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Parametric amplification or four-wavemixing in high-birefringence optical fibers may be exploited to implement a
novel type of nonlinear polarizer. Such a device leads to the simultaneous amplification, frequency conversion,
and repolarization of both signal and idler waves along one of the principal birefringence axes of the fiber, in-
dependently of the pump, signal, and idler input state of polarization, power, and frequency detuning. We discuss
the conditions for the observation of polarization attraction in fiber optics parametric amplifiers operating with a
pump in either the normal or the anomalous dispersion regime. © 2012 Optical Society of America
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1. INTRODUCTION
Optical devices that enable the dynamic control of the state
of polarization (SOP) of light are key components in today’s
lightwave communication networks. Indeed, it is well known
that the output SOP of a signal from an optical fiber link
exhibits random time fluctuations due to environmental, tem-
perature, or mechanical variations, so that relatively fast SOP
rotation speeds on the Poincaré sphere are observed [1].
Whenever optical signals from a telecommunication link are
used in combination with polarization-sensitive components
such as coherent receivers, optical switches, polarization
demultiplexers, or sensors, it is thus necessary to stabilize
the SOP at the fiber output. Conventional SOP control devices
with relatively high polarization tracking speed are based
on lithium-niobate electro-optical polarization transformers
[2,3]. An entirely new class of fiber-based and potentially ultra-
fast SOP controllers has been introduced in recent years,
based on third-order nonlinear polarization interactions among
different waves within the optical fiber itself. Known all-optical
SOP controllers (or nonlinear polarizers) come in two flavors.
Consider first dissipative polarizers, where the polarization
asymmetry of stimulated (e.g., Brillouin [4] or Raman [5,6])
scattering gain due to a fully polarized and relatively intense
pump wave is exploited for the control of the signal SOP. For
such devices, whenever fibers with suitably low birefringence
or polarization mode-dispersion (PMD) are employed, a signal
gets simultaneously amplified and repolarized at the fiber out-
put. Besides the gain provided by the pump via the stimulated
scattering process, nonlinear dissipative polarizers act as con-
ventional linear polarizers; namely input signal SOP fluctua-
tions result in signal intensity fluctuations [or relative
intensity noise (RIN)] at the fiber output. On the other hand,
conservative polarizers exploit the cross-polarization interac-
tion between a signal and a pump wave of different frequency
[7], or a pump with the same frequency but counterpropagat-
ing in the opposite direction [8,9]. These peculiar polarizers
are also known as nonlinear lossless polarizers: no power

exchange occurs between the signal and the pump; hence in-
put signal SOP fluctuations no longer transform in output sig-
nal intensity fluctuations. Conservative or lossless polarizers
have been experimentally demonstrated using either isotropic
(i.e., perfectly circular) [10,11] or randomly birefringent, low-
PMD optical fibers [12]. In this work, we propose and analyze a
different type of nonlinear polarizer that belongs to the class of
dissipative polarizers, which is based on degenerate four-wave
mixing (FWM) between the arbitrarily polarized pump, the
Stokes signal, and the anti-Stokes idler waves in high-birefrin-
gence (hibi) optical fibers. Important applications of FWM in
optical fibers include the phase-sensitive parametric amplifica-
tion of a signal, as well as the frequency conversion of a signal
into an idler wave. FWM is generally studied in the simple case
of a scalar interaction between the three interacting waves.
Just as it occurs for fiber Raman amplifers, polarization-
independence of the gain of practical fiber-optic parametric
amplifiers (FOPAs) is generally required, which can be ob-
tained by using two orthogonally polarized pump waves. In
the case of a single polarized pump, it is well known that dif-
ferent phase-matching mechanisms exist for the FWM process
in either low [13] or high [14] birefringence optical fibers, with
a pump propagating in the normal or in the anomalous disper-
sion regime. Whenever phase matching (PM) is absent at low
pump powers, but phase-matched exponential growth of side-
bands is achieved at relatively high powers, the FWM process
is more commonly referred to as modulation instability (MI).
Although vector FWM and MI in birefringent fibers have been
experimentally observed for a long time [14–16], to our knowl-
edge the main attention was paid to the gain spectrum of the
generated sidebands. The SOP of the parametrically amplified
sidebands was earlier investigated by Freitas et al. [17] in the
special case of a linearly polarized pump propagating in the
anomalous dispersion regime of a low-PMD fiber. The resulting
scalar MI process is responsible for the observed attraction of
the sideband SOP towards the pump at the fiber output.
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In this work, restricting for simplicity our attention to the
case of a hibi fiber, we performed a systematic study of the
output polarization properties of both Stokes signal and
anti-Stokes idler waves as a function of their frequency detun-
ing and their input SOP, as well as of the pump SOP and
power. In general, the SOP of the parametric sidebands per-
iodically evolves along the fiber, so that both the orientation of
the polarization ellipse as well as its degree of ellipticity
significantly change along the propagation direction. Never-
theless, our study revealed the unexpected result that, when-
ever the pump power is below a certain critical value, the SOP
of both signal and idler waves is quasi-linearly polarized, with
its orientation aligned with one of the two birefringence axes
of the fiber. That is, the output SOP of the sidebands remains
close to a linear polarization state, independently of the input
sideband SOP, their frequency detuning from the pump, as
well as the pump SOP and power. We may refer to such an
effect as pump-independent quasi-linear polarization attrac-
tion (QLPA) towards the principal birefringence axes of the
fiber. In other words, the FOPA simultaneously acts as an am-
plifier and a polarizer for both idler and signal waves. Since
the FOPA-based polarizer is a dissipative polarizer, unlike
lossless polarizers, it is not immune from output RIN resulting
from input polarization fluctuations. On the other hand, para-
metric gain is generally larger than Raman gain in silica fibers;
therefore one may use shorter fibers or lower pump powers
than with Raman polarizers. Moreover, in comparison with
Raman gain-based polarizers, the use of parametric gain may
lead to more flexibile devices since it is possible to tune the
position of the amplified and repolarized sidebands by varying
the fiber birefringence and the pump power.

