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ABSTRACT The measurement of optical rotation (OR) and optical rotatory dispersion has
been finding renewed interest for some years, because of advancement in computational meth-
ods and in the performance of new experiments. Here, we shortly review the traditional and
most-used experimental methods. We define and discuss the two main types of approaches in
measuring OR: the intensity method and the optical null method. We report on some new
results obtained by redesigning experiments based on the first approach, by adapting nonso-
phisticated hardware to current circular dichroism instrumentation. Chirality 23:711–716,
2011. VVC 2011 Wiley-Liss, Inc.
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INTRODUCTION

A commonly shared feeling among spectroscopists dealing
with chiral compounds is that modern circular dichroism
(CD) has developed later than optical rotation (OR) methods,
in particular optical rotatory dispersion (ORD), and that, in a
few years, it widely replaced the older technique. While the
second statement is by sure correct, the modern CD
approaches, introduced with the use of electro-optic quarter
wave generators,1 appeared more or less simultaneously to
ORD spectropolarimeters and, for a few years, the two tech-
niques have evolved in parallel.2 The simpler interpretation
of CD spectra, together with somehow simplified spectra col-
lection procedures, have been for sure the main reasons of
the ORD decay; nevertheless in recent years, also due to the
substantial progress in the design and performance of ab ini-
tio calculation capabilities,3–5 a renewed interest in the ORD
technique has manifested. In parallel, new ORD experimen-
tal procedures have been presented, often based on ideas
exploited in earlier designs; in this work, we briefly review
the main methods devised in the past to measure ORD,
based substantially on two rather different approaches: the
intensity methods and the optical null methods.

We hope that this work will help one to understand the
most recent methodologies, now under development in sev-
eral laboratories, often involving the simultaneous measure-
ment of ORD and CD. This work is organized as follows: in
the first two sections, we present and discuss the intensity
methods and the optical null methods, respectively. In the
third section, we describe the ORD accessories mounted on
current CD spectrometers (that are by far the most widely
used and known chiroptical instruments). We conclude with
two sections that are dedicated to the future, rather than the
past or present; in the penultimate section, we describe the
ORD spectrometers for the near infrared (NIR) or IR range,

and in the final section, we present the novel methods and
applications of ORD.

INTENSITY METHODS

OR can be measured in a very simple way by placing the
sample between two polarizers with optical axes not exactly
mutually orthogonal, but rather forming and angle Y, and
measuring the intensity of the radiation transmitted by the
analyzer, which is the second polarizer (see Fig. 1).

According to Malus law:

I ¼ I0 cos
2 H ð1Þ

where I is the intensity of the light transmitted through the two
polarizers and I0 is the intensity of the beam immediately after
the first polarizer. If one introduces, between the two polarizers,
an optically active sample causing an OR a and not absorbing
the light at the selected wavelength, then eq. 1 gets modified to:

IS ¼ I0 cos
2ðHþ aÞ ð2Þ

For very small a values, the log10 of the (I/IS) ratio takes
the simple form:

log10ðI=ISÞ � ka ð3aÞ

Equation 3a may be obtained as follows. One first takes
the base 10 logarithm of Eqs. 1 and 2, then develops the ratio
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in Taylor’s series of a, and drops all terms in a beyond first
order. One thus obtains:
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¼ 2 tanH
loge 10

aþ ::: ð3cÞ

From which we may deduce the value of k in eq 3a,
namely:

k ¼ 2 tanH
loge 10

¼ 2 tanH
2:3026

ð3dÞ

Implicit in the derivation procedure, and somewhat need-
less to say, is the fact that a in eq. 3a is measured in radians.
In conclusion, the use of the above equations allows one to
obtain the OR values from a direct measurement of two in-
tensity values on a spectrophotometer by placing two polar-
izers, one before and one after the sample, where Y is the
angle between the optical axes of the two polarizers. Table 1
shows the expected ‘‘absorbance’’ values, that is to say
log10(I/IS), for some values of a, when Y is selected at 458,

708, and 858: the values were obtained by directly using eqs.
1 and 2. Very good approximations thereof may be obtained
by using eq. 3a, as one may directly verify by also keeping in
mind eq. 3c, which gives k 5 0.8686, 2.3864, and 9.9280, cor-
respondingly.

