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ABSTRACT

In this paper we address the general issue of merging Markov
chains used to model two instances of a given process with
some properties in common. In particular, in this work we
apply this scenario to a multimedia application that generates
new video scenes mixing the original segments of a given
movie. To perform the latter process, it is first necessary to
describe the structure of the scenes in some way, which in our
case is done through Markov chains. The video scenes are
then recombined by fusing their corresponding models using
the general method described here. We analyze and validate
the proposed methodology only for this specific application,
however the solution presented here could be used in a very
diverse array of applications where Markov chains are rou-
tinely used, ranging from queuing modeling to financial deci-
sion processes.

Index Terms— Markov Chains, Video Modeling, Inter-
active Storytelling.

1. INTRODUCTION

Markov chains (MCs) are variously applied in many different
fields, in particular in real world problems involving random
processes. For example, in [1] five applications are analyzed
in detail: biology, queueing models, resource management
models, Markov decision processes and Monte Carlo simula-
tions. Other applications of Markov chains include market-
ing forecasts [2], Google’s PageRank [3] and video modeling
[4, 5, 6].

Now let’s focus our attention on a given application in
which Markov chains represent the modeling tool of choice,
such as ours, and let’s suppose two models pertaining to two
different entities have been obtained. If they share some prop-
erties such as the presence of common states as is the case in
this work, it could be interesting to exploit this fact to obtain a
new unique model that describes both entities simultaneously
and that still inherits the structure of the two original models
in some way.

Here, the proposed MC fusion method has been imple-
mented as a part of the movietelling application developed
during the IRIS NoE [7] that constructs new filmic variants of
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a baseline movie. We developed it because no existing MC
processing technique satisfies our requirements to the best of
our knowledge. In [7], an earlier technique to generate new
narrative scenes was proposed. The objective of the MC fu-
sion is to suggest possible video scenes to the narrative gen-
eration module, and successively an author assesses whether
the scenes are of a good enough quality to be included in the
narrative domain model. We evaluate the generative power of
the new method using Michael Radford’s screen adaptation
of Shakespeare’s The Merchant of Venice [8], as we did in
[7]. In the present movietelling system, the audio portion is
discarded and substituted by appropriate subtitles describing
the narrative. However, we expect the fusion process to be
able to easily incorporate audio features should they will be
integrated in the system.

The paper is organized as follows: in Section 2 our spe-
cific framework is introduced by describing how Markov
chains can model video scenes. Then, in Sections 3 and 4 we
describe the general method that allows to fuse two Markov
chains. Section 5 shows some experimental results, includ-
ing both subjective and objective evaluations, and Section 6
draws the conclusions.

2. VIDEO MODELING

In [9, 10], a video is modeled as a Scene Transition Graph
(STG) starting from its shot segmentation [11]. In those
works, the nodes of a STG represent clusters of visually
similar shots and the edges identify the transitions between
consecutive shots. By removing the cut-edges from the graph,
an STG can be decomposed in a number of well connected
subgraphs, which represent the Logical Story Units (LSUs)
of the video and, if the latter is a movie, the LSU concept is
related with its scenes [12]. Each LSU can be equivalently
modeled by a Markov chain whose states represent the vi-
sual clusters and the transition probabilities is computed by
counting the temporal transitions between consecutive shots.

In our application, rather than considering the shot visual
similarity, we are more interested in their semantic content.
Hence the LSUs are only used for segmentation purposes and
after that they must be re-clustered using some kind of se-
mantic description of the shots. For this purpose, we define a
set of semantic tags with which each shot is described: char-
acters (the list of the main characters present in the shot and
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Fig. 1. Example of a Markov chain generated through se-
mantic clustering of a movie scene. The states of the MC are
the semantic clusters and the points inside them represent the
shots belonging to the semantic cluster.

their mood: positive, neutral or negative); camera field (long,
medium or close-up); and environment, which is a description
of the time of the day (day or night), the location (indoor or
outdoor) and crowd presence (crowded or not).

The reorganization of the clusters belonging to a LSU,
depending on the semantic content of the shots, leads to the
generation of a new graph that we call Semantic Story Unit
(SSU), because of its strong connection with the LSU con-
cept. In the same way an LSU is associated to a Markov chain,
we can still associate a MC to the SSU concept; obviously the
number of the states and the relative transition probabilities
of the MC associated to an LSU and the corresponding SSU
may be different. An example of a Markov chain associated
to an SSU is shown in Fig. 1.

