
Optics Communications 284 (2011) 1822–1827

Contents lists available at ScienceDirect

Optics Communications

j ourna l homepage: www.e lsev ie r.com/ locate /optcom

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Brescia
Analytical approximations of the dispersion relation of a linear chain of
metal nanoparticles

Massimiliano Guasoni ⁎, Costantino De Angelis
Dipartimento di Ingegneria dell'Informazione and Consorzio Interuniversitario per le Scienze Fisiche della Materia, Università di Brescia, via Branze 38, Brescia 25123, Italy
⁎ Corresponding author.
E-mail address: massimiliano.guasoni@ing.unibs.it (

0030-4018/$ – see front matter © 2010 Elsevier B.V. A
doi:10.1016/j.optcom.2010.11.082
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 22 July 2010
Received in revised form 12 October 2010
Accepted 30 November 2010
Available online 14 December 2010

Keywords:
Surface plasmon polaritons
Chain of metal nanoparticles
Dipole approximation
Subwavelength limit
We find some useful analytical approximations of the dispersion relation of a linear chain of metal
nanoparticles in the subwavelength limit where the dipolar approximation can be used. We also approximate
the group velocity without a direct estimation of the derivative of the dispersion relation, that carries
unavoidable error amplifications. In the end we use these results in order to get some simple recipes that
evaluate the sensitivity of the dispersion relation and the propagation losses with respect to the main
parameters of the chain.
M. Guasoni).

ll rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In the last years the subject of light propagation in linear chains of
metal nanoparticles by means of surface plasmon polaritons (SPP) has
attracted a lot of interest (see as example [1–4]) because of its large
range of potential applications, such as the implementation of
biological nanosensors (see [5]), the merging of photonic devices to
electronic circuits (see [6]) or in the field of optical imaging (see [7]).
It is also considered of deep interest for the realization of new
generation solar cells (see [8]).

The dispersion relation carries all the important properties of the
chain: its imaginary part defines the propagation losses and from the
real part the group velocity is calculated. In order to exactly calculate
the dispersion relation the generalizedMie theory of Gerardy–Ausloos
for a cluster of spheres should be exploited but it involves the
calculation and the inversion of an infinite matrix of scattering
coefficients ([9]), then it is not feasible. As it is well known, when the
radius r of the spheres is sufficiently smaller than the optical
wavelength (i.e. in the subwavelength limit), the propagation in the
chain can be described by means of a coupled dipolar approximation
(CPM) as done in [10] or equivalently bymeans of the generalizedMie
theory of Gerardy–Ausloos in which only the first scattering
coefficient Δ1 is relevant, as discussed in [11] and as we assume in
this paper.

In the following, we will consider a chain of equidistant nano-
spheres with a center-to-center spacing d, radius r and dielectric
constant εS, embedded in a host medium with dielectric constant εM
and lined up along one direction (see Fig. 1). The corresponding
dispersion relation for the transverse and longitudinal modes is given
respectively by:
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where ω=kMd (kM is the wave number of the dielectric host) is the
normalized pulsation, k is the propagation constant of the mode
normalized to d and Lip(x) is the polylogarithm function of order p. Let
us call respectively UT(ω,k) and AT(ω) the LHS and RHS of Eq. (1) and
UL(ω,k) and AL(ω) the LHS and RHS of Eq. (2). When losses are
neglected (they will be discussed in Section 4), in order to find the
propagating modes we only need to look for real values of k between
ω and π that solve Im(UT, L(ω,k))= Im(AT, L(ω)) [11]; we then define
FT, L(ω,k)= Im(UT, L(ω,k)) and αT, L(ω)= Im(AT, L(ω)). Note that,
thanks to the normalization, FT(ω,k) and FL(ω,k) do not depend on
the system parameters. It follows that all system parameters are into
αT(ω) and αL(ω): they contain the scattering coefficient Δ1 of the
nanospheres (dependent on r, �M and �S) and this is the only
parameter one needs to recalculate when changing the particular
system under investigation.
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Fig. 1. Thechainconsidered in thispaper: thenanosphereshave radius r andcenter-to-center
spacingd. Theyhavedielectric constant εSandareembedded inahostmediumwithdielectric
constant �M.

