EEA) [25] and within the
ClimChAlp project [19], based on simulations by regional climate
models (RCMs). The EEA report projects a further increase in the

upward temperature trend in the GAR. Most affected areas of the
GAR are expected to be in the South-West sub-region (SW) as well
as in areas located above 1500 m a.s.l.: the Adamello group belongs
to both. Regional climate models were adopted, among others, by
Machguth et al. [53] for the calculation of glacier mass balance dis-
tribution in the Swiss Alps and by Lépez-Moreno et al. [51] to as-
sess future snow cover in the Pyrenees.

The ClimChAlp project focused on the systematic validation of
the regional climate models RegCM, REMO, HIRHAM, CLM, MM5
and ALADIN for the Alpine Space. The control run outputs of these
models were compared with a number of available climatology
data based on observations. The comparison outlined how all the
RCMs have particular difficulties reproducing the seasonal average
precipitation amounts, which they tend to significantly overesti-
mate in winter, while in summer simulated precipitations are a lit-
tle lower than the observed data. The precipitation biases show
seasonal and regional patterns that are typical for the individual
model. The structure of the spatial and seasonal bias of each
RCM clearly indicates orographic and seasonal effects; however,
the climate change signal of each model is more significant [19].

CLM data were made available for this study by the World Data
Center for Climate (WDCC). The main features of CLM and the runs
available for this study are shown in Table 1. The rainfall regime
observed on average on the Oglio basin (1840 km?) was compared
with CLM simulation (coded as C20 in the WDCC database) on a
computational grid covering the basin. The mean annual observed
precipitation of 1165 mm is overestimated by 9%. The simulated
monthly precipitation maxima in October and May match the
observations quite well, as shown in Fig. 3. Also the precipitation
decrease in summer and November is well reproduced. Discrepan-
cies between the model and the observations are comparable with
those reported by Barontini et al. [9] and Groppelli et al. [30], who
analysed the signals of three Global Climate Models in an area
including the Adamello glacier. Also the temperature regime is
fairly in agreement with observations, at least in the summer per-
iod, as will be discussed in Section 4. For the above reasons CLM
was adopted for our investigations.

The CLM A1B scenario projects a temperature increase for the
entire Alpine region of +3.9 °C by the end of the 21st century, while
the increase over the European territory equals +3.3 °C. The warm-
ing is expected to be stronger at higher altitudes: +4.2 °C above
1500 m. This increase would be the result of two distinct trends:
the first less marked one (about +1.4 °C) from present day up to
the middle of the century, followed by a much stronger one, from
2050 up to 2100 (at least +2.5°C). According to the CLM B1
scenario, the temperature increase by 2100 would be less pro-
nounced: +2.6°C in two steps, +1.0°C for the first half and
+1.6 °C for the second half of the century.

Table 1
Regional climate model characteristics.

CLM climate simulation data

Data compilation Model and Data Group, MPI for Meteorology, Hamburg
Model CLM 2.4.11 (Climate mode of the Local Model of the DWD)
- Dynamic model

- Drive: ECHAMS5/MPIOM

- Non-hydrostatic

Europe

From 1960 to 2100 (control run begins January 1, 1955 at
00:00 UTC. The model results are available by January 1,
1960 at 00:00 UTC. The first five years of the simulation
are the spin-up phase)

A1B, B1 (from 2001)

Model region
Simulation
period

IPCC emission
scenarios
Resolution 0.165°-0.200° (approx. 15 x 23 km? for the Adamello

area)
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Fig. 3. Precipitation regime on the Oglio basin observed and simulated in the control run period 1979-1999 and projected to 2050 and 2090 according to scenarios B1 and

A1B, as projected by CLM.

Seasonality would also characterize the temperature change.
The strongest increase is expected in summer, with an average of
+4.8 °C (A1B), but peaks up to +6 °C are foreseen for the highest
mountain areas. A lower increase is expected in spring (on average
+2.7 °C, for A1B).

On the other hand, trends in precipitation are still burdened
with considerable uncertainty. Differences between results of cli-
mate models driven by the same emission scenario are often larger
than those occurring by using different emission scenarios in a sin-
gle climate model. The potential impact of the uncertainty in cli-
mate projections on the Mandrone glacier mass balance will be
briefly discussed in Section 4.1. However, a consistent feature of
modeling results for the Alpine region is the projected increase
in winter precipitation and decrease in summer precipitation [19].