There are many limitations to this simple approach:
although choosing a large Y value might be better to mea-
sure sizeable absorbance levels, the light throughput
(expressed as I/Io) of the device will be limited, resulting in
poor signal to noise. In addition, any absorption of the sam-
ple at the selected wavelength will induce a reading offset,
which is often much larger than the effect to be measured,
and consequently difficult to compensate. Other sources of
errors are the reflection losses and the nonideal quality of
the polarizing elements. These limiting factors may be due
to some instability of the light source, which is not compen-
sated in a single beam experiment. In Fig. 2, we compare the
ORD spectra of a 1% sucrose aqueous solution in a 10-mm
pathlength cell obtained by a conventional ORD spectropo-
larimeter to that obtained by a device, which, according to
Fig. 1, was arranged by placing an additional polarizer in the
sample compartment of a JASCO J-815SE CD spectrometer.
The unit was operated with the photoelastic modulator
(PEM) switched off, and the absorbance spectrum was col-
lected by measuring the direct current (DC) signal at con-
stant high voltage applied to the photomultiplier tube (in this
mode the system works as a single beam spectrophotome-
ter). In this case, the cell absorbance offset was compensated
by taking a baseline spectrum with the chiral sample placed
between the analyzer and the photomultiplier tube. A similar
setup has been reported recently6 with a diode array spectro-
photometer, while the same approach had been devised in
the past for high performance liquid chromatography
(HPLC) OR detectors.7

Alternative approaches based on the use of two polarizers
and changing their relative orientation in the sample com-
partment of a single beam spectrophotometers were reported
many years ago.8,9 In the apparatus by Keston et al., which

Fig. 1. Layout of intensity method-based Instruments for measuring ORD.
The simplest basic design is presented. The polarizer is horizontally oriented
(08), while the analyzer is in nearly vertical orientation (Y close to 908).

TABLE 1. log10(I/IS) values expected on the basis of eqs. 1
and 2 in the text for specified values of a and Y, the latter

being in correspondence with (I/I0)

Y 5 458 Y 5 708 Y 5 858

I/I0 0.5 0.117 0.0076

a 5 118 10.0154 10.0428 10.1934
a 5 10.18 10.00152 10.0042 10.0178
a 5 10.018 10.000152 10.00042 10.0017
a 5 10.0018 10.0000152 10.000042 10.00017
a 5 0.0008 0 0 0
a 5 20.0018 20.0000151 20.000042 20.00017
a 5 20.018 20.000151 20.000415 20.00171
a 5 20.18 20.00151 20.00414 20.0171
a 5 218 20.0149 20.0405 20.158

Very similar values are obtained by use of eq. 3a.

Fig. 2. Comparison of 1% (w/v) aqueous solution sucrose ORD spectra
obtained in a 1-cm pathlength cell, measured through the accessory built
with the basic design described in the text and mounted in Brescia on a
JASCO J-815SE CD machine (red curve) with the corresponding ORD
spectra in the same conditions obtained using a conventional optical null
spectropolarimeter (blue curve).
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was developed as an accessory of the Beckman DU single
beam spectrophotometer, at that time very popular, two
measurements are carried out by rotating the analyzer at two
angles 1Y and 2Y, close to 6908, with respect to the first
polarizer. The ratio between the two intensities:

IS1
IS2

¼ cos2ðHþ aÞ
cos2ð�Hþ aÞ � 1� 4 � a � tanH ð4aÞ

provides data related to a (the third term of eq. 4a may be
obtained by Taylor expansion of the second term in the
same equation, as done above for deriving eqs. 3a and 3c).
This accessory was produced in several exemplars for a few
years by the company Standard Polarimeter Co. and its cali-
bration had been subject of several papers.10–13

