New results on path-decompositions and their down-links

A. Benini, L. Giuzzi and A. Pasotti^{*}

Abstract

In [3] the concept of *down-link* from a (K_v, Γ) -design \mathcal{B} to a (K_n, Γ') -design \mathcal{B}' has been introduced. In the present paper the spectrum problems for $\Gamma' = P_4$ are studied. General results on the existence of path-decompositions and embeddings between path-decompositions playing a fundamental role for the construction of down-links are also presented.

Keywords: (K_v, Γ) -design; down-link; embedding. MSC(2010): 05C51, 05B30, 05C38.

1 Introduction

Suppose $\Gamma \leq K$ to be a subgraph of K. A (K, Γ) -design, or Γ -decomposition of K, is a set of graphs isomorphic to Γ whose edges partition the edge set of K. Given a graph Γ , the problem of determining the existence of (K_v, Γ) designs, also called Γ -designs of order v, where K_v is the complete graph on v vertices, has been extensively studied; see the surveys [4, 5]. In [3] we proposed the following definition.

Definition 1.1. Given a (K, Γ) -design \mathcal{B} and a (K', Γ') -design \mathcal{B}' with $\Gamma' \leq \Gamma$, a down-link from \mathcal{B} to \mathcal{B}' is a function $f : \mathcal{B} \to \mathcal{B}'$ such that $f(B) \leq B$, for any $B \in \mathcal{B}$.

When such a function f exists, we say that it is possible to *down-link* \mathcal{B} to \mathcal{B}' .

^{*}anna.benini@ing.unibs.it, luca.giuzzi@ing.unibs.it, anita.pasotti@ing.unibs.it, Dipartimento di Matematica, Facoltà di Ingegneria, Università degli Studi di Brescia, Via Valotti 9, I-25133 Brescia (IT).

The present research was performed within the activity of GNSAGA of the Italian INDAM with the financial support of the Italian Ministry MIUR, projects "Strutture di incidenza e combinatorie" and "Disegni combinatorici, grafi e loro applicazioni".

As seen in [3], down-links are closely related to metamorphoses [8], their generalizations [9] and embeddings [11]. In close analogy to embeddings, we introduced spectrum problems about down-links:

- (I) For each admissible v, determine the set $\mathcal{L}_1\Gamma(v)$ of all integers n such that there exists *some* Γ -design of order v down-linked to a Γ' -design of order n.
- (II) For each admissible v, determine the set $\mathcal{L}_2\Gamma(v)$ of all integers n such that every Γ -design of order v can be down-linked to a Γ' -design of order n.

In [3, Proposition 3.2], we proved that for any v such that there exists a (K_v, Γ) -design and any $\Gamma' \leq \Gamma$, the sets $\mathcal{L}_1 \Gamma(v)$ and $\mathcal{L}_2 \Gamma(v)$ are always nonempty. In the same paper the case $\Gamma' = P_3$ has been investigated in detail. Here we shall deal with the case $\Gamma' = P_4$. In order to get results about down-links to P_4 -designs, we shall first study path-designs and their embeddings. More precisely, in Section 2 we determine sufficient conditions for the existence of P_4 -decompositions of any graph Γ and P_k -decompositions of complete bipartite graphs. In Section 3, applying the results of Section 2, we are able to prove the existence of embeddings and down-links between path-designs. Section 4 is devoted to the cases of cycle systems and path-designs, with general theorems and directed constructions.

Throughout this paper the following standard notations will be used; see also [7]. For any graph Γ , write $V(\Gamma)$ for the set of its vertices and $E(\Gamma)$ for the set of its edges. If \mathcal{B} is a collection of graphs, by $V(\mathcal{B})$ we will mean the set of the vertices of all its elements. By $t\Gamma$ we shall denote the disjoint union of t copies of graphs all isomorphic to Γ . As usual, $P_k = [a_1, \ldots, a_k]$ is the path with k - 1 edges and $C_k = (a_1, \ldots, a_k), k \geq 3$, is the cycle of length k. Also, $K_{m,n}$ is the complete bipartite graph with parts of size mand n. When we focus on the actual parts X and Y, $K_{X,Y}$ will be written.

2 Existence of some path-designs

In this section we present new results on the existence of path decompositions. Recall that a (K_n, P_k) -design exists if, and only if, $n(n-1) \equiv 0 \pmod{2(k-1)}$; see [13].

Proposition 2.1. Let k be an even integer. For x = k - 2, k the complete bipartite graph $K_{k-1,x}$ admits a P_k -decomposition.