3.2. Transformation of data series

The climate model daily output runs of scenarios B1 and A1B
were used to project the 1995-2009 observed meteorological time
series to the 21st century, in order to build a climate change mete-
orological input for the hydrological model simulations. Eight adja-
cent CLM grid cells around the location of the Adamello massif
were examined, including the one, named G-cell, containing the
Mandrone glacier and characterized by an average altitude of
2168 ma.s.l

The CLM_1979-1999 meteorological output (named control
scenario, since it refers to past years) was analysed and compared
to projected meteorological time series provided by CLM for the
time period 2040-2060 and 2079-2099 (referred to in the follow-
ing by the intermediate year: 2050 and 2090), for both B1 and A1B
scenarios. The time series of meteorological observations recorded
by the stations located on and near the Mandrone glacier were also
transformed to consider climate change scenarios. For precipita-
tion, solar radiation and air humidity a multiplicative adaptation
of observed data to future scenarios was applied (k-method).
Observations in the control period are transformed to the future
scenarios by multiplying them by a monthly factor k representing
the ratio between RCM-projected values and the respective values
in the control period run. Only for the air temperature, the monthly
differences (A) were applied (see also [51] for the so-called A-
method). Multiplicative k,, factors for the entire winter semester
were used to assess the winter mass balance, which is assessed
on the basis of snow w.e. accumulation on the 1st of April of each
year, assuming that at the glacier altitude in winter only solid

precipitation occurs, a reasonable hypothesis supported by the
winter temperatures projected at the glacier’'s mean altitude and
a temperature-based snow-rain partitioning model [68]. No signif-
icant change was detected as regards surface pressure and wind
speed at 2 m above the surface.

The time series of average daily temperature for each of the
eight selected cells were analysed. Through a linear regression of
daily temperature vs. the cell height, daily temperature at
3020 m a.s.l. (Passo della Lobbia Alta monitoring station) was com-
puted. The temperature increase by 2050 is meaningful compared
to the 1979-1999 period, more pronounced for the A1B scenario,
and still strong in both scenarios at the end of 21st century.

Changes in the other input parameters were evaluated only for
the G-cell and compared to the average value over the spatial do-
main defined by the eight selected cells. Rainfall, as previously re-
ported for the entire GAR, is also expected to decrease in the G-cell
in summer and to increase in winter, as shown in Table 2. Projec-
tions of relative humidity show a decrease with the exception of
November (when a substantial increase in precipitation can also
be noticed). Global radiation is expected to increase slightly in
summer months, and decrease in other seasons, especially in
spring, probably as a consequence of a cloud cover increase.

3.3. Energy and mass balance of snow and ice: the physically based
hydrological model

The annual specific mass balance of the Mandrone glacier was
estimated for each year, between 1995 and 2006 in a previous
work [69] and between 2007 and 2009 in this study, as the sum
of the winter balance and of the summer balance, each lasting
six months. The winter balance was estimated by interpolating
snow water equivalent measurements at the beginning of April
with geostatistical methods. To consider the effect of avalanches
and gravitational snow transport [11] a 5% increase of the interpo-
lated snow water equivalent was adopted, as estimated on the ba-
sis of the area of the steepest mountain slopes surrounding the
glacier. The influence of snow transport by wind [22,50,65] was ne-
glected, instead. Summer specific mass balance from the 1st of
April to the 30th of September of each year, was computed by sim-
ulation of the mass and energy balance with the distributed hydro-
logical model PDSLIM (Fig. 4), adopting a modelling framework
similar to other studies of this type [60,62].

The results of previous applications to the Mandrone glacier
were tested both at the point and at the basin scale, using ablation
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Table 2
Additive (A) and multiplicative (K) correction factors for the meteorological time series in the four selected scenarios. T =temperature, P = precipitation, UR = humidity,
Rg = radiation.

Parameter Correction factor Summer Winter
A M J J A S ONDJFM
CLM B1 2050 T (°C) A (°C) 0.15 0.84 1.67 0.44 0.93 1.38 -
P (kg m~2) K(-) 124 0.75 1.00 1.17 0.81 0.76 1.35
UR (%) K (-) 1.00 1.01 0.99 1.01 1.02 0.98 -
R, (Wm™) K(-) 0.93 0.97 0.99 0.97 0.99 1.01 -
CLM B1 2050 T (°C) A (°C) 1.80 4.08 4.54 3.00 3.63 3.19 -
P (kg m~2) K (-) 1.12 0.67 0.71 0.68 0.70 0.70 1.17
UR (%) K (-) 0.97 0.92 0.90 0.92 0.97 0.91 -
Rg (Wm™2) K (-) 0.92 0.99 1.04 1.02 1.04 1.06 -
CLM A1B 2050 T (°C) A (°C) 1.16 2.38 2.89 1.24 215 147 -
P (kg m2) K(-) 1.02 0.71 0.93 0.85 0.70 0.67 0.96
UR (%) K (-) 0.96 0.93 0.95 1.00 0.98 0.99 -
Ry (W m2) K(-) 0.93 0.99 1.02 0.98 1.03 1.01 -
CLM A1B 2090 T (°C) A (°C) 2.59 6.05 6.45 5.47 5.32 4.74 -
P (kg m~2) K(-) 1.17 0.75 0.71 0.64 0.52 0.65 1.08
UR (%) K (-) 0.94 0.89 0.87 0.92 0.91 0.91 -
Rg (Wm™2) K (-) 0.86 0.97 1.05 1.01 1.06 1.06 -
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Fig. 4. PDSLIM energy-balance distributed model for a single cell: in the upper panel the scheme of the terrain view factor and of the radiative components is shown, in the
lower panel the multi-layer snow-debris-ice column is represented together with the symbols of the heat fluxes.