A double beam version of the Keston accessory was intro-
duced by Woldbye.14 Two alike Keston units were placed,
respectively, in the sample and in the reference compartment
of a Cary 11 spectrophotometer, with the analyzers oriented
at 1Y and –Y, respectively. ORD spectra of acceptable qual-
ity could be collected by placing two identical cuvettes filled
with the sample in both beams. An accessory based on the
same idea was produced for a few years also by Perkin-Elmer
for their Model 450 spectrophotometer. It pays to mention
that today this approach would not be as good as in the past,
as the Cary 11 apparatus made use of a double prism mono-
chromator, immune from Woods anomaly, and of parallel
sampling beams in the external optics; all this is quite differ-
ent from the current technology used in double beam UV–
Vis spectrophotometers.

A variant of the above approach was explored by Rouy15:
the sample was irradiated in alternation, through a rotating
chopper system, by two linearly polarized beams, whose
polarization plane formed angles 6Y with respect to the ana-
lyzer axis. Despite very favorable acceptance,16 the unit
never went into actual production. In an earlier attempt,
Gould17 designed an ingenious system using a double beam
system with rotating analyzer and a phase detector. A triple
beam OR and absorption was patented by Chiratech Inc.,18

but also in this case we are not aware of any actual produc-
tion and availability on the market.

To complete this part of our review dealing with the inten-
sity detection methods, we now consider the use of splitting
polarization analyzers. Figure 3 shows the layout of a simple,
easy to assemble, laser source polarimeter, which contains a
corner cube beam splitter as analyzer. As the polarisation

axis of the incident beam is oriented at 458 with respect
to the analyzer axis, we will have, with no sample, identical
vertical and horizontal Iv and Ih light intensities on the
two detectors at the same k, but if the sample is optically
active:

IS1
IS2

¼ cos2ð45þ aÞ
cos2ð�45þ aÞ � 1� 4a ð4bÞ

(a here is in radians). Defining a pseudo-absorbance A from
Iv/Ih, one may derive a relation between A and a, as follows:

A ¼ log10 Iv=Ih

� �
� 4 � p

loge 10 � 180
a� ð4cÞ

Inverting eq. 4c, one has the relation:

a� � 0:03 A ð4dÞ

which may be obtained online with a ratio log amplifier (we
have added the superscript 8 to mean that the units for
angles are degrees). This mode to measure OR, which com-
pensates intensity fluctuations of the light source and sample
absorbance, has been implemented in a few commercial
HPLC detectors, in NIR polarimeters,19 and in the advanced
cavity ring down polarimeter for gas phase samples.20

In Figure 4, we report the ORD spectra obtained for a
L-Co(en)3Cl3:H2O standard solution on a quickly assembled
accessory, allowing us to measure ORD spectra following
this approach. As in the case of Figure 2, a J-815SE with PEM
switched off was used, placing a Rochon polarizer with the

Fig. 3. Layout of a corner-cube polarizer-based intensity method appara-
tus for measuring ORD. An accessory based on a quite similar design was
built and made to work in Brescia.