a)

b)

Fig. 2. The region R and its subregions. For the longitudinal case (a) there are the
subregions RL1 ([0≤ω≤2.0], [ω≤k≤π]) and RL2 (2.0≤ω≤π], [ω≤k≤π]); for the
transverse case (b) there are the subregions RT1 ([0≤ω≤π], [ω≤k≤ω+0.15]), RT2
([0≤ω≤1.1], [ω+0.15≤ k≤π]), RT3 ([1.1≤ω≤1.7], [ω+0.15≤ k≤π]) and RT4

([1.7≤ω≤π], [ω+0.15≤k≤π])
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If we were able to approximate FT(ω,k) and FL(ω,k) to get an
explicit solution for k(ω) in Eqs. (1) and (2), we could write k≈ f
(ω,α), with α equal αT for the transverse mode, αL for the longitudinal
one. One of the main goals of this paper is thus to find a good f
function, i.e. a function as simple as possible and at the same time as
accurate as needed. As it will be explained in the last section, these
approximations can be translated into simple recipes to guide the
design of an optimized chain in the range of frequencies we are
interested in.

To reach our goal we use a least-square interpolation (LSI) of FT(ω,k)
and FL(ω,k) in order to obtain reasonable approximations F̃T ω; kð Þ and
F̃L ω; kð Þ in the region R of the plane (k,w) under the light line, i.e.
0≤ω≤π and ω≤k≤π.

In the next sections we discuss this procedure separately for the
longitudinal and the transverse modes and we evaluate the errors
introduced by this approach in the solution of the dispersion relation.

2. The longitudinal mode

Starting from Eq. (2), we define Lp=(Lip(ei(ω− k))+Lip(ei(ω+ k)))
(p=1,2,3), so that FL=ωIm(L2)+Re(L3). Inside R (our region of
interest in the (k,ω) plane), both Im(L2) and Re(L3) are well
described by parabolic functions of both k and ω; it follows that a
good set of interpolating functions for Im(L2) and Re(L3) is S={1,k,
k2,ω,ωk,ωk2,ω2,ω2k,ω2k2}. In order to interpolate properly FL we
can then use the set SL=(S∪ S×ω)= {1, k, k2,ω,ωk,ωk2,ω2,
ω2k,ω2k2,ω3,ω3k,ω3k2}.

We thus use FL ω; kð Þ ≈ F̃L ω; kð Þ = k2f1 ωð Þ + kf2 ωð Þ + f3 wð Þ,
where fi(ω)=ai+biω+ciω2+diω3 with ai,bi,ci and di the coefficients
of the LSI. The inversion of Eq. (2) is now straightforward:

k̃ ωð Þ = −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ωð ÞαL ωð Þ + B ωð Þp

+ C ωð Þ
A ωð Þ = f−1

1 ωð Þ
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1 ωð Þf3 ωð Þ + 1=4ð Þf−2
1 ωð Þf 22 ωð Þ

C ωð Þ = −1=2ð Þf−1
1 ωð Þf2 ωð Þ

ð3Þ

where k̃ ωð Þ is the approximation of k; we only consider the solution
with the minus sign before the square root because C(ω) turn out to
be always greater than π and we use the constraint k̃ ωð Þbπ for any ω.
Note that A(ω), B(ω) and C(ω) do not depend on the particular
waveguide parameters so that they need to be calculated only once.

In order to evaluate the validity of the proposed approach the LSI
error EL has been computed:

EL =
∫R int

FL ω; kð Þ− F̃L ω; kð Þ� �2
∫R int

FL ω; kð Þ2
ð4Þ

For Rint=R in Eq. (4) EL is 5.1?%, but the approximation is not
uniform in all R, being better in its lower part. In order to improve the
accuracy of the approximation, we can then divide R in two parts: RL1
(for ωb2.0) and RL2 (for 2.0≤ω≤π) as in Fig. 2). The LSI error then
becomes EL1=3.1% in RL1 (Eq. (4) with Rint=RL1 ) and EL2=1.8% in RL2
(Eq. (4) with Rint=RL2 ).