Our paper is organized as follows: in Sections 2 and 3, we in-
troduce the properties of the general solutions of the nonlinear
coupled equations describing theFWM(orMI) process in a hibi
fiber, andexplicitly point out fourdifferent four-photonenergy-
exchange processes that may be responsible for the QLPA
effect; in Section 4 we describe, by means of numerical simula-
tions, specific situationswhere theQLPA property is observed;
and in Section 5 we present our conclusions.

2. GENERAL THEORY
Let us consider the interaction between a pump (p), a signal
(s), and an idler (i) wave, that copropagate in the z direction in
a hibi fiber. The x and y components of the electric field en-
velope at the carrier frequency νp obey the following incoher-
ently coupled nonlinear Schrödinger equations (CNLSE),
where coherent nonlinear polarization coupling terms are ne-
glected owing to the hibi hypothesis (see [16])
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In Eq. (1), vxp and vyp are the group velocities for x and
y-polarized waves at angular frequency ωp � 2πνp; γ �
n2ωp ∕ �c0Aeff;p� is the nonlinear fiber coefficient, where n2 �
3.2 · 10−16 cm2 ∕W is the nonlinear index, c0 is the speed of light
in vacuum, and Aeff;p is the effective area of the fundamental
fiber mode; β2 is the group velocity dispersion coefficient
(supposed to be common for both polarizations), defined as

β2 �
∂2kjp

∂ω2

����
ω�ωp

; �j � fx; yg�; (2)

where kjp are the propagation constants of orthogonal fiber
modes at the pump frequency.

In Eq. (1) we may decompose the field in a sum of pump,
signal, and idler for each polarization as

Aj�z; t� � Ajp�z� � Ajs�z� exp�iΔkjsz� i2πΔνt�
� Aji�z� exp�iΔkjiz − i2πΔνt��j � fx; yg�; (3)

where Δν � νs − νp � νp − νi is the frequency detuning be-
tween pump and sidebands,Δkj�s;i� � kj�s;i� − kjp, being kj�s;i;p�
the propagation constants at the signal, idler, and pump fre-
quencies, respectively. In the hypothesis of a CW undepleted
pump, the pump x and y amplitudes are time-independent,
and their evolution along the fiber is given by (see [16])
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where P and Q are the pump powers along the x and y axes
(Ptot � P � Q is the conserved total pump power), while
ψxp�0� and ψyp�0� are the two input phases of the x and y

pump components. Inserting Eq. (3) in Eq. (1), a set of ordin-
ary differential equations governing sidebands propagation is
obtained as
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In the above equations, we may approximate kyp �
kxp − 2πνpΔn∕ c0, where Δn � nx − ny is the difference of ef-
fective refractive indexes of the two linearly polarized modes
aligned with the linear birefringence axes; we set nx > ny so
that the x�y� axis is the slow (fast) axis. We express the pro-
pagation constants of the signal and of the idler by means of a
Taylor series development truncated at the second order;
i.e., kjs � kjp � v−1jpΔω� �1∕ 2�β2Δω2 and kji � kjp − v−1jpΔω�
�1∕ 2�β2Δω2�� j � fx; yg��, being Δω � 2πΔν.

Labels X�1;2;3;4� in Eq. (5) indicate all possible four-photon
energy-exchange processes involving the conversion of two
pump photons in two sideband photons. Each of these
processes may lead to sideband amplification, and it is
characterized by an optimal sideband frequency detuning
corresponding to peak sideband gain, i.e., the value
Δν�X1;X2;X3;X4�, which leads to the nonlinear PM of a specific
FWM process. It is interesting to separately consider the four
FWM processes, in order to analyze the conditions under
which their corresponding PM frequencies are well sepa-
rated. In this case, nonoverlapping FWM gain frequency
bands may be obtained, each corresponding to a different
FWM process, which permits a significant simplification of
our analysis.

Let us start from the X1 process: its PM condition reads as
β2�2πΔν�2 � 2γP � 0, which can only be reached in the anom-
alous dispersion region β2 < 0. The corresponding PM fre-
quency is ΔνX1 � �2π�−1

������������������
2γP∕ jβ2j

p
. In this process, which

corresponds to scalar MI for x-polarized waves, two x-pump
photons are converted into an idler x-photon and a signal x-
photon: we may represent the process by using the notation
�xp; xp� → �xs; xi�. Similarly, in the y-polarized Michigan pro-
cess X2, the PM frequency is ΔνX2 � �2π�−1

������������������
2γQ∕ jβ2j

p
and

the four-photon energy-exchange may be represented as
�yp; yp� → �ys; yi�.

The gain bands associated with X1 and X2 have peak gain
values at ΔνX1 and ΔνX2, respectively. Although the two gain
bands overlap, if P > Q, then X1 leads to a larger MI gain than
X2: clearly the number of conversions �xp; xp� → �xs; xi� is lar-
ger than the number of conversions �yp; yp� → �ys; yi�. There-
fore onemay intuitively expect that for a sufficiently long fiber,
a strong sideband attraction towards the x-axis is observed in a
frequency gain band around ΔνX1, the strength of this attrac-
tion being proportional to P. On the other hand, whenever
P < Q, then X2 is the dominating process, and the sidebands
are attracted towards the y-axis in a frequency band around
ΔνX2, the strength of the corresponding attraction being pro-
portional toQ. As far asX3 is concerned, the correspondingPM
condition reads as β2�2πΔν�2 � �Δn∕ c��2πΔν� � γPtot � 0,
which can only be satisfied in the anomalous dispersion re-
gime. It is important to note that PM does not depend on the
input pump SOP but only on Ptot. Therefore, if we represent
the energy-exchange process X3 in terms of its four-photon
conversion �xp; yp� → �xs; yi�, strong attraction of the signal to-
wards the x-axis and of the idler towards the y-axis is expected
in a frequency band around ΔνX3, independently of the input
pump SOP. Nevertheless, the strength of the attraction is
strongly dependent on the pump SOP since the X3 gain is pro-
portional to min�P;Q�, i.e., to the number of photons pairs
�xp; yp� that can be converted by this process. Indeed, the
FWM gain has a maximum whenever P � Q, and it vanishes
if P � 0 or Q � 0.