Fig. 4. Comparison of ORD spectra for aqueous solution of L-
Co(en)3Cl3:H2O (0.16% w/v) in a 1 cm quartz cell as obtained: on a JASCO
CD-815SE with an accessory according to Fig. 3 (green line), on a old J-20 op-
tical null ORD spectropolarimeter (blue line), and applying Kramers-Kronig
(KK) transform of the CD spectrum obtained with the same J-815SE (red
line). The KK conversion is simple to perform, but while signal to noise is
very good, the intrinsic accuracy is restricted by the limited wavelength
range used for calculation (600–300 nm in this case).
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axis at 458 in the sample compartment. Detection of the two
linearly polarized components was performed by a pair of Si
diodes linked to the electronics of a JASCO Uvidec-100V
HPLC detector, able to output the ratio log output of the
intensities. We superimpose our ORD data to the theoretical
Kramers-Kronig (KK) curve obtained from the CD spectrum
run on the same J815SE instrument, with the prescriptions of
reference.3 We also superimpose the real ORD spectrum
obtained on a conventional optical null spectropolarimeter.
It should be noted that the two experimental ORD curves are
similar and differ from the KK curve at shorter wavelengths.
A very interesting ORD spectrometer using this approach
was announced by J&M in 1993, based on one Machler pat-
ent.21 The unit featured two diode array polychromators con-
nected by optical fibers to the two outputs of the beam split-
ter prism, allowing real-time ORD spectra collection in the
200–600 nm range with 1.5 nm resolution. This interesting
instrument, designed also as chiral HPLC detector, did not
pass the prototype stage. In all cases, OR or ORD systems
based on intensity measurements call for calibration all over
the available spectral range; this can be typically achieved
using a sucrose solution as reference standard.

OPTICAL NULL METHODS

The replacement of mere inspection methods with photo-
electric unambiguous detection methods has been for a long
time the goal of optical null polarimetry. A few examples are
reported here: although obsolete in their practical construc-
tion, yet they are based on valid principles and some of them
are still used today.

In the Peck patent of 1944,22 a Kerr cell was used to rotate
back the plane of the polarization vector that had been
rotated by the sample, and the detection was performed by a
photocell looking for maximum light intensity, as the polar-
izer and the analyzer axis were kept parallel in that design.
In the Levy design,23 a photoelectric servo-system was used,
which alternated, through a rotating sector, the two halves of
‘‘half-shade’’ images of a conventional polarimeter to feed a
photomultiplier detection tube. The demodulated signal was
used to rotate the analyzer to the null point. A rather similar
design had been used in the commercial JASCO DIP-4 digi-
tal polarimeter manufactured in the seventies. Saltzman
et al.24 presented a polarimeter suitable for use in industrial
plants with two analyzers crossed each other at 908 and two
detectors. The misbalance signal was used to rotate the ana-
lyzer to reach the null position. In their 1961 patent,25 Hyde
and Tubbs introduced an optical null polarimeter including a
quarter wave plate and a rotating analyzer.

There is no doubt that the development which gave origin
to the modern ORD spectropolarimeter was the symmetric
angular oscillation method proposed by Rudolph.26 The po-
larizer oscillates a few degrees on either side of the crossed
position at a frequency f. When the polarizer and the ana-
lyzer are crossed and the sample is not optically active, the
detector will receive just a signal at the frequency 2f. If an
optically active sample is inserted in the path, a component
at f frequency will appear: this signal is synchronously recti-
fied to generate a DC voltage, with intensity proportional to
the rotation angle to be balanced, and polarity according to
the sign of the rotation. This voltage able to rotate, by a suita-
ble servo loop, the analyzer to null the f component and in
this way the physical rotation, is thereby measured. In the

original Rudolph design the analyzer was oscillating, while
the polarizer was rotating to reach the new null point, but
this obviously gives the same results as described above. It
pays to mention that the Rudolph spectropolarimemeters had
a relevant role in the early application of chiroptical techni-
ques for conformation studies of biomolecules and opened
the way to further developments.

Different commercial ORD spectropolarimeters used dif-
ferent ways to oscillate the polarization vector: for example,
in the Rudolph units of the JASCO ORD-UV5 and J-20 instru-
ments and in the Perkin Elmer P23 instrument, the polarizer
was mechanically oscillating, while in the Cary 6027 and in
the Carl Zeiss REMP-12 apparatuses a Faraday cell was used
to modulate the linear polarization feeding the sample. The
other two ORD units which had been commercially available
for some time (the Bendix Polarmatic 6228 and the FICA
Spectropol 1) worked on a different principle. The optical
null condition was not achieved by rotating the analyzer but
by fitting a DC-controlled Faraday cell in the light path. In
this way, the optical null conditions were met feeding the
Faraday cell with a current of suitable intensity and proper
polarity. That approach gave a few important benefits, such
as response speed and cost reduction but the intrinsic accu-
racy and the need of calibration were clear drawbacks. The
use of Faraday cells not only to modulate the polarization but
also to achieve optical null conditions is still pursued today
in some OR HPLC detectors. As a further way to simplify the
instruments, it has been suggested to keep the analyzer and
the polarizer crossed and to detect OR directly by the inten-
sity and the phase of the f component. This approach is valid
only for small rotation angles and had been and is still used
in a few OR HPLC detectors.