Another important parameter of the system is the group velocity
gv=δω/δk. A direct estimation ( g̃υD = 1= δ k̃= δω

� �
) requires to take
a derivative of k̃ with unavoidable error amplifications. A better
approach, that does not need to take the derivative of k̃, is to write:

gvI =
F kð Þ
L ω; kð Þ

α ωð Þ
L ωð Þ−F ωð Þ

L ω; kð Þ
ð5Þ

where the superscripts (k) and (ω) indicates the derivative with
respect to the variables k and ω and the subscript I stands for indirect.
Note that gvI=gvD as long as we use the exact k value; however, as we
will show in detail later on, they are not equivalent if one uses the
approximated k̃. We will call indirect estimation g̃υI of the group
velocity the following expression:

g̃vI =
F kð Þ
L ω; k̃

� �
α ωð Þ

L ωð Þ−F ωð Þ
L ω; k̃

� � ð6Þ

Eq. (6) gives an estimation of the group velocity using k̃ calculated
with Eq. (3). If Δk is the error in the approximation of k (i.e.
k̃ = k + Δk), then:

g̃υI−gυI = gυI ω; k + Δkð Þ−gυI ω; kð Þ ≈ Δk
δgυI

δk
ð7Þ

So that the error in the estimation of gυI is proportional to Δk thus
avoiding error amplifications.

3. The transverse mode

In the approximation of the dispersion relation of the transverse
mode the first problem to face is the presence of the term Re(L1) going
to infinity along the light line (ω=k). A possible way out is to
consider a subregion RT1 of R close to the light line such that in RT1 Re
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(L1) is much greater than Im(L2) and Re(L3) and in R−RT1 the term
Re(L1) is sufficiently small.

For example let us choose the subregion RT1 defined by: 0≤ω≤π
and ω≤k≤ω+ � (�=0.15 in Fig. 2). In RT1 the main term of FT(ω,k)
is ω2Re(L1) and ωIm(L2) and Re(L3) can be accurately approximated
by means of a term f1(ω) that does not depend on k. It follows that
FT(ω,k) can be approximated by F̃T1 ω; kð Þ = ω2Re Li1ð Þ + f1 ωð Þ; this
makes the inversion of Eq. (1) straightforward by solving for k, since
Re(Li1(x))=− log |2 sin(x/2)|. After some algebra we then get:

k̃ ωð Þ = Arcos cos ωð Þ−0:5e−
αT ωð Þ + f1 ωð Þ

ω2

� �
ð8Þ

Function f1(ω) can be well approximated by 2.292 cos(1.075ω) for
ω≤1.7 and by (−24.599+38.4807ω−19.908ω2+3.266ω3) for
ω≥1.7; note that when ω is small αT(ω)+ f1(ω)NNω2, so that from
Eq. (8) k̃ ωð Þ≈ω, i.e. in this case the dispersion relation of the
transverse mode runs along the light line.

In R−RT1, where the LSI is applied, the contribute of the termω2Re
(L1) depends a lot on ω, so that an unique good interpolation is not
possible. We then divide R−RT1 in three regions (Fig. 2): RT2for
low values of ω (ω≤1.1), RT3 (1.1≤ω≤1.7) and RT4 for high values of
ω (ω≥1.7).

In RT2 Re(L1) has a quasi sinusoidal behaviour, so that a good set of
interpolating functions is:

S2 = cos υ ωFkð Þð Þ; sin υ ωFkð Þð Þ; cos υkð Þ; sin υkð Þ; cos υωð Þ; sin υωð Þ;1f g:

In order to make the inversion of Eq. (1) feasible, we have to use the
set S2 also for the terms Im(L2) and Re(L3), so that the complete set we
use for the LSI of FT(ω,k) in RT2 is ST2=S2∪S2×ω∪S2×ω2. The
parameter υ is used to optimize the interpolation in RT2 and we find
that with υ=0.8 the LSI error (Eq. (4) using Rint=RT2 and FT instead of
FL) is minimized and is 3.0%. FT(ω,k) is then approximated by
F̃T2 ω; kð Þ = sin 0:8kð Þf1 ωð Þ + cos 0:8kð Þf2 ωð Þ + f3 ωð Þ, where fi(ω)=
ai+biω+ciω2+disin(0.8ω)+eicos(0.8ω)+ fiω sin(0.8ω)+giω cos
(0.8ω)+hiω2 sin(0.8ω)+ iiω2 cos(0.8ω) (i=1,2,3) and ai,bi,ci,di,ei, fi,
gi,hi, ii are the coefficients of the LSI. With some algebra we then get:

k̃A ωð Þ = 1
0:8

Arcsin A ωð ÞαT ωð Þ + B ωð Þð Þ + Arctan C ωð Þð Þ½ �

A ωð Þ = f 21 ωð Þ + f 22 ωð Þ
� �−1=2

B ωð Þ = −f3 ωð Þ f 21 ωð Þ + f 22 ωð Þ
� �−1=2

C ωð Þ = −f2 ωð Þf−1
1 ωð Þ

ð9Þ

k̃B ωð Þ = 1
0:8

π−Arcsin A ωð ÞαT ωð Þ + B ωð Þð Þ + Arctan C ωð Þð Þ½ � ð10Þ

In RT3 Re(L1) is well described by the combination of sinusoid and
cosinusoid with frequency υ and 2υ, so that a good set of interpolating
functions for Re(L1) is:

S3 = fcos 2υ ωFkð Þð Þ; sin 2υ ωFkð Þð Þ; cos 2υkð Þ; sin 2υkð Þ; cos 2υωð Þ; sin 2υωð Þ;
cos υ ωFkð Þð Þ; sin υ ωFkð Þð Þ; cos υkð Þ; sin υkð Þ; cos υωð Þ; sin υωð Þ;1g

It follows that the set used for the LSI of FT(ω,k) in RT3 should be
ST3=S3∪S3×ω∪S3×ω2. There are two problems using this last set:
first, the inversion of Eq. (1) involves a fourth-degree polynomial
equation and moreover the high number of functions makes the
correlation matrix of the LSI ill-conditioned. Then we reduce the set
and use

S3 = fsin υkð Þ sin υωð Þ; sin υkð Þ cos 2υωð Þ; cos 2υkð Þ sin υωð Þ; cos 2υkð Þ cos 2υωð Þ;
sin υkð Þ; sin υωð Þ; cos 2υkð Þ; cos 2υωð Þ;1g
with υ=0.5 that minimize the LSI error (2.8%), so the interpolation
of FT(ω , k) is F̃T3 ω; kð Þ = sin 0:5kð Þf1 ωð Þ + cos kð Þf2 ωð Þ + f3 ωð Þ,
where fi(ω)=ai+bisin(0.5ω)+cicos(ω)+diω sin(0.5ω)+eiω cos
(ω)+ fiω2 sin(0.5ω)+giω2 cos(ω) (i=1,2,3) and ai,bi,ci,di,ei, fi,gi
are the coefficients of the LSI. It is now straightforward to obtain:

k̃A ωð Þ = 1
0:5

Arcsin F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ωð ÞαT ωð Þ + B ωð Þp

+ C ωð Þ� �
A ωð Þ = − 1= 4ð Þf−1

2 ωð Þ
B ωð Þ = 1 = 2ð Þ + 1=2ð Þf3 ωð Þf−1

2 ωð Þ + 1=16ð Þf1 ωð Þ2f−2
2 ωð Þ

C ωð Þ = 1=4ð Þ f1 ωð Þf−1
2 ωð Þ

�
ð11Þ

k̃B ωð Þ = 1
0:5

π−Arcsin F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A ωð ÞαT ωð Þ + B ωð Þ

p
+ C ωð Þ

� �h i
ð12Þ

As far as subregion RT4 is concerned, here Re(Li1) is well described
by parabolic functions of both k andω, so the set ST4=S∪S×ω∪S×ω2

can be used to obtain the interpolation eFT4; the corresponding LSI
error is only 1.9%, and then we approximate k with Eq. (3).