Whenever the inequality

Ptot < Pc �
Δn2

4γc2β2
(6)

is satisfied, the PM frequency can be well approximated by
ΔνX3 � �2π�−1�Δn∕ �cjβ2j� � γPtotc∕Δn�. This means that the
PM frequency can be linearly tuned by varying Ptot around
�2π�−1Δn∕ �cjβ2j�, which represents the PM frequency in the
low-power limit case. It is straightforward to show that
if Ptot < Pc, then Δν�X1;X2� < �1∕ 2�Δν�X3�; therefore the FWM
processes X �1;2� and X3 are dominant in distinct frequency
bands. To the contrary, whenever Ptot > Pc, the processes
X �1;2� and X3 compete in the same frequency band, so that
a well-defined sideband attraction towards the birefringence
axes as it occurs for each separate process cannot be
expected any longer.

Finally, the PM condition for the X4 process reads as
β2�2πΔν�2 − �Δn∕ c��2πΔν� � γPtot � 0, which again is inde-
pendent of the input pump SOP. However, differently from
the previous cases, PM can only be reached in the normal dis-
persion regime (i.e., β2 > 0). In this case, the energy-exchange
process is �xp; yp� → �ys; xi�; therefore a strong attraction of
the idler towards the x-axis and of the signal towards the
y-axis is expected in a frequency gain band around ΔνX4, in-
dependently of the input pump SOP. Again under the condi-
tion Ptot < Pc, the PM frequency can be approximated as
ΔνX4 � �2π�−1�Δn∕ �cjβ2j� − γPtotc∕Δn�. On the other hand,
whenever Ptot > Pc, the PM condition for X4 cannot be
reached, which means that a well-defined attraction of the
sidebands towards the birefringence axes is not expected
anymore.

From the previous discussion, it is clear that whenever
Ptot < Pc, three distinct sideband polarization attraction pro-
cesses towards the principal axes of the hibi fiber may occur.
Each of these processes drives sidebands with detunings in a
specific frequency band that is centered around the corre-
sponding PM frequency; see the summary provided in Table 1.
When acting separately, the processes X �1;2;3;4� give rise to the
QLPA effect; i.e., the growing sidebands are attracted towards
the hibi fiber axes, as previously discussed. On the other hand,
whenever Ptot > Pc, the competition among the four FWM
processes prevents the uniform (i.e., independent of the input
pump SOP) attraction of the sidebands towards fixed birefrin-
gence axes. In this general case, the full set of equations in
Eq. (5) should be solved in order to estimate the output
SOP of the sidebands.

3. POLARIZATION ATTRACTION:
ANALYTICS
The treatment developed in the previous section provides a
useful and simple overview of the different FWM processes
that lead to the simultaneous amplification and polarization
attraction of the sidebands, which may occur whenever
Ptot < Pc. Moreover, the optimal (or PM) sideband detunings
corresponding to peak sideband gain were provided. Never-
theless, in order to quantify the gain and corresponding gain
bands around the PM frequencies, as well as to provide the
actual SOP of the sidebands, the full set of equations in
Eq. (5) needs to be solved. As shown in [16], after a proper
change of variables, the solution of these equations leads
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to an eigenvalue problem—in other words, the evolution of
the signal and idler amplitudes along the fiber may be fully
described in terms of the eigenvalues and eigenvectors of a
matrix M ; i.e.,

M �

2
66664
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where v � 2πΔνΔn∕ c and K � 4π2β2Δν2. Let λ � r − ig be
the eigenvalue of M with the largest positive imaginary
part g, and � ~Axi;

~Axs;
~Ayi;

~Ays� the corresponding eigenvector.
The associated signal and the idler components are amplified
along the fiber according to the expression

Ajv�z� � j ~Ajvj exp�iϕjv�z� � irz� exp�gz� � j � fx; yg;
v � fi; sg�; (7)

where ϕxs�z� � −ψxs � ϕxp�z� − �K ∕ 2� v∕ 2�z, ϕxi�z� � ψxi�
ϕxp�z�− �K ∕ 2 − v∕ 2�z, ϕys�z��−ψys�ϕyp�z�−�K ∕ 2−v∕ 2�z,
and ϕyi�z� � ψyi �ϕyp�z� − �K ∕ 2� v∕ 2�z; here ψ jv is the phase
of ~Ajv.

As shown by Eqs. (4) and (7), in general, both pump and
sidebands exhibit a z-dependent elliptical polarization.
In order to characterize the pump polarization, we may
define αp � arctan�jAxp�0�j∕ jAyp�0�j� � arctan� ���������

P∕Q
p � and

Δϕp�z� � ϕxp�z� − ϕyp�z�. Clearly the elliptical polarization
of the pumpperiodically evolveswith distance z among the fol-
lowing limit cases: (i)wheneverΔϕp�z� � 2Nπ (N integer), the
pump is linearly polarized at an angle αp with respect to the y

axis; (ii) whenever Δϕp�z� � �2N � 1�π, the pump is linearly
polarized at an angle −αp with respect to the y axis; (iii) if
Δϕp�z� � �2N � 1�π∕ 2, the pump is elliptically polarized with
a maximum degree of ellipticity; the axes of the polarization
ellipse coincidewith the birefringence axes. Similar considera-
tions apply to the idler and signal waves by defining the
corresponding angles αi � arctan�j ~Axij∕ j ~Ayij� and αs �
arctan�j ~Axsj∕ j ~Aysj�, as well as the z-dependent phase differ-
ences Δϕi�z� � ϕxi�z� − ϕyi�z� and Δϕs�z� � ϕxs�z� − ϕys�z�,
respectively.