stake measurements, runoff data and snow cover data for H,,: energy flux available for melt,

verification. H,: rate of gain of internal energy of the ice or snow layer,
For a unit area and finite depth layer of ice or snow superim- Sio: Net incoming shortwave radiation,

posed over ice, the melt rate can be computed from the energy bal- L;,: net incoming longwave radiation,

ance equation: H;: latent heat,

H;: sensible heat,
H,: advective heat from precipitation,
H,: conductive heat at the bottom surface of the ice or snow

Hn+H.=Si,+Liy,+H+H;+H,+H,g (1)

where each term stands for energy in unit time and unit area
(W/m?), respectively:
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For an ice or snow layer with finite depth Az, specific heat capacity
C, density p and mean temperature T, thermal energy changes at a
rate:

H. = Cp AzdT /dt 2)

The specific heat capacity of ice is set to C= C; = 2093.4 ] kg~ '°C~!
and its density is assumed p = p; =830 kg m~3, a literature value
for firn [64]. This value can also be adopted for ice at the surface,
where ice porosity is high. For snow, instead, density p = ps changes
over time according to the snowpack simulation model already de-
scribed in [66,13]. Details of the computation of S;, and L;,, using
measured shortwave radiation are reported in [66,67].

It is briefly recalled here that shading is computed with a sun-
tracking algorithm and a cloudiness index is estimated by compar-
ing measured global shortwave radiation on a horizontal surface,
Ry, with clear-sky radiation. With reference to Fig. 4 for the mean-
ing of each symbol, direct radiation on each computational cell,
measuring 30 x 30 m? and centred in O, is obtained by projecting
with the scalar product estimated beam radiation Rp on the local
vector normal to the surface, V,. Diffused radiation from the sky,
Ry, is weighed by the sky view factor, V=1 — V,, being V, the ter-
rain view factor defined as a function of the horizon angle ho())
in each azimuthal direction /:

2mh pho(y) n
vt=% /0 /0 cos(h) sin(h)dhdx//z% /0 %sin2[h(d/)}d¢/ (3)

Terrain surrounding each point reflects incoming measured radia-
tion with a spatially-averaged albedo o,

Sin=—Rp -V + VsRg + ViR (4)

The net incoming shortwave radiation results as S, = Sip(1 — o),
being o local albedo. Ice-albedo is derived from a map estimated
from the radiation detected from the sensor ASTER satellite image
dated 23 August 2003, when the glacier was almost snow-free.
Future ice albedo is assumed to remain as in actual conditions.
For snow-covered areas albedo is computed as a function of
temperature-dependent snow-ageing and diffused radiation [66]
and therefore it changes according to climate change scenarios.

T T L"H_
e i
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Net longwave radiation, L, is computed assuming snow and ice
as black bodies and the Satterlund model for atmospheric emissiv-
ity [72].

Convective fluxes of latent heat, H;,, and sensible heat, Hy, are
computed according to the mixing length theory [69].

In PDSLIM the ice is modelled as a 0.1 m thick surface layer with
temperature T; superimposed to a semi-infinite ice layer at con-
stant 0 °C temperature, a reasonable assumption for a temperate
glacier in the melt season. The surface layer can be covered by a
debris layer, as occurred for instance in an earlier application of
the model to simulate melt for the Belvedere glacier, in the Wes-
tern Italian Alps [70]. If this layer does not exist as for the Mand-
rone glacier, ice can be covered by a snowpack, modelled as a
surface layer with 0.1 m thickness, superimposed to the bulk
snowpack. The snowpack model, described in [66,13], simulates
snow temperature, density, depth and liquid water content. Con-
ductive heat fluxes in snow and ice, Hg, are computed with the Fou-
rier law and melt infiltration assuming Colbeck’s celerity [20,66].
The model does not account for snow transformation into firn
and ice.

The snowpack model was validated with in situ snowpack tem-
perature and depth measurements and brightness temperature
measurements by microwave radiometers at C- (6.8 GHz), Ku-
(19 GHz), and Ka-band (37 GHz) operating in vertical and horizon-
tal polarizations during the MASMEX 2002 and 2003 experiment
[13,52]. As a further verification criterion the dynamics of the
snowpack extent simulated during the 2003 ablation season was
compared with satellite-derived snow cover in the Adamello-
Presanella group, as described in [69].