As far as the group velocity is concerned, also for the transverse
mode the indirect estimation given by Eq. (6) can be used,
substituting αL with αT and FL with FT.

4. Results

The analytical solutions proposed in the previous sections provide
a powerful tool to get a deeper insight into the physical properties of
the chain. As a reference example in the following we analyze an
infinite chain of silver nanospheres embedded in glass (�M=2.25)
with radius r=10 nm and center-to-center spacing d=25nm; the
dielectric constant �S of the silver is described by means of Drude's
model, for which �S(ω)=1−(ωpd/ωc)2, whereωp is the silver plasma
frequency (we use ωp=10.9⋅1015s−1),ω is the normalized pulsation
and c is the speed of light in the host medium.

We first focus on the dispersion curves and on the group velocities
of the modes, then we move on their sensitivity and propagation
losses with respect to the parameters of the chain. We also do a
comparison with the results obtained by solving numerically Eqs. (1)
and (2), postponing in Appendix A a full detailed analysis of the errors
committed by using the proposed approximations.

The dispersion curves and the group velocities of the modes are
reported in Figs. 3( a), c) and e) ) and 4 (a), c) and e) ), where we can
see an optimum agreement between the exact numerical results and
our approximated analytical solutions.

By means of a first-order correction, one can prove that a small
variation ΔαT, L of αT, L is responsible for a k variation given by:

Δk =
ΔαT;L

F kð Þ
T;L ω; kð Þ

ð13Þ

It can also be proven that in order to calculate the losses γT, L due to
the imaginary part of the nanospheres dielectric constant εS one can
write:

γT;L =
Re ΔAT;L

� �
F kð Þ
T ;L ω; kð Þ

ð14Þ

where ΔAT, L is the variation of AT, L (due to Im(�s)≠0) defined in
section 1.

Let us now consider the longitudinal mode, for which
FL≈F̃L = k2f1 ωð Þ + kf2 ωð Þ + f3 ωð Þ, so that FL

(k)=2f1(ω)k+ f2(ω)=
2f1(ω)(k−C(ω)). Since C(ω)≈π, Δk and γL of Eqs. (13) and (14) are,
at first order, proportional to 1/(k−π).
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This means that, for a fixedω, themore kmoves away from the light
line, the lossier and more sensitive to parameters variations the chain
becomes. From Eq. (3) and considering that f1(ω)N0, it is possible to

rewrite F kð Þ
L = −2f1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AαL + B

p
= −2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1αL + f 22 = 4−f3f1

q
. In this way

Eqs. (13) and (14) becomedirect and simple formulas for the sensitivity
and the losses that depend on the parameters of the system.

Moreover in the subwavelength limit the scattering coefficient Δ1

(for its formulation see [9]) can be approximated by means of
asymptotic formulas for Bessel functions as:

Δ1≈
3i �S + 2�Mð Þ

kMrð Þ3 2�S−2�Mð Þ−1

" #−1

ð15Þ

being kM=ω/d. In this case after some algebra we get:

Re ALð Þ = ω3
= 3 + Im pLð Þ= r3 ð16Þ

Im ALð Þ = αL = Re pLð Þ= r3 ð17Þ

where pL=[d3(�S+2�M)]/[2r3(2�S−2�M)]. When the system is loss-
less then Im(�S)=0, so that Im(pL)=0 and Re(AL) becomes ω3/3;
when absorption is considered, Im(�S)≠0 and as consequence Im
(pL)≠0; it follows that for a fixedω the variation Re(Δ(AL)) due to the
absorption is Im(pL)/r3. It is then possible to rewrite Eq. (14) as:

γL =
Im pLð Þ= r3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−f1Re pLð Þ= r3 + f 22 = 4−f3f1

q ð18Þ

that is the relation between the losses of the longitudinal mode and
the parameters of the chain.

It is interesting to note that the equation above is easily invertible
in r, so that for a fixed �γL it is possible to find the minimum value of r
(onceω and εS are fixed) thatmakes the propagation losses below γ�L.