As a matter of fact ORD spectropolarimeters, among which
only the Cary 60 and the various JASCO models had a real
commercial success, soon disappeared from the market, as
users soon switched to CD as the main, almost unique, chiral
technique. Only the JASCO J-20 had been covering the ORD
market with no competition, but with marginal sales, for
nearly 15 years, when production was stopped in 1987.

ORD ACCESSORIES FOR CURRENT CD
SPECTROMETERS

Since for several years no dedicated ORD spectropolarime-
ter has been built and made available for commercial pur-
poses, manufacturers introduced ORD accessories to CD
spectrometers. JASCO and Applied Photophysics are cur-
rently offering accessories based on the design by Shindo29

(ORDE-402 and ORD.3, respectively); very recently also Bio-
Logic started the promotion of a similar accessory for their
MOS450/CD spectrometer. In the JASCO accessory, a quartz
Rochon polarizer is inserted just after the sample with its opti-
cal axis oriented at 458, the photomultiplier tube is spaced far
away not to detect the extraordinary beam of the Rochon unit.
The PEM driving program is set to generate linear polariza-
tions at twice its running frequency (50 kHz). A 100 kHz lock-
in amplifier is used to demodulate the signal. In the ORD.3
case a Calcite polarizer is used, so there is no need to put the
photomultiplier tube at a certain distance, but the accessible
wavelength range is more limited in the far UV. This approach
is another example of intensity methods discussed above, but
with polarization modulation and phase-linked detection. Cali-
bration can be performed by collecting a spectrum of sucrose
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solution to be ratioed with reference data to generate a suita-
ble curve to correct experimental data.

JASCO is additionally offering the ORDM-401 accessory,
which is a real optical null polarimetric head added to the ba-
sic system; when the CD unit is turned to this modality, it
operates as a genuine rotating analyzer ORD unit, in which
the modulation function is assigned to the photoelastic ele-
ment already used for CD.

Table 2 compares the main specifications of both ORDE
and ORDM accessories. What is not written here is that
ORDE allows much faster spectra acquisition, but the stated
accuracy is not absolute and intrinsically lower even after
calibration.

ORD IN THE NEAR INFRARED AND INFRARED RANGE

While seldom investigated, even caused by intrinsic difficul-
ties in the measurements, ORD spectra in the NIR and IR
range are presently attracting more interest, due to the
increased ab initio computational capabilities. A NIR ORD
spectrometer based on an acousto-optical tunable filter, acting
as wavelength dispersive system, as well as linear polarization
splitter, has been recently described.30 The unit makes use of
two InGaAs detectors; overtone spectra of camphor enantiom-
ers have been presented in the 1000–1300 nm range.

For the IR range, the group of Korte presented different
optical designs based on dedicated single beam or commer-
cial double beam dispersive spectrophotometers31,32: the sin-
gle beam device contained a continuously rotating wire-grid
polarizer and a fixed analyzer placed, respectively, before
and after the sample, thus causing a sinusoidal modulation of
the sampling beam reaching the detector after being dis-
persed by a monochromator.33 An optically active sample
induces a phase shift of the radiation proportional to the OR.
Sensitivity down to 0.018 was reported in favorable cases.

Another FT/IR polarimeter was reported34 and patented35:
the unit had capabilities to measure the sample Mueller ma-
trix, but here sensitivity for ORD spectra of organic com-
pounds was low. More recently, probably for the first time,
ORD spectra in the IR range have been reported by the
group of Lombardi and Nafie,36 obtained on a VCD interfero-
metric spectrometer, which was used with 458 analyzer as in
the Shindo approach.