Whenever the FOPA is used in combination with
polarization-sensitive devices (e.g., a polarization dependent
receiver), it is not only important to provide gain for the

sidebands, but also to ensure that these sidebands possess
a well-defined SOP at the fiber output. In other words, it would
be useful if one could operate the FOPA such that the output
polarization of the sidebands is (nearly) independent of the

fiber length. Moreover, for practical reasons, it would be de-
sirable to have a signal and an idler that maintain a linear SOP
that is aligned with either one of the fiber principal axes of
birefringence. On the other hand, as we have seen, in general
the output SOP of both signal and idler is elliptical, with a de-
gree of ellipticity that depends on the fiber length. It can be
shown that the only situation strictly leading to the parametric
amplification of both signal and idler with a linear SOP cor-
responds to the case of an input pump oriented along either
one of the two birefringence axes (αp � 0° or αp � 90°) and
propagating in the anomalous dispersion regime. This is a
relatively trivial case since both pump and sidebands are
polarized along the same axis (limit case of pure scalar
propagation).

Nevertheless, as we have underlined in the previous sec-
tion, whenever the condition Eq. (6) (Ptot < Pc) holds, one
would expect that if the sideband detuning is nearby the
PM frequency of a given process X �1;2;3;4�, then the sideband
SOP will be strongly attracted towards the birefringence
axes of the fiber. If it is so, then the output angles αs and
αi for the signal and the idler should remain very close to
either 0° or 90°, virtually independently of the input pump
SOP and power, as well as and of the precise value of the side-
band frequency detuning within the gain band.

In other words, as we shall see in the next section, when-
ever Ptot < Pc, then both signal and idler are strongly attracted
towards either the fast or the slow birefringence axis for
whatever αp is imposed at the fiber input. As a consequence,
the signal and idler SOP remains quasi-linear (i.e., with an
ellipticity ϵ ≪ 1) and stable along the distance z so that a
QLPA is observed.

In addition, it turns out that the smaller is Ptot with respect
to Pc, the smaller is the range of oscillation of the sideband
ellipticity about zero. Clearly the gain coefficient and its
bandwidth also depend on Ptot and on αp: the smaller the

Table 1. The Processes X�1;2;3;4� are Listed With Their Corresponding Optimal Detuning Frequency ΔνXi
that Leads the Maximum Amplification of the Sidebands, the Attraction of the Sidebands Towards the

Birefringence Axes, and the Dependence of the Gain on the Pump Polarization

(∝ Stands for Directly Proportional)a

Process Xi ΔνXi Attraction Gain ∝

X �1;2� �2π�−1�
��������������������������������������
2γmax�P;Q�∕ jβ2j

p
� i →, s → �P > Q�, i ↑, s ↑ �P < Q� max�P;Q�

X3 �2π�−1�Δn∕ �cjβ2j� � γPtotc∕Δn� i ↑, s → min�P;Q�
X4 �2π�−1�Δn∕ �cjβ2j� − γPtotc∕Δn� i →, s ↑ min�P;Q�
aIt is assumed that Ptot < Pc. The arrows → and ↑ refer to an attraction towards the x and y axes, respectively.
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pump power, the lesser the sideband gain g. In the next
section, we will discuss in detail the cases in which QLPA
is observed, and we are going to analyze the corresponding
gain characteristics.

4. NUMERICAL RESULTS
The most striking manifestation of QLPA in a FOPA based on
a hibi fiber is observed in the normal dispersion regime
(β2 > 0). Let us consider a fiber with Δn � 3 · 10−5, γ �
10 W−1 km−1, β2 � 10 ps2 km−1. The pump power Ptot is set to
10 W in order to respect the condition Eq. (6) (Ptot < Pc �
25 W), so that the energy-exchange process X4 dominates
over a gain band that is centered around ΔνX4. In Fig. 1(a),
we show the frequency dependence of the parametric gain g

for different values of αp. Whereas Fig. 2(a) illustrates the cor-
responding idler angle αi within the gain band, again as a func-
tion of αp. The signal polarization angle αs is immediately
obtained from αi: from a simple analysis of the matrix M ,
it can be shown that, for a given frequency detuning, the rela-
tion αs�αp� � 90° − αi�90° − αp� holds true. Therefore we only
need to plot αi in Fig. 2(a).

The QLPA property clearly emerges in Fig. 2(a); in fact the
idler αi > 80° (αs < 10°) throughout the gain band and for any
input pump angle αp. This means that the idler wave is
strongly attracted towards the slow x-axis at the fiber output.
Correspondingly, the signal is attracted towards the fast
y-axis. As mentioned in the previous section, the range of
oscillation of both αi and αs within the gain band gets progres-
sively smaller as the pump power Ptot is reduced; however,
this is obtained at the expense of a corresponding gain reduc-
tion. In fact, as predicted in Section 2 (see Table 1), differently
from αi, the gain g sensitively depends on the pump power Ptot

as well as on the pump SOP or αp. This property of the QLPA is
clearly shown in Figs. 1(b) and 2(b); here we consider a pump
power Ptot � 5 W. As can be seen, on the one hand the QLPA
is stronger with respect to the previous case (with Ptot �
10 W) since αi remains closer to 90°. On the other hand,
the parametric gain is nearly halved for all values of αp with
respect the case with Ptot � 10 W.