Concerning the validation of the ice melt model in PDSLIM, a
glaciological survey in the 2007 ablation season was carried out:
29 ablatometric stakes, characterized by different altitudes and
exposure to solar radiation, were placed in different points on
the glacier surface, as shown in Fig. 5, at altitudes ranging from
2640 to 3117 ma.s.l. The stakes used were PVC graduated bars
having a 2 cm diameter and a 3 m length. Considering the mea-
surements in July and August, the mean bias of the simulated vs.
the measured ablation period was —1.6%: the mean observed value
was 1148 mm w.e., the mean simulated value was 1130 mm w.e.,
with a RMSE of 319 mm.
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Fig. 5. Point validation of the hydrological model. On the left panel the position of ablation stakes in the 2007 field surveys. On the right panel simulated vs. measured

ablation at ablation stakes.
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A similar intercomparison between simulated and measured
ablation was conducted on a network of 14 ablation stakes in-
stalled in 2008 on the Mandrone glacier at an altitude ranging from
2780 to 3117 ma.s.l. The mean bias of simulated vs. measured
ablation in the July to August monitoring period was —2% and
the RMSE was 159 mm compared to a mean measured value of
848 mm.

3.4. Ice flow modeling

In order to account for glacier evolution in a transient climate, a
simplified model of ice dynamics was connected off-line to PDSLIM
to evaluate the flow of the Mandrone glacier, assumed as a
parallel-sided ice slab with depth D. In the model the continuity
equation and the balance of momentum and internal energy are
enforced, as described in detail in [54]. The constitutive relation-
ships adopted for the rate of internal energy, heat flux and stress
are the heat equation for a viscous fluid, the Fourier law, and a spe-
cial case of the Reiner-Rivlin constitutive law. Stress is linked to
strain rate via Glen’s flow law [34,64].

According to Weertman'’s theory of sliding [76,77], the follow-
ing basal boundary condition is assumed:

u=¢o" ()

where u is the sliding velocity, ( is a function of the bed roughness, t
is the shear stress at the base and m ~ 2, a value adopted in the
following.

In the study of the Mandrone glacier a dimensionless form of
the problem was introduced, by normalizing the depth y =y/D
and the velocity i = u- ®/D, where ® is a time scale; moreover
stress, velocity and temperature fields were considered x-indepen-
dent (the x-axis is parallel to the average bedrock slope angle ).

Considering the y-axis pointing upward, the vertical velocity
profile u(y) is described by:

uy)=C-sin"y+2 /y exp(A9)(sin" p(1 — &)") de (6)
0

where C is the basal friction number according to the Weertman’s
theory, assumed here to be 10.9 [34], n =1 is the value of the expo-
nent adopted in Glen’s flow law, and A is the Arrhenius number,
equal to O for temperate glaciers according to the same law.

4. Results and discussion

4.1. Effects of climate change scenarios on the Mandrone glacier mass
balance

By transforming the meteorological time series of the period be-
tween 1995 and 2009, the Mandrone glacier mass balance pro-
jected to 2050 and 2090 was computed according to two
different scenarios (B1 and A1B) of the emissions dynamics. Calcu-
lated winter, summer and annual mass balance are listed in Table 3.
The average distribution of the specific mass balance for the
control run (15 years) is depicted in Fig. 2. Average mass loss
was -1439 mm w.e. year~ . The effect of the ice flow in redistribut-
ing the ice mass from the upper part of the glacier to the lower part
can be obtained by solving the 2-D mass conservation equation on
the area of interest. For instance, the integration of Eq. (6) along the
median altitude line at 3070 m a.s.l., which divides the glaciers into
two equal areas, provides a mass flux through the transverse sur-
face. This mass flux causes an annual displacement of 670 mm w.e.
from the upper half area of the glacier to the lower part. This
amount has to be subtracted from the upper area mass balance
of —938 mm w.e. year ! derived from the PDSLIM modelling and

added instead to the —1968 mm w.e. year~' balance of the lower
part.

The estimated mass flux is highly uncertain, since parameters
setting for the simplified flux model is a difficult task. For instance
a +£30% change in the value of the C basal friction number parame-
ter is reflected in a 210 mm change in the ice flux between the
two portions of the glacier’s area.

Considering future climate scenarios, the average mass loss is
expected to increase by the year 2050 up to about —2000 mm w.e.
in the moderate B1 scenario and to —3000 mm w.e. in the pessi-
mistic A1B scenario. The first feature deserving attention is the
inbalance between winter gross gain in water equivalent and the
summer melt loss in each future scenario and in the observed years
(Fig. 6). The annual deficit will increase in future scenarios with re-
spect to control run outputs. According to CLM+PDSLIM projec-
tions, summer melt will increase in all scenarios, with dramatic
effects especially in the last two decades of the current century.
The winter precipitation predicted by CLM is assumed to be en-
tirely snow as the temperature projected at the average glacier’s
altitude during precipitation events remains below 0 °C for most
of the six month period in each of the considered scenarios. Only
for the A1B_2090 scenario rain precipitation at 3000 m a.s.l. would
exceed 1% of winter semester precipitation. Even an increase of
35% of winter snow precipitation, with a weak summer tempera-
ture increase (+0.9 °C) for the B1_2050 scenario, would not com-
pensate the increased ice and snow melt between April and
September, as Fig. 6 shows.