NOVEL ORD METHODS AND APPLICATIONS

Multiphoton ORD measurements were reported in 198737

for 10% aqueous solutions of camphorsulfonic acid in the

450–470 nm region with an excimer-pumped dye laser and
an optical null analyzer. In 1995, Kliger and coworkers38

applied the Keston method to measure ORD changes into
the nanosecond time scale. The setup included a Xenon flash
lamp, an actinic light source consisting of a 532 nm laser and
a polichromator with a gated array detector.

Dressler et al.39 reported polarimetry of chiral surfaces by
near-field scanning optical microscopy; in the same field a
patent has been awarded.40

Above we mentioned the innovative cavity ring down polar-
imetry introduced by Vaccaro and coworkers20 which
opened new opportunities for probing chirality in the gas
phase; sensitivity enhancement inserting a cavity (Fabry-
Perot interferometer) between crossed polarizers had been
discussed previously,41,42 and the use of multipass cells had
also been proposed for OR HPLC detectors.43

Ghosh and Fischer suggested a new approach to polarime-
try and spectropolarimetry,44 which consists of measuring
the relative difference in the direction of propagation of two
circularly polarized light components that refract or reflect at
an interface in the presence of an optically active sample.
This approach does not require long path cells and operates
with a position sensitive detector. The brilliant idea has been
recently patented45; potential applications in material science
are many, but sensitivity is probably a concern.

An innovative Vis–NIR spectropolarimeter using liquid
crystals to polarize and modulate radiation has been recently
patented in France46 by Horiba Jobin-Yvon together with
CNRS and Ecole Polytechnique. The instrument is able to ac-
quire a series of measurements to compute the Mueller ma-
trix of the sample and it is mainly devoted to ellipsometric
measurements.

Gibbs and Beebe47 patented heterodyne optical systems
with a modulated light source coupled to a chiroptical system
with further modulation at a different frequency: radiation
passes through the sample cell and then through a linear po-
larizer before reaching the detector. Intermodulated side
bands are outputted and processed to extract the OR data
with very high sensitivity. Spectroscopic polarimetry in a
static way using retarders between the polarizers and the
analyzers were introduced by Oka and Kato48 and have been
widely developed at Tokyo University of Agriculture and
Technology.49

Quite recently Helbing and Bonmarin50 has been using
alternating left- and right-handed mid-infrared laser pulses
synchronized with a PEM to collect CD and ORD spectra in
the IR CH-stretching region; changing polarizer and analyzer
orientation (similarly to what indicated in Table 1) signal
enhancement was achieved. Finally, as window wide open
into the future, we wish to mention the work by Cho and co-
workers,51 whereby a ‘‘direct phase-and-amplitude measure-
ment of the electric field of a chiroptical signal over time’’
monitored by laser radiation is proposed. The method uses
cross-polarized analyzers to carry out heterodyne spectral
interferometry. Advantages are described there in removing
achiral background signals. The method enables the simulta-
neous characterization of VCD and vibrational ORD spectra.
Not only does this work opens new experimentation paths,
in terms of time-resolved phenomena, but it also spurs
new theoretical approaches, based in the time-domain
rather than in the energy-domain and allowing to character-
ize bandwidths in addition to frequencies and rotational
strengths.51–53

TABLE 2. Comparison of characteristics for ORDE and
ORDM accessories mounted on JASCO J-700/800

CD instruments

ORDE ORDM

Wavelength range (nm) 185–700 185–700
Angular range (8) 61 645
Accuracy (%) 61 60.5
Root mean square (RMS) noise
SBW 1 nm, integration time 16 sec
500 nm (mdeg) 0.2 0.5
300 nm (mdeg) 0.15 0.5
200 nm (mdeg) 1 1
Baseline stability (mdeg/h) 3 3
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