Although in general the gain g, which is the imaginary part
of an eigenvalue of M , needs to be evaluated by means of a
fourth-degree polynomial equation, we found that a very good
analytical approximation for g is provided by the expressions
for gapp and gapp2, which are provided in Appendix A. These
formulas lead to simple analytical expressions for the lower
and upper cut-off frequencies of the gain band, as well as
for the peak gain gmax. In particular, the expression for gapp
is derived in Appendix A by means of a perturbation expan-
sion of the matrix M , which permits us to analytically show
that the signal and the idler are strongly attracted towards
the x-and y-axes, respectively. That is, Appendix A provides
a full mathematical support to the conclusions of Section 2,
which were based on simple phase-matching arguments.
The expression for gapp estimates the peak gain at the PM fre-
quencies simply as �2∕ 3�γ �������

PQ
p

[in good accordance with the
results in Fig. 1(a)]. As shown by the empty circles in Fig. 1(a),
gapp2 also provides an excellent simple analytical estimation of
the parametric gain as a function of the various physical
parameters. It can be shown that, whenever condition (6)
is satisfied, a lower cut-off frequency always exists for the gain
band in normal dispersion. Moreover, as can be seen in Fig. 1
and as it was predicted in Section 2, the sideband detuning
Δνmax remains virtually independent of αp [it is equal to
1.43 THz in Fig. 1(a), which is in perfect agreement with
theΔνX4 value in Table 1], and it represents the PM frequency
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Fig. 1. Gain g in the normal dispersion regime [in (a), Ptot � 10 W; in
(b), Ptot � 5 W]; the circles in (a) represent the approximated gain of
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detuning for the X4 parametric amplification process exhibit-
ing the QLPA property.

In the anomalous dispersion regime (β2 < 0), the vector
FWM process is more complex than in the case of normal
dispersion, yet it is still possible to obtain the QLPA property
for certain frequency ranges of the sideband detuning. For
anomalous dispersion, there may be two distinct eigenvalues
of M , say λ1 � r1 − ig1 and λ2 � r2 − ig2 with a positive ima-
ginary component. Correspondingly, two frequency bands,
say B1 and B2, exist where either g1 > 0 or g2 > 0. Since
B2 ⊆B1 and g1 ≥ g2, let us consider the sideband amplification
process associated with the gain g1 � g and the correspond-
ing bandwidth B1. In our examples, we used the same fiber
parameters as in the previously discussed case of the normal
dispersion regime, but changed the sign of the group velocity
dispersion coefficient (i.e., we set β2 � −10 ps2 km−1).

In Figs. 3 and 4, we show the gain g and the idler angle αi of
the corresponding eigenvector. By analyzing the matrix M , it
can be seen that, when the condition (6) is satisfied, for any
pump angle αp a band gap exists within the gain band B1.
Namely, we may distinguish between a low-frequency band
B1;L with no lower cut-off frequency, and a high-frequency
band B1;H . See, for example, Fig. 3: for αp � 40°, B1;L extends
from zero frequency detuning up to Δν < 0.76 THz; whereas
B1;H spans the frequency range 1.64 THz < Δν < 1.83 THz.
The corresponding band gap is 0.76 THz < Δν < 1.64 THz.
Note that the frequency bands B1;L, B1;H , and B2 are asso-
ciated with the different FWM processes that were described
in Section 2. Namely, B1;H is associated with the process X3,
whereas B1;L and B2 are associated with X1 and X2, which
may coexist over a certain frequency band. Therefore the gain
g1 � g in B1;L originates from the process X1 �X2�when P > Q

(P < Q). As we can see from Fig. 4, for sideband detunings
within B1;L and for any pump angle αp < 45°, both idler and
signal eigenvector polarizations are strongly attracted to-
wards the slow x-axis. On the other hand, whenever αp >

45°, signal and idler are attracted towards the fast y-axis.
Therefore, as it was predicted in Section 2, for sideband de-
tunings within B1;L the QLPA is no longer pump independent,
since the fiber axis of attraction depends on the range of
variation of αp, i.e., on which process between X1 and X2

provides the largest gain.
Note that in the limit case where αp ≈ 45°, g2 ≈ g1 and

B2 ≈ B1;L: in fact, P ≈ Q so that neither of the two processes

X1 and X2 are clearly dominant over the other. In this situa-
tion, the sideband polarization angles αi and αs no longer
reach a steady-state value, but they oscillate along the fiber,
and their specific value at any distance z depends on the input
sideband (or seeding) conditions at z � 0.

On the other hand, for sideband detunings within B1;H ,
there is no overlap with B2; hence a single amplified eigenvec-
tor exists in this case. As can be observed in Fig. 4 and as was
anticipated in Section 2, for a frequency detuning within B1;H ,
the idler experiences a proper QLPA towards the fast axis,
whereas the signal experiences QLPA towards the slow axis.
Namely, polarization attraction occurs nearly independently
of the pump angle, and even for αp ≈ 45°. As it occurs in the
normal dispersion case, the analytical formula gapp for the
parametric gain described in Appendix A applies in B1;H . Note
that the derivation of this formula in Appendix A also provides
the formal demonstration that signal and idler are strongly
attracted towards the x-and the y-axes, respectively. As
anticipated in Section 2 and shown by Fig. 4, the optimum
(peak gain) detuning frequency Δνmax � ΔνX3 is virtually in-
dependent of αp: Δνmax � 1.75 THz in Fig. 4, which is in per-
fect accordance with ΔνX3 reported in Table 1. Note that gapp
does not provide a good estimation of the parametric gain in
B1;L: in this frequency band, the full fourth-degree polynomial
equation should be used. Yet we may still exactly calculate the
corresponding Δνmax � max�ΔνX1;ΔνX2�: as expected, the
parametric gain is proportional to max�P;Q�, as can be seen
in Fig. 4. For a better appreciation of the peculiarity of the
QLPA property, in Figs. 5 and 6 we display an example where
Eq. (6) is not respected; here the fiber parameters are the
same as in the normal dispersion case of Figs. 1(a) and 2(a),
except that the pump power is Ptot � 100 W ≫ Pc. By inspect-
ing Figs. 5 and 6, it is clear that the QLPA property is no longer
present all over the parametric gain band. This is due to the
lack of a prevailing phase-matched energy-exchange process,
as explained in Section 2. As a matter of fact, αi sweeps from
nearly 25° to 85° depending on Δν and αp: the sideband polar-
ization has a significant ellipticity, and it periodically evolves
upon propagation, as outlined in the previous section.