The magnitude of the change in mass balance is directly linked
to the assumed emission scenario and the considered future simu-
lation periods. The largest changes are projected by 2090 assuming
the A1B scenario, then A1B_2050 and finally B1_2050. This occurs
both at the annual scale and at the seasonal and monthly scale.

By comparing individual years of the control and scenario peri-
ods, it is clear that melting will dramatically increase in future
years in summer, even if the snow water equivalent accumulated
at the end of the previous winter season is similar.

In 2001 snowfall was exceptionally high, resulting in a slightly
positive simulated mass balance. In shifting year 2001 according to
the A-change signal for scenario B1_2050, the winter accumulation
increases further. This projection shows again a positive balance,
but is now lower than the control period (Fig. 7); any other sce-
nario shows a negative balance even for the shifted 2001. This
agrees with results showing that for most glaciers an increase in
accumulation by 40-50% would be necessary to offset the effect
of a temperature increase by 1 °C [2,63]. This behaviour is also con-
sistent with outputs of PDSLIM runs, according to the following
equation which was derived through a multiple linear regression
analysis:

b= —1258 — 473Tys + 1.123(by, + P) 7)

where b (mm) is the mean annual specific mass balance, Ty, (°C) is
the summer temperature from June to August, b,, (mm) is the win-
ter balance, P (mm) is the precipitation during the melting season.
This equation explains 75% of the variance of the simulated annual
mass balance on the Mandrone glacier [69].

Shifting the meteorological data of 2003 (the one with the hot-
test summer ever registered in the last century) according to A1B
2090 would double the mass loss for the specific year (Figs. 6
and 7). Summer 2008 and 2009 led to negative mass balances as
well, as a result of the combination of all the meteorological and
glaciological variables; in future scenarios these losses would be
even higher than the one foreseen for 2003.

A strong correlation between an increase in the air temperature
and the acceleration in the melting process is evident, as shown in
Fig. 8 reporting the 20-year average temperature at 3020 m a.s.l.
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Table 3
Annual and seasonal mass balance (mm w.e.) on the actual size of the Mandrone glacier for control (in bold) and climate change scenarios (maps are shown in Fig. 9).

Year Winter mass balance Summer mass balance Annual mass balance
Control B1 B1 A1B A1B Control B1 B1 A1B A1B Control B1 B1 A1B A1B
run 2050 2090 2050 2090 run 2050 2090 2050 2090 run 2050 2090 2050 2090
1995 658 896 773 632 709 -1187 —-1721 3142 -2192 —4267 -529 -825 -2369 1560 —3558
1996 642 875 755 616 692 -754 —1236 -2759 -1854 —-3766 -112 -361 -2004 -1238 -3074
1997 711 967 835 683 766 —2475 —-3166 —4866 —3660 —-6654 -1764 —-2199 -4031 -2977 —5888
1998 620 844 729 596 668 -1727 —-2140 -3670 2801 —4745 -1107 —-1296 -2941 -2205 —4077
1999 545 744 642 524 588 -1667 —2455 4089 -3067 —5258 -1122 —1711 3447 -2543 —4670
2000 537 728 629 516 578 -1948 -2921 -5503 —-3930 —7268 -1411 —2193 4874 -3414 —6690
2001 1458 1978 1710 1402 1570 -1139 -1687 -3159 2380 —4757 319 291 -1449 -978 3187
2002 323 437 378 311 347 -2051 —-2798 —-4691 3536 —-6071 -1728 -2361 -4313 -3225 —5724
2003 601 812 704 578 646 -3651 —4461 -6411 -5096 —7890 -3050 —-3649 5707 -4518 —7244
2004 1022 1388 1200 983 1101 —2874 —3681 5978 —4489 —7802 —-1852 —2293 4778 3506 —6701
2005 323 445 382 309 349 —2056 —-2825 —-4606 —3594 —-5713 -1733 —-2380 —4224 3285 -5364
2006 640 871 753 615 690 —2025 —2873 4881 3654 -6170 -1385 —-2002 -4128 -3039 —5480
2007 309 417 362 297 332 -1741 —2789 4856 3608 —6249 —1432 —2372 -4494 -3311 -5917
2008 582 787 681 560 626 —-3606 —-4670 -6701 5477 —8287 -3024 —-3883 -6020 —-4917 -7661
2009 1172 1585 1373 1128 1262 —2829 —3851 -6074 —4672 —7952 -1657 —-2266 —4701 -3544 —6690
Average 676 918 794 650 728 -2115 —2885 —4759 -3601 —-6190 -1439 —-1967 -3965 —-2951 —5462
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Fig. 6. Summer and winter mass balances for the Mandrone glacier for 15 years of simulation in the control run, with original meteorological data, and in climate change
scenarios, obtained by projecting each observation year to future simulation periods.