Since each SSU is mapped to a narrative scene, the pur-
pose of fusing two SSUs using the method outlined in what
follows is generating a new movie scene constructed by mix-
ing the content of two original scenes, which would be a use-
ful feature for our movietelling system.

3. MARKOV CHAINS FUSION METHOD

This section presents the technique that allows to fuse two
separate Markov chains; our assumption is that the two chains
have to share some common properties, so we impose that
they possess at least one matching state to be eligible for the
fusion process. Our aim is to obtain a new MC that is con-
structed starting from both of them and still inherit in the best
possible way the properties of the two original structures, in
this case the transition matrices. Moreover, we assume that
two semantic clusters (the states in our model) match if they
represent the same semantic concept, i.e. they share the same
values for the semantic tags set.

3.1. Working Example

We will refer to Fig. 2(a) as a working example. Starting from
MC1 and MC2 (top half), with transition matrices P and Q
respectively, the new fused Markov chain with transition ma-
trix R is built. Observe that MC1 has 4 states and MC2 has
3 states and there are 2 matching pairs of states (highlighted

in Fig. 2(a)), hence the fused Markov chain with transition
matrix R has 5 states. The transition matrices into play are:

P =


p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

 , Q =

q55 q56 q57q65 q66 q67
q75 q76 q77



R =


rAA rAB rA1 rA2 rA7

rBA rBB rB1 rB2 rB7

r1A r1B r11 r12 r17
r2A r2B r21 r22 r27
r7A r7B r71 r72 r77


To maintain the original structure as represented by the tran-
sition matrices, all the transitions between the states not in-
volved in the fusion process should be preserved (in this case,
between S1 and S2) as much as possible in the matrix R.

Starting from these assumptions, we have to express each
coefficient rij of the matrix R using the coefficients of the
constituent matrices P and Q. The most practical solution is
therefore to extend the transition matrices P and Q to take
into account all the states pertaining to both of them, rear-
ranging the rows to reflect the same row order of R. Finally,
the individual matching states that are to be fused in the final
fused states are identified (here, S3 and S5 with SA; S4 and
S6 with SB). Hence, the new transition matrices are:

P ∗ =


pAA pAB pA1 pA2 0
pBA pBB pB1 pB2 0
p1A p1B p11 p12 0
p2A p2B p21 p22 0
0 0 0 0 0

 , Q∗ =


qAA qAB 0 0 qA7

qBA qBB 0 0 qB7

0 0 0 0 0
0 0 0 0 0
q7A q7B 0 0 q77


where SA in P ∗ identifies with S3 in P (SB identifies with
S4) and SA in Q∗ identifies with S5 in Q (SB identifies with
S6). Now, in the transition matrix R, three different groups of
rows can be identified:

R =

 RF

RP

RQ

 (1)

In Eq. (1), RF are the rows corresponding to the fused states
(SA and SB), while RP and RQ are the rows corresponding
respectively to the states in P and Q that are not involved in
the fusion process (S1 and S2 for RP and S7 for RQ). Now
we express every i-th row of R as a linear combination of the
i-th row of P ∗ and Q∗:

Ri = αiP
∗
i + βiQ

∗
i (2)

ForR to make sense as a transition matrix, it is necessary that
the parameters αi + βi = 1 for all i and, by construction, αi

(resp. βi) is equal to 1 when i corresponds to a row of RP

(resp. RQ) and 0 when i corresponds to a row of RQ (resp.
RP ). The parameters relative to the fused states (let’s call
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Fig. 2. Markov chains fusion process examples. (a) The fused MC has aggregated the matching states S3 from MC1 and
S5 from MC2, and likewise S4 and S6, into the fused states SA and SB . (b) The case of a single pair of matching states.
Auto-transitions are omitted for clarity.

them αF and βF ), are the most important; in fact they repre-
sent how one chain is dominant w.r.t. the other in the fused
MC. It can be observed that the transition matrixR as defined
above is a “weighted average” of P and Q: for those states
that have been fused, we average the corresponding transi-
tion probabilities, while those between the other are left un-
changed. In this work, the parameters αF and βF need to
be related to the cardinality of the involved semantic clusters.
Let’s define Mj as the magnitude of the j-th cluster:

Mj =

{
#SCj if shL /∈ SCj

#SCj − 1 if shL ∈ SCj
(3)

where #SCj is the cardinality of the j-th semantic cluster
and shL is the last shot of the SSU. Eq. (3) takes into account
the fact that there is no temporal transition from the last shot
of the SSU. Considering a cluster with magnitudeM1 and one
with magnitude M2, we can express the parameters αF and
βF as:

αF =
M1

M1 +M2
; βF =

M2

M1 +M2

This leads to a fused SSU that is mostly composed by content
from the SSU with higher cardinality and less content from
the other.