In order to provide a clear display of the QLPA property,
we conclude this section by presenting three specific
examples where the original CNLSEs governing the FWM
(or vector MI) process are solved [see Eq. (1)]. In this way,
we illustrate how the QLPA is reached at the fiber output,
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Fig. 3. (Color online) Sideband gain g in the anomalous dispersion
regime (Ptot � 10 W). Black solid line for band B1;L, red dash-dot line
for B1;H ; αp � 5°, 25°, 45°, 50° 65°, 85°. The inset provides a zoom for
the band B1;H in the frequency range 1.6 THz ≤ Δν ≤ 1.9 THz.
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nearly independently of the input polarizations of both pump
and sidebands. Let us consider again the same fiber para-
meters and input pump power that we used for the first ex-
ample of the normal dispersion case in Figs. 1(a)–2(a): we
fix here the input sidebands power at 1.0 μW, and their
frequency detuning atΔν � 1.43 THz, which guarantees peak
gain for any αp [see Fig. 1(a)]. We are going to represent the
output SOP of the waves in the Stokes space by means of the

unit Stokes vectors S⃗j � �S1j�z� � S−1
0j �A�

xj�z�Ayj�z� � Axj�z�
A�
yj�z��; S2j�z� � S−1

0j �iA�
xj�z�Ayj�z� − iAxj�z�A�

yj�z��; S3j�z� �
S−1
0j �jAxj�z�j2 − jAyj�z�j2���j � i; p; s�, being S0j � �jAxj�z�j2�

jAyj�z�j2�1∕ 2.
In a first example, we fix the input pump Stokes vector

S⃗p�0� � �1; 0; 0�; i.e., we set the linear pump polarization along
the direction αp � 45°. Moreover, we solve the CNLSEs for a
set of 225 different input sidebands Stokes vectors S⃗i;n�0� �
S⃗s;n�0� (1 ≤ n ≤ 225), which are uniformly distributed over the
Poincaré sphere [see Fig. 7(a)], in order to span the sideband
input polarization across all possible values. We set the fiber
length at L � 100 m. In Fig. 7(b), we show the resulting output
SOP of the idler wave: the figure clearly shows that all of the
225 output Stokes vectors S⃗i;n�L� are strongly attracted to the
vector [0,0,1], which corresponds to a linear SOP oriented
along the x-axis. This means that a quasi-linear polarization
along the x-axis, nearly independent of the input polarization
of the sidebands, is reached at the fiber output. The degree of
polarization DOPv�z� that measures the strength of the attrac-
tion is calculated as DOPv�z��<S1v�z�>2�<S2v�z�>2�
<S3v�z�>2 (v� fi; s; pg), where the average values < Skv�z� >,

k � �1; 2; 3� are calculated such as in [18], and is as high as
DOPi�L� � 0.98 at the fiber output; this shows that the attrac-
tion is very strong after just 100 m of hibi nonlinear fiber.

Let us now consider a second example in which the para-
meters are the same as before, except that the input idler is set
to zero, as it occurs in typical FWM experiments. In Fig. 8, the
resulting output SOP of the idler is shown: it is possible to
observe that the attraction along the x-axis is even stronger
than the previous case. This can be explained in terms of a
larger projection of the initial sideband amplitudes on the
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Fig. 7. (Color online) (a) Fixed input unit Stokes vector of the pump
S⃗p�0� � �S1 � 1; S2 � 0; S3 � 0� (empty triangle) and 225 input unit
Stokes vectors of the sidebands S⃗i;n�0� � S⃗s;n�0� (filled circles) are
shown on the Poincaré sphere (1 ≤ n ≤ 225); (b) output unit Stokes
vectors of the idler S⃗i;n�L� (filled circles) after fiber propagation (fiber
length L � 100 m)

Fig. 8. (Color online) Output unit Stokes vectors of the idler S⃗i;n�L�
(filled circles) after fiber propagation (fiber length L � 100 m). The
input idler is null; the input unit Stokes vector of the pump and of
the signal are the same as in Fig. 7(a).
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eigenvector Eq. (7) that is associated with exponential growth
with distance.