(Passo della Lobbia), both observed and derived by CLM runs, to- one in August (as it already occurred in some recent years); this

gether with the estimate of the annual mass balances, in the con-
trol and climate change scenarios. As the figure outlines, even on
a monthly scale the correlation between average air temperature
and mass balance is strong, both for the control and scenario runs.
The figure shows also that the CLM control run underestimates
temperatures at the 3020 m a.s.l. (in April and May simulated tem-
perature is up to 4 °C lower than the observed 1995-2009 one at
Passo della Lobbia). Also taking into account the non perfect over-
lapping of the observed and simulated period, the comparison in
the summer months is not satisfactory. For this reason the
A-method was applied to the actual observed climatic regime.
Only scenario B1_2050 shows both in April and in May a similar
behaviour to that observed in the last 15 years, which means the
monthly balance is almost steady. On the other hand in any of
the remaining scenarios spring melt starts earlier. Starting from
June the discrepancy in mass loss between control and climate
change results becomes more pronounced. In some years of sce-
nario A1B_2090 the mass loss in September is comparable to the

is not true for the majority of remaining years, when mass loss
in September is lower because the cold season starts.

The considerations stated so far refer to the whole glacier in or-
der to keep, firstly, a constant spatial domain of the analysis and to
investigate only the effects of climate change. The distributed
hydrological modelling framework enables also the analysis of
the spatial variability of the mass balance (Fig. 9). According to
the four scenarios, no positive mass balance will occur in any part
of the glacier. As a matter of fact even in the 15 years of the control
simulation only 2% of the whole area shows a positive balance. In
2090, point mass balance is expected to be lower than
—1000 mm year~' at any location. More moderate losses are
shown in the A1B_2050 simulation for a small area on the slopes
of Monte Fumo and Dosson di Genova and in the B1_2050 scenario
for north-facing slopes.

Even if important uncertainties are included in the PDSLIM
algorithm, those included in the CLM model should not be forgot-
ten. Fig. 3 shows the precipitation regime evaluated for the Oglio
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river basin on the basis of observed precipitation for the period
1979-99 and of CLM output for each climate change scenario.
Monthly precipitation is underestimated in summer and overesti-
mated in winter. Considering also the uncertainties in temperature
CLM-simulations outlined in Fig. 8, it can be argued that scenarios
A1B and B1_2090 are affected by large uncertainties.

As different climate models and socio-economic scenarios re-
sult in highly variable meteorological predictions, we also com-
pared the average mass balance obtained by applying the
multiple-linear regression equation (7) using temperature and pre-
cipitation predictions by three global climate models (GCMs), al-
ready investigated for the Adamello glacier area in [9]. In this
way we obtained in Table 4 ranges of inter-model and inter-
scenario mass balance simulation, which are an estimate of the

degree of ‘uncertainty’ of mass balance projections depending on
the climate forcing adopted: even if B2 and A2 scenarios were
not used to simulate the mass balance with PDSLIM, they indicate
a high range of temperature predictions for the same scenario.
Resulting mass balances ranges are up to 1.4 myear~! for the
2050 scenarios and 2.9 m year~! for the 2090 scenarios. Similarly,
other authors (see [27] e.g.) used ensemble GCMs and RCMs and a
distributed temperature-index approach to project runoff evolu-
tion in nine high Alpine Swiss catchments.

Despite large uncertainties it is still not possible to exclude the
possibility that the temperature will increase so much by the end
of the 21st century. If emission thresholds will be reached by pes-
simistic socio-economic and technological scenarios, then such a
dramatic response of the glacier should be considered as realistic.



200 G. Grossi et al./Advances in Water Resources 55 (2013) 190-203

ss0 della Lobbia
Alta 3020 m

sso della Lobbia
Alta 3020 m

Ml -10000 : -8000
[ -8000 : -6000
[ -6000 : -4000
[ -4000 : -2000
[ -2000: 0
o : 1000
Projected
glacier Area
—————— Projected

glacier Area (+20% w.e.)

--------- Projected
glaciecr Arca (-20% w.c.)

della Lobbia
Alta 3020 m

CIM AlB 2050 SCENARIO

Meters

CIM A1lB 2090 SCENARIO

Fig. 9. Mean annual mass balance (mm w.e.) for the Mandrone glacier for scenario B1 and A1B projected to 2050 and to 2090. The projected extent of the glacier is shown in
black continuous line. Dashed lines represent the extent assuming a +20% mass balance standard uncertainty.

Table 4

Comparison of summer temperatures at 3020 m a.s.l., summer and winter semester
precipitation and mean annual mass balance for the Mandrone glacier projected to
2050 and 2090 by different scenarios and different climate models.