3.2. General case

We fuse MC1 (with transition matrix P and extended matrix
P ∗) and MC2 (with transition matrix Q and extended matrix
Q∗) with, respectively, N1 and N2 states; suppose that there

are C pairs of matching states (C < min {N1, N2}). By ar-
ranging the rows relative to the matching states in the top part
of the matrix, we refer to each state of a matching pair as Fik

(i = 1, ..., C, k = 1 or 2), so Fi1 is the state in MC1 that
belongs to the i-th pair and Fi2 is the matching state inMC2.

Now, P is an N1xN1 matrix, while Q is N2xN2; so
the resulting matrices P ∗, Q∗ and R are square matrices
of dimension (N1 +N2 − C). The matrix R, in partic-
ular, can be expressed by Eq. (1). In turn, each row Ri

(i = 1, . . . , (N1 +N2− C)) is expressed as in Eq. (3),
where the parameters αi and βi are:

αi =

 αFi if i = 1, . . . , C
1 if i = C + 1, . . . , N1

0 otherwise

βi =

 βFi if i = 1, . . . , C
0 if i = C + 1, . . . , N1

1 otherwise

The set of the first C parameters αF and βF are those relative
to the matching states and have to satisfy the usual relation
αFi + βFi = 1 for i = 1, . . . , C.

4. MIXING FACTOR

With the formulation given in Section 2, no transitions be-
tween states that were not previously existing are introduced.
In fact, referring to the example in Fig. 2(a) it is clear that it is
not possible for the chain to jump from S1 to S7 without first
passing through SA or SB .
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Depending on the intended application, it could be de-
sirable for the fused MC to allow direct transitions between
the non-fused states of the constituent Markov chains even if
this implies to slightly perturb the pre-existing structure. To
take into account this possibility, we define a mixing factor
0 ≤ Φ ≤ 1 that determines the probability with which the
fused MC can evolve by doing multiple steps rather than a
single one as before. In this scenario, starting from a given
state the chain evolves with the following rule (N controls
the maximum number of steps):

• with probability (1−
N∑
i=1

Φi), the chain evolves with the

usual transition matrix R;

• with probability Φ, the chain evolves doing 2 steps, by
applying the 2-steps transition matrix (R2);

• . . .

• with probability ΦN , the chain evolves for N +1 steps,
by applying the (N+1)-steps transition matrix (RN+1).

These operations transform the transition matrix R in a new
matrix R̃, that can be obtained as:

R̃ =

(
1−

N∑
i=1

Φi

)
R+ΦR2+Φ2R3+ . . .+ΦNRN+1 (4)

In particular, for the N = 1 (2-steps) case, R̃ in Eq. (4) can
be written as:

R̃ = (1− Φ)R+ ΦR2 (5)

It is clear that if in Eq. (5) Φ has a near-zero value, few “dou-
ble steps” are allowed and the two original MCs are effec-
tively isolated. On the other hand, when Φ increases, it is
more likely that a 2-steps evolution occurs, thus allowing di-
rect jumps from states that were not previously connected.
The value of Φ of course can not be set automatically but has
to be chosen empirically by inspecting the output videos and
verifying that the mixing degree is appropriate.

5. EXPERIMENTAL RESULTS

Operating as in [6], we extracted from the movie 71 differ-
ent LSUs that had been re-clusterized into 71 SSUs. Among
those, only 37 were non-trivial (that is, not composed of just
a single shot) and we took this ensemble as our operative
set. For each SSU in the set, we investigated if there was
at least another SSU with one or more matching semantic
clusters, which corresponds to matching states of the associ-
ated MCs. Of the 37 considered SSUs, just 33 had at least
another SSU with one or more matching clusters, i.e. the
other 4 had no matching clusters among all the others SSUs.
We first define the distance between SSUs, obtained averag-
ing the cross-distances between all the shots belonging to the

SSUs. The shots distance is in turn computed by extracting
a codebook of visual words, which is obtained by dividing
shot keyframes in square blocks and then running a Tree-
Structured Vector Quantization algorithm to LUV color space
values of the blocks. The codebook size is determined by con-
trolling the distortion on the reconstructed keyframe. Finally,
the shots distance is defined by averaging the distortion in-
crease caused by representing each shot using the codebook
of the other (see [13]).