To conclude, we consider a third example where both the
input Stokes vectors of the idler and signal S⃗i;n�0� � S⃗s;n�0� �
�1; 0; 0� are kept equal and fixed, and we span our CNLSE si-
mulations over a set of 225 input pump Stokes vectors S⃗p;n�0�
(1 ≤ n ≤ 225), uniformly distributed over the Poincaré sphere,
so that all possible input pump polarization states are varied
[see Fig. 9(a)]. As previously discussed, the parametric or
Michigan gain depends on the input pump polarization (see
Fig. 1). Therefore in this case we tripled the fiber length
(L � 300 m) in order to guarantee a sufficient gain for most
sidebands (hence their corresponding attraction towards the
birefringence axes) as the input pump Stokes vector is varied.
The results of Fig. 9 clearly show once again that most of the
225 output Stokes vectors of the idlers S⃗i;n�L� experience
significant attraction towards the vector [0,0,1]. Figure 9 also
reveals that some of the output idler vectors are not well
attracted towards the x-axis of the fiber, since the correspond-
ing MI gain is not strong enough to permit an effective attrac-
tion in just 300 m of fiber. In any case, by averaging over all
input pump polarizations, we obtain that the DOPi�L� � 0.97,
which indicates that the average attraction is still very strong
in spite of the variation of the input pump SOP.

5. CONCLUSIONS
In this work, we have analyzed the polarization attraction
properties of a signal and an idler that are parametrically

amplified by a copropagating pump in a hibi fiber. In general,
the sidebands exhibit an elliptical and spatially varying SOP
that also depends on the pump SOP and on their frequency
detuning from the pump. Nevertheless we pointed out that
some specific conditions exist that permit the generation of
sidebands with a stable SOP that remains oriented along
one of the principal axes of the fiber, virtually irrespective
of (i) the input sideband SOP; (ii) the input pump SOP; (iii) the
input sideband frequency detuning from the pump (provided
the detuning falls within the gain band); (iv) the input pump
power, as long as Eq. (6) is satisfied. We named such an inter-
esting property as a pump-independent QLPA, or pump-
independent QLPA. In Section 2 we observed that QLPA is
related to some peculiar energy-exchange processes between
pump and sideband photons that turn to be dominant in a par-
ticular gain band. Indeed we have seen that, whenever the
pump propagates in the normal dispersion regime and Eq. (6)
holds, QLPA of the idler (signal) occuring along the slow (fast)
birefringence axis is obtained. In this case, the sideband de-
tuning band has lower and upper cut-off frequencies, and we
provided a simple analytical formula for the parametric gain.
With a pump in the anomalous dispersion regime and if con-
dition Eq. (6) holds, the sideband gain exhibits a band gap that
separates low and high-frequency sub-bands with very differ-
ent polarization attraction properties. In the low-frequency
sub-band, both sidebands experience a QLPA towards either
the fast or the slow axis, whenever the input pump angle αp is
greater or smaller than 45°, respectively. On the other hand,
proper QLPA is observed in the high-frequency sub-band,
where the idler (signal) is always strongly attracted towards
the fast (slow) axis.

Polarization attraction and control for the generated signal
and idler in FOPAs has interesting potential applications when
used for frequency-conversion and phase-sensitive amplifica-
tion in combination with polarization-sensitive optical proces-
sing devices (e.g., a heterodyne receiver). Moreover, since a
codirectional pump is used, FOPA repolarizers based on hibi
fibers may potentially lead to compensating ultrafast input po-
larization fluctuations, the upper limit to its speed being set by
the relatively large differential group delay between the bire-
fringence axes or PMD. Although parametric polarizers such
as the one described here suffer from output RIN, we antici-
pate that substantial RIN suppression could be obtained when
saturating the gain by operating the amplifier in the depleted
pump regime, as it has been observed with Raman polarizers
[19]. Another possibility of substantially reducing the output
RIN could be provided by performing a bit-synchronous polar-
ization scrambling of the input signal (or idler), so that the
parametric gain is averaged over the pulse profile. Such a
scheme has proven to be effective in the case of Raman po-
larizers [20]. From the practical point of view, it would also be
very interesting to consider the extension of our study to the
case of FWM-induced polarization attraction in optical fibers
with randomly varying birefringence. This situation requires
the derivation of the corresponding averaged equations as
in [9], and will be the subject of a subsequent report.

APPENDIX A
In this appendix we derive, by means of a perturbation ap-
proach that is valid whenever the condition Eq. (6) is verified,
a simple analytical expression for the FWM (or MI) sideband

Fig. 9. (Color online) (a) Fixed input unit Stokes vectors of the side-
bands S⃗i;n�0� � S⃗s;n�0� � �1; 0; 0� (filled circle) and 225 input unit
Stokes vectors of the pump (empty triangles) are shown on the Poin-
caré sphere; (b) output unit Stokes vectors of the idler S⃗i;n�L� (filled
circles) after fiber propagation (fiber length L � 300 m).

1518 J. Opt. Soc. Am. B / Vol. 29, No. 6 / June 2012 M. Guasoni and S. Wabnitz



gain in a frequency detuning band around ΔνX3 or ΔνX4,
respectively. We also show that under the same conditions,
the growing sidebands are strongly attracted towards oppo-
site linear birefringence axes according to the configurations
described in Section 2 and summarized in Table 1. This deri-
vation thus provides a formal a mathematical demonstration
of the pump-independent QLPA effect, which usefully com-
pletes the physical arguments presented in Section 2, basing
ourselves on the PM conditions of the four-photon energy-
exchange processes X3 and X4.