Climate model and Tya Psummer Puincer bannua Range
scenario (°C) (mm) (mm) (mm) (mm)
PCM_B2_2050 44 797 670 -1676
ECHAM_B2_2050 6.7 781 697 —2751 1322
HADCM_B2_2050 70 724 690 —2998
PCM_A2_2050 45 815 682 —-1690
ECHAM_A2_2050 7.0 761 638 —2981 1387
HADCM_A2_2050 7.1 736 650 -3077
PCM_B2_2090 52 775 668 —2081
ECHAM_B2_2090 82 773 711 —3470 1981
HADCM_B2_2090 92 677 701 —4062
PCM_A2_2090 6.0 782 692 —2440
ECHAM_A2_2090 111 753 671 —4925 2889
HADCM_A2_2090 116 653 622 -5330
PCM_A1B_2090 58 747 754 -2315
CLM_A1B_2090 9.2 585 727 —4158 1843

4.2. Evolution of the shape of the Mandrone glacier

An analysis of the evolution of the extension of the glacier was
also performed, in order to predict the future areal extent of the

Mandrone glacier and to re-evaluate the mass balance on the fu-
ture glacier surface according to each of the four scenarios. In this
analysis the combined effect of both the climate change impact on
the mass balance and the resulting morphological adaptation of
the glacier is taken into account with a simplified approach, as
done for instance by Huss et al. [33], who first calculated the
change in glacier surface elevation and area through a simple
parameterization and then applied an ice-flow model. Considering
the additive and multiplicative correction factors listed in Table 2,
a linear change of temperature and precipitation over the 2010-
2050 and 2050-2090 periods was assumed. Eq. (7) was then ap-
plied to compute the glacier mass balance for each year in the
two time periods in-between the control period and the future cli-
mate change scenarios. Cumulated mass balances in the 2010-
2050 and 2010-2090 periods were: B1_2050=-57 mw.e.,
B1_2090=-178 mw.e, Al1B_2050=-77 mw.e,, A1B_2090=
-221mw.e.

The spatial variability of the mass balance in each year of the
two in-between periods was assessed by normalizing the mass bal-
ance maps shown in Fig. 9 for each scenario simulation and multi-
plying them by the respective annual mass balance in the
intermediate period.

The annual mass loss was then subtracted from the glacier
thickness estimated for the Adamello glacier by ARPA-Lombardia
[16] by combining aerial and topographic surveys, IKONOS satellite
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images over the 1985-2007 period and georadar surveys con-
ducted in 1997-1998 [28]. Resulting positive ice depths contribute
to the surviving mass of the glacier for each scenario.

Survived areas were then modified by considering the glacier
flow velocity estimated from the simplified ice flow model de-
scribed in Section 3.4. The cumulated mass losses computed in
each grid cell from 2010 to 2050 and 2090 projected years was
subtracted to the actual glacier’s volume, and then combined with
the effect of the ice flow. To estimate the average velocity for the
Mandrone glacier an ice slab with a thickness between the actual
condition and the future projections was considered. For example,
for the B1_2050 scenario we obtained a thickness decrease of 50 m,
from the actual 100 m to the future 50 m, on the central part of the
glacier. Considering Eq. (6), with a slope of 10° corresponding to
the mean slope on the central part of the Mandrone glacier, a value
ranging from 16 to 32 myear~! was obtained and used to shift
downstream the boundaries resulting from pure mass balance. A
glacier’s size of 7.1 and 4.6 km? according to the B1_2050 and
A1B_2050 scenarios was obtained, respectively. Updated masks
where then used to project mass balance according to the A1B
and B1 scenarios.

Resulting boundaries of the glacier are shown in Fig. 9 for each
scenario: continuous lines show the expected shape, dashed and
dotted lines show the predicted shape with the assumption of a
standard uncertainty of +20% and —20%, respectively, on the cumu-
lative mass balance. This result is consistent with surveys in the
1985-2007 period. Computed annual glacier mass balances on
the updated boundaries are listed in Table 5, showing, on average,
a 10% change with respect to the actual size domain.

4.3. Comparison with surrounding glaciers: Caresér and Presena

Results of the analysis on the Mandrone glacier are in agree-
ment with the above mentioned findings concerning the Caresér
glacier mass balance obtained with the glaciological method
(—1686 mm w.e. year ! in the 1995-2009 period). In Table 6 mass
balances estimated by PDSLIM simulations applied to the Presena
glacier are also presented, resulting in an estimated specific mass
balance in the 1995-2009 period of —1503 mm w.e. year—'. The re-
sults for these two glaciers are in agreement with the Mandrone
glacier mass loss (—1439 mm w.e. year~!), considering the differ-
ent size, altitude and aspect of the three glaciers, as described in
Section 2.1.

Table 5
Annual mass balance (mm w.e.) on the projected size of the Mandrone glacier for the
control run (in bold) and four climate change scenarios (maps are shown in Fig. 9).