To evaluate our SSU fusion method, we have performed
two different kinds of assessment: in the first we analyze the
correctness of our proposed method with an objective mea-
sure, while in the second we analyze the performance through
a session of subjective user tests.

In the first part of our evaluation, we have investigated
the degree of distortion introduced by our technology. In the
same way we defined the distance between SSUs, the distor-
tion of an SSU is defined as the mean of the cross-distances
between all the shots that belong to it; we expect that the
operation of merging two SSUs into one fused SSU will in-
crease the distortion measure, especially if we limit ourselves
to those SSUs that have at least one matching cluster. The
results of the analysis are shown in Fig. 3. As it can be ob-
served, all the SSUs resulting from the fusion process have a
distortion that is comparable with the distortion of the original
movie SSUs , except for some rare cases where it moves away
more significantly. Furthermore, it has to be noted that the ob-
tained distortions are much lower than the general distortion,
that is the expected value if we build a new SSU choosing
its shots at random. This result assures that the content of a
fused SSU has at least a plausible video aspect (w.r.t. those
SSUs originally present in the movie), since the obtained SSU
distortion almost always assumes a plausible value.

The results of the second part of our evaluation, instead,
are illustrated in Table 1. We asked to five interviewees to
play the authoring role and assess the content generated from
the fused SSUs, by watching output clips obtained by per-
forming a random walk through the shots of the fused SSU
and evaluating if some kind of meaning could be attached to
the resulting scene. Two sets of output clips have been ob-
tained by considering, in addition to pairs of SSUs having
the best (lowest) associated distance, also those pairs hav-
ing the 2nd-best associated distance. The results pertaining to
these two sets are shown in the rows of Table 1, which reports
the average clip acceptance ratio and the user agreement (the
overlap between users acceptance decisions), both expressed
in percentage. As expected, it can be observed that the ac-
cepted SSUs in the second row are less than those in the first;
therefore, confining the analysis only to the nearest SSU in
the fusion process is useful, since as SSUs with higher visual
distance are fused, the resulting output clips could be more
confusing for the interviewee and therefore it is more diffi-
cult to give a global meaning to the generated narrative scene.
Also, the obtained results in the first row are encouraging and
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Fig. 3. Trend of the fused SSUs distorsion in function of their
length. Here the dotted line represents the global distorsion of
the movie (calculated between all its shots), the bold line rep-
resents the mean of the distorsions of all the SSUs originally
present in the movie and the remaning one is the measured
distorsion of the fused SSUs. For clearity, we sorted the ob-
tained values by length of the fused SSUs.

Clips set Accept [%] Agreement [%]
Nearest SSU Case 55 63
2nd-Nearest SSU Case 42 70

Table 1. Users acceptance and agreement aggregated ratios
for both output clips sets, expressed in percentages. The users
were asked to grade the clips from 1 to 5.

show, by employing the proposed method in the movietelling
framework, that fusing Markov chains which share common
states is a viable solution to obtain new meaningful expanded
models: in fact the results show that among the 33 proposed
new scenes, 18 have an accettable meaning attached. This
results in 18 new scenes available to the system proposed in
[7] that can successfully use this new video material for con-
structing its new filmic variants of the baseline movie.

Moreover, some examples of the output clips obtained
through the fusion method can be found online at [14]. There,
both the original SSUs and the fused one can be displayed,
along with a suggested narrative meaning of the resulting new
scene. The latter also includes subtitles that identify the shots
original provenience to better highlight the mixing process.
More information could be found directly on the web page.

6. CONCLUSIONS

In this paper we have proposed a general methodology to ad-
dress the issue of mixing pairs of Markov chains. As MCs are
used to model two instances of a given process, in the case
that such models share common states it could be useful to
obtain an unique model that in some way inherits the struc-
tures of the two original Markov chains. Although this is a
very general concept and as such it could be applied wherever
the above situation applies, we framed the idea into the IRIS
NoE movietelling prototype context of filmic story variants

generation by recombining the original content of a baseline
movie. In this case, since each constructed variant can use-
fully exploit the SSU (MC) structure that were already present
in the movie to have an adequate consistency, we conveniently
apply our fusion method to mix SSUs sharing high-level con-
cepts as individuated by semantic tags. The effectiveness of
the proposed technique has been demonstrated through exper-
imental results obtained on a set of generated filmic variants.
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