Let us start from the pump-independent QLPA effect based
on X4, whose PM condition reads as

β2�2πΔνX4�2 − �Δn∕ c��2πΔνX4� � γPtot � 0. (A1)

From the definition of v�Δν� � 2πΔνΔn∕ c and K�Δν� �
4π2β2Δν2 given in Section 3, the PM condition at the
frequency Δνx4 (whose value is reported in Table 1) can
be rewritten as −v�ΔνX4� � K�ΔνX4� � γPtot � 0 or, equiva-
lently, −v�ΔνX4� ∕ 2� K�ΔνX4�∕ 2� γP∕ 2� γQ∕ 2 � 0. Let us
now consider a small perturbation ∂ν to the sideband PM
frequency; i.e., we set Δν � ΔνX4 � ∂ν. Then by means of
a Taylor series development truncated at the first order,
we obtain

−v�Δν�∕ 2� K�Δν�∕ 2� γP∕ 2� γQ∕ 2

� −v�ΔνX4�∕ 2� K�ΔνX4�∕ 2� P∕ 2� Q∕ 2
z������������������������������������}|������������������������������������{�0

− −π∂νΔn∕ c� 4π2∂νΔνX4β2
� −π∂νΔn∕ c� 4π2∂νΔνX4β2. (A2)

By using Eq. (A2), the first and the fourth term on the main
diagonal of the matrix M can be rewritten as

−v�Δν�∕ 2� K�Δν�∕ 2� γP � −π∂νΔn∕ c� 4π2∂νΔνX4β2
� γ�P − Q�∕ 2; (A3)

v�Δν�∕ 2 − K�Δν�∕ 2 − γQ � �π∂νΔn∕ c − 4π2∂νΔνX4β2
� γ�P − Q�∕ 2. (A4)

Under the condition Ptot < Pc, the term γPtot represents a
relatively small perturbation with respect to the other terms
in Eq. (A1). Thus γPtot ≪ v�ΔνX4� and γPtot ≪ K�ΔνX4�; in
general, γPtot ≪ v�Δν� and γPtot ≪ K�Δν� even for Δν �
ΔνX4 � ∂ν. Since �P − Q� ≤ Ptot, we may conclude that the
terms Eq. (A3) and Eq. (A4) can be considered as small per-
turbations with respect to the terms −v�Δν�∕ 2 − K�Δν�∕ 2 and
v�Δν�∕ 2� K�Δν�∕ 2 in the second and the third component of
the main diagonal of matrix M . The same holds true for the
terms P, Q, and �2∕ 3� �������

PQ
p

, as they all remain smaller than
Ptot. We may thus rewrite M as the sum of the following
matrices ~M and ∂M , where ∂M represents a perturbation
matrix with respect to ~M :

~M �

2
666664

0 0 0 0

0 −v∕ 2 − K ∕ 2 0 0

0 0 v∕ 2� K ∕ 2 0

0 0 0 0

3
777775;

∂M �

2
666664

M�1; 1� γP �2∕ 3�γ �������
PQ

p �2∕ 3�γ �������
PQ

p

−γP −γP −�2∕ 3�γ �������
PQ

p
−�2∕ 3�γ �������

PQ
p

�2∕ 3�γ �������
PQ

p �2∕ 3�γ �������
PQ

p
γQ γQ

−�2∕ 3�γ �������
PQ

p
−�2∕ 3�γ �������

PQ
p

−γQ M�4; 4�

3
777775:

Here M�1; 1� and M�4; 4� are provided by the right-hand sides
of Eqs. (A2) and (A3), respectively. The matrix ~M exhibits a
double degenerate zero eigenvalue. The two corresponding
independent eigenvectors are v01 � �1; 0; 0; 0�T and v02 �
�0; 0; 0; 1�T . By applying the perturbation theory for degenerate
states, the first-order correction λ to the zero eigenvalue turns
out to be the solution of Det�D� � 0 (Det stands for determi-
nant), where D is the following matrix:

�
λ− < v01; ∂Mv01 > − < v01; ∂Mv02 >

− < v02; ∂Mv01 > λ− < v02; ∂Mv02 >

�
:

Here the brackets <> stand for scalar product. The esti-
mated gain gapp is the imaginary part of λ; that is

gapp � ��4∕ 9�γ2PQ − �Δν −ΔνX4�2�4π2β2ΔνX4 − πΔn∕ c�2�1∕ 2.
(A5)

Note that gapp as function of Δν in Eq. (A5) is a semiellipse
centered at ΔνX4, and it reaches its peak value gapp;max �
�2∕ 3�γ �������

PQ
p

in correspondence to the PM frequency ΔνX4.
The so called “zeroth” order correction v0 to the eigenvector
associated to λ is a linear combination of v01 and v02, and it
reads as �c1; 0; 0; c2�T , where c1 and c2 are the respective pro-
jection coefficients. The vector v0 turns out to provide a good
approximation of � ~Axi;

~Axs;
~Ayi;

~Ays�T (see Section 3) whenever
Eq. (A5) is satisfied. This demonstrates that under a first-order
approximation, all of the sideband energy is maintained along
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the idler x-component and the signal y-component, which
confirms the pump-independent QLPA property of the side-
bands numerically observed in Section 4 in association with
the X4 process [under the condition Eq. (6)]. A similar pertur-
bation analysis can be carried out for the pump-independent
QLPA associated with the X3 process in the anomalous disper-
sion regime. Indeed, the formula Eq. (A5) for gapp still applies
with the substitution of ΔνX4 with ΔνX3 and of Δn with −Δn.
In this case the “zeroth” order correction to the eigenvector
reads as �0; c1; c2; 0�T , which means that most of the sideband
energy is carried by the signal x-component and the idler
y-component. Again, the perturbation analysis confirms the
pump-independent QLPA property of the sidebands that
was observed in the previous sections and associated with the
process X3 [under the condition Eq. (6)]. An even better (but
more complex) analytical formula for the sideband gain,
which is valid whenever the condition Eq. (6) is satisfied,
may be obtained by directly calculating the fourth-degree
polynomial equation for the eigenvalues of the matrix M .
By neglecting the two main orders, a second-order polynomial
equation is obtained, which can be easily solved. This
procedure turns out to provide the following very good
approximation gapp2 for the sideband gain:

gapp2 �
������������������������������
4ac − b2;

p
a � −2�γPtotK � K2 � v2�;
b � 4vKγ�P − Q�;
c � 2γPtot�K3 − Kv2� � �v2 − K2�2 − �20∕ 9�γ2PQK2. (A6)
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