Year Annual mass balance
Control run  B1 2050 B12090 A1B2050  A1B 2090

1995 -529 —659 -1727 -1310 -3021
1996 -112 —-186 -1601 —1056 -2731
1997 -1764 —1982 —3348 —2630 —5359
1998 -1107 -1134 —2413 -1984 -3626
1999 -1122 —1504 —-2970 —2272 —4256
2000 -1411 —1895 —4254 -3020 -6132
2001 319 -69 —1064 -799 —2834
2002 -1728 -2115 —3747 -2915 —5287
2003 -3050 —3366 -5158 -4166 —6803
2004 —1852 —2024 —4121 —3154 —6243
2005 -1733 -2125 —3637 -2961 —4892
2006 -1385 -1741 —3475 —2696 —4963
2007 -1432 —2095 —3834 —2950 —5422
2008 -3024 —3565 -5243 —4534 —7048
2009 -1657 -1976 —4003 -3180 -6120
Average -1439 -1762 —3373 —2642 —4982

Table 6
Annual mass balance of three glaciers in the investigated region.
Year Annual mass balance (mm)
Mandrone?® Presena?® Caresér®

1995 -529 —496 —1081
1996 -112 -219 -1320
1997 -1764 -1504 -920
1998 -1107 —-1088 —2240
1999 -1122 -1314 -1800
2000 -1411 —1888 -1610
2001 319 -106 -250
2002 -1728 —1582 -1149
2003 -3050 —2502 -3317
2004 -1852 —-1972 —-1562
2005 -1733 —1675 —2005
2006 -1385 —1453 -2169
2007 —1432 -1606 —-2783
2008 -3024 —-3087 -1851
2009 -1657 -2053 -1235
Average —1439 -1503 —1686

¢ Energy and mass balance simulation in the present study.
b Years 1995-2006 [17]; year 2007 [8]; years 2008 and 2009 (Carturan, personal
communication).

It must be pointed out that simulated summer mass balances
are affected by major uncertainties regarding measurements of
precipitation and air temperature at high altitude, as reported for
instance by Ranzi et al. [68] and Huwald et al. [35].

Up-to-date predicted changes in air temperature in the regional
climate are higher than those obtained in the early nineties for the
Careseér glacier based on the pioneering Goddard Institute for Space
Studies (GISS) projections and their effects are expected to be more
dramatic on the glaciers’ mass balances [4,31].

5. Conclusions

In this work a physically based modelling approach was
adopted to evaluate the mass balance of the Mandrone glacier,
the largest branch of the Adamello-Presanella mountain group in
the Italian Alps. Its specific mass balance in actual conditions
(—1439 mm w.e. year™!) is in agreement with that of the nearby
Presena and Caresér glaciers and will become much more negative
as a result of the climate scenarios projected by the CLM regional
model, indicating a high vulnerability of the volume and area of
Alpine glaciers in this area to climate change.

Although the modelling results in the current conditions are
still uncertain, mainly due to errors in precipitation measurements
at high altitude and the hypotheses of the energy balance model
adopted, verifications with point ablation measurements and
satellite-derived snow cover were performed with satisfactory re-
sults. Climate projections are uncertain as well but new generation
regional climate models like CLM are quite consistent in indicating
a strong temperature increase in high mountain areas.

The average annual mass loss over a 15-year time window
(1995-2009) projected to different future emission scenarios (B1
and A1B) shows further acceleration of the Mandrone glacier re-
treat in the 21st century. In 2050 for the B1 scenario the specific
annual mass balance will be about —2000 mm w.e., while for A1B
scenario it will be —3000 mm w.e. Looking right at the end of the
21st century, for the A1B scenario —5500 mm w.e. was obtained,
while for the B1 scenario —4000 mm w.e. was obtained. These re-
sults are obtained assuming a constant computational domain cor-
responding to the actual glacier size. They change by about 10%
when the glacier’s area retreat is computed on the basis of a sim-
plified model of volume change and ice flow. The areal reduction
projected to 2050 ranges between 45% and 65% of the actual
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13.4 km? size, according to the B1 and A1B scenario, respectively.
Most of the ice will have melted away by the end of the century.

Taking into account both the current abrupt retreat of the stud-
ied glaciers (and of several others in the Alps) and the obtained re-
sults on future scenarios, it is possible to draw important notes on
the glaciers’ response to climate change. Leaving apart the uncer-
tainty of the model results, the retreat of the Alpine glaciers is
more and more evident and at the moment there is no evidence
of a trend inversion.

In perspective of future research development, it is worth inves-
tigating the positive feedback due to enhanced radiative heating
from surrounding rocks, which is expected to even accelerate the
glacier retreat, as noticed for the Careseér glacier. A negative feed-
back, however, could result from a debris layer covering the ice.
More detailed coupled mass balance-ice flow models should be
used to better assess the geomorphological adaptation of glaciers
to the projected mass losses.
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