In order to test the validity of the previous formulas, we
introduced a complex dielectric constant �S(ω)=1−ωp

2/[(ωc/d)(ωc/
d+ iT)], using wp=10.9⋅1015s−1 and T=1.6 ⋅1014s−1 to take into
account the absorption of the metal spheres. In Fig. 5a) we then
compared the losses γL calculated as imaginary part of k obtained by
numerically solving Eq. (2) with the losses γPL predicted by Eq. (18).
a) b)

d) e)

Fig. 3. Comparison between numerical and approximated results for the longitudinal mode
results (ω(k) in a), gv(k) in c) and e)); black dashed lines are the approximations obtained
obtained with F̃L1 (ω̃′ kð Þ in a), g̃υ′D kð Þ in c) and g̃υ′I kð Þ in e)). In b), d) and f) the relative errors
green line in a) is the light line, while ko is the point where ω(k) come off the light line.
The comparison is done in the band of the longitudinal mode
(0.48bωb0.65, see Fig. 4a)) and it is possible to see that they match
well: the mean relative error is 6.1%.

Let's note that, as predicted, the more the dispersion curve moves
away from the light line, the lossier is themode and that losses are nearly
proportional to 1/(π−k): for example γL(ω=0.6)/γL(ω=0.5)=1.55
and (π−k(ω=0.5))/(π−k(ω=0.6))=1.74.

In conclusion, the developed approximations are useful in the
analysis of nanochains that, as the one considered in this example, can
concentrate light in an extremely small sub-wavelength region: in
Fig. 5b) the longitudinal mode atω=0.5 (λ=428nm) is shown in the
transverse plane (finite element simulation) and it can be observed
that the energy is quite fully concentrated in a region of 40nm. This
makes the mode to be really potentially useful for nano-optic
applications.

Note also that similar considerations can be done for the
transverse mode although for the sake of brevity we do no report
them here.

5. Conclusions

The main goal of this paper has been to find analytical
approximations for the dispersion relation k(ω) and for the group
velocity of the propagating modes in a linear chain of metal
nanospheres, in order to obtain a deeper insight into its physical
properties.

These approximations have been validated by a detailed compar-
ison with the numerical solutions of the exact dispersion relation. Our
results proved to be very effective to estimate bothwave numbers and
group velocities of the modes propagating along the chain. Some
examples have been also provided to show how the proposed
approximations can be used in order to reveal some important
features of the chain; as an example analytical formulas have been
derived to evaluate the sensitivity of the dispersion curves and the
propagation losses with respect to the parameters of the chain.

Appendix A

In this appendix we report a detailed comparison between the
approximations k̃, g̃υD and g̃υI developed in Section 2 and 3 and the
c)

f)

in the system considered in Section 4. In a), c) and e) blue lines are the exact numerical
with F̃L (ω̃ kð Þ in a), g̃υD kð Þ in c) and g̃υI kð Þ e)); red thin lines are the approximations
are shown: Ẽ kð Þ and Ẽ′ kð Þ in b); g̃υED kð Þ and ˜gυE′D kð Þ in d); g̃υEI kð Þ and g̃υE′I kð Þ in f). The



a) b) c)

d) e) f)

Fig. 4. Same as Fig. 3, but the transverse mode is analyzed. Blue lines in a), c) and e) represent the exact numerical results; red lines the approximated results obtained by
interpolating FT with FT1 in RT1 and FT2in RT2. Region RT1 is between the two green lines in a), the first of whom on the left is the light line.
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exact values k and gv obtained by solving numerically Eqs. (1) and (2).
We refer to the system analyzed in the previous section. Relation k(ω) is
not a function, because for anyωmore than one k can exist, while on the
contrary ω(k) is a function. Then, instead of evaluating the difference
k̃ ωð Þ−k ωð Þ at a fixedω, we evaluate the differenceω kð Þ−ω̃ kð Þ at a fixed
Fig. 5. In a) the comparison is shown between losses γL calculated as imaginary part of k
obtained by numerically solving Eq. (2) (red lines) and losses γPL predicted by Eq. (18)
(black dashed lines). In b) the longitudinal mode at ω=0.5 is shown (norm of the
magnetic field).
k, where ω(k) and ω̃ kð Þ are the inverse of k(ω) and k̃ ωð Þ. For the
same reason we evaluate the group velocities as function of k instead of
ω. The exact group velocity is calculated as gυ(k)=ω(k)(k), while
g̃υD kð Þ =ω̃

kð Þ
kð Þ and g̃υI kð Þ is calculated from Eq. (5) using the

estimationω̃ kð Þ as value of ω. The errors are evaluated as:

E kð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̃ kð Þ−ω kð Þð Þ2

ω kð Þ2

s
ð19Þ

Ê = ∫π
k = k0 E kð Þ ð20Þ

gυED;I kð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g̃ υD;I kð Þ−gυ kð Þ
� �2

gυ kð Þ2

vuut ð21Þ

g υ̂ED;I = ∫π
k = k0 gυED;I kð Þ ð22Þ

where k0 in Eqs. (20) and (22) is the cut-off value (see Fig. 3a)). E(k),
gυED(k) and gυEI(k) describe the relative error point-by-point in k,
while Ê, gυ̂ED and gυ̂EI represent their mean value.

Let us start by analyzing the results for the longitudinal mode,
comparing the approximations done when FL is interpolated by F̃L
and by F̃L1. We indicate with the superscript ′ the results obtained
when interpolating with F̃L1, without any superscript those obtained
with F̃L. Eq. (3) is used in order to estimate k. In Fig. 3a) the functions
ω(k), ω̃ kð Þ and ω̃′ kð Þ and in Fig. 3b) the errors E(k) and E′(k) are
shown. It can be seen that the approximations are very good, as
confirmed by the mean errors Ê and Ê′ that are respectively 0.5% and
0.2%. The approximation ω̃′ kð Þ, almost equal to ω(k)(see Fig. 3a)), is a
bit better because the interpolation region RL1 is smaller than R; we
note in Fig. 3b) that the errors in both cases are higher near the light
line and close to k=π, i.e. the zones where the interpolation of FL is
more difficult. In Fig. 3c) and in e) there is the comparison between
the group velocities calculated in the direct and the indirect way,
while in Fig. 3d) and in f) the corresponding errors. As we expected
the indirect estimations g̃υI kð Þ and g̃υ′I kð Þ are better than the direct
ones: the mean errors are gυ̂ED = 8:8%, gυ̂E′D = 7:7%, gυ̂EI = 1:3%,
gυ̂E′I = 1:4%.

We move now to the description of the transverse case, whose
dispersion curve stays in regions RT1 and RT2, so that Eqs. (8) and (9)–(10)
are respectively used in order to estimate k. In Fig. 4a), b), c) and d) it can
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be seen that there is a very good agreement between ω̃ kð Þ andω(k) inRT2
(Ê = 0:06%) and in fact even the derivative g̃vD kð Þmatches quitewell the
group velocity gυ(k): the error g υ̃ED kð Þ in RT2 has a mean value
g υ̂ED = 14:8% but it is almost concentrated near k=0.75, where the
group velocity aims at zero. These are good results especially considering
that thegroupvelocity inRT2 is very small, so that it is difficult todetect the
little slope variations of ω(k). Fig. 4e) and f) describe g̃υI kð Þ, that
approximate quite perfectly gυ(k) (g υ̂EI = 0:6% inRT2): the relative error
gυEI(k) is high (near 25%) only near k=0.75 because at this point the
groupvelocity is almost zero.Note also that inRT1 errors arehigher than in
RT2(Ê = 0:3%, g v̂EI = 11:7%) and that in proximity of the line that divide
RT1 from RT2, around k=0.74, g̃υD kð Þ is discontinuous, that is due to the
different estimations used in RT1 and RT2, while this is not a problemwith
the indirect estimation g̃υI kð Þ, as it can be seen in Fig. 4e).

We conclude by noting that the dispersion curves of this chain stay
in the low part of region R (RT2), but similar results have been
obtained when considering other systems whose dispersion curves
stay in the middle (RT3) and upper (RT4) part of R, thus validating the
approximations proposed in the previous sections.
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