Proof. Consider the bipartite graph $K_{A,I}$ where $A = \{a_1, \ldots, a_{k-1}\}$ and $I = \{1, \ldots, x\}$ with x = k - 2, k. Let $U^t = (1, \ldots, 1)$ be an $\frac{x}{2}$ -tuple. Set $P_1^t = (1, \ldots, \frac{x}{2})$ and for $i = 1, \ldots, \frac{x}{2}$, $\begin{aligned} P_i^t &= (i, i+1, \dots, \frac{x}{2}, 1, 2, \dots, i-1), \ \overline{P}_i^t = P_i^t + \frac{x}{2}U, \ A_i = a_i U, \ \overline{A}_i = a_{i+\frac{k}{2}}U. \end{aligned}$ If $k \equiv 0 \pmod{4}$, consider the $\frac{x}{2} \times k$ matrices

$$M = (P_1 \ A_1 \ \overline{P}_1 \ A_2 \ P_2 \ A_3 \ \overline{P}_2 \dots P_i \ A_{2i-1} \ \overline{P}_i \ A_{2i} \dots P_{\frac{k}{4}} \ A_{\frac{k-2}{2}} \ \overline{P}_{\frac{k}{4}} \ A_{\frac{k}{2}})$$
$$\overline{M} = (\overline{P}_1 \ \overline{A}_1 \ P_1 \ \overline{A}_2 \ \overline{P}_2 \ \overline{A}_3 \ P_2 \dots \overline{P}_i \ \overline{A}_{2i-1} \ P_i \ \overline{A}_{2i} \dots \overline{P}_{\frac{k}{4}} \ \overline{A}_{\frac{k-2}{2}} \ P_{\frac{k}{4}} \ A_{\frac{k}{2}}).$$

If $k \equiv 2 \pmod{4}$, consider the $\frac{x}{2} \times k$ matrices

$$M = (P_1 \ A_1 \ \overline{P}_1 \ A_2 \ P_2 \ A_3 \ \overline{P}_2 \dots P_i \ A_{2i-1} \ \overline{P}_i \ A_{2i} \dots P_{\frac{k+2}{4}} \ A_{\frac{k}{2}})$$
$$\overline{M} = (\overline{P}_1 \ \overline{A}_1 \ P_1 \ \overline{A}_2 \ \overline{P}_2 \ \overline{A}_3 \ P_2 \dots \overline{P}_i \ \overline{A}_{2i-1} \ P_i \ \overline{A}_{2i} \dots \overline{P}_{\frac{k+2}{4}} \ A_{\frac{k}{2}}).$$

In either case, the rows of M and \overline{M} , taken together, are the x paths of a P_k -decomposition of $K_{A,I}$.

Theorem 2.2. Let Γ be a graph with at least two vertices of degree $|V(\Gamma)|-1$. Then Γ admits a P_4 -decomposition if, and only if, $|E(\Gamma)| \equiv 0 \pmod{3}$. If $|E(\Gamma)| \equiv 1, 2 \pmod{3}$, then Γ can be partitioned into a P_4 -decomposition together with one or two (possibly connected) edges, respectively.

Proof. The condition is obviously necessary. For sufficiency, let α and β be two vertices of degree $|V(\Gamma)| - 1$. Delete α and β in Γ , as to obtain a graph G. Let G' be a maximal P_4 -decomposable subgraph of G and remove from G the edges of G', determining a new graph G''. In general, G'' is not connected and its connected components are either isolated vertices or stars or cycles of length 3; call \mathcal{I} , \mathcal{S} and \mathcal{C} their (possibly empty) sets. Let Γ' be the graph obtained removing the edges of G' from Γ . Clearly, $|E(\Gamma)| \equiv 0 \pmod{3}$ implies $|E(\Gamma')| \equiv 0 \pmod{3}$; thus it remains to show that $E(\Gamma')$ is P_4 -decomposable. Obviously α and β are of degree $|V(\Gamma)| - 1$ also in Γ' . Let $A = \{\alpha, \beta\}$ and consider the following decomposition $\Gamma' = K_A \cup K_{A,\mathcal{I}} \cup (\mathcal{C} \cup K_{A,V(\mathcal{C})}) \cup (\mathcal{S} \cup K_{A,V(\mathcal{C})})$. We begin by providing, separately, P_4 -decompositions of $K_{A,\mathcal{I}}$, $\mathcal{C} \cup K_{A,V(\mathcal{C})}$ and $\mathcal{S} \cup K_{A,V(\mathcal{S})}$.

i) It is easy to see that for any 3-subset of \mathcal{I} , say H_3 , the graph K_{A,H_3} has a P_4 -decomposition. Thus, depending on the congruence class modulo 3 of $|\mathcal{I}|$, $K_{A,\mathcal{I}}$ can be partitioned into a P_4 -decomposition together with the following possible remnants.

(i_1) $ \mathcal{I} \equiv 0 \pmod{3}$	(i_2) $ \mathcal{I} \equiv 1 \pmod{3}$	(i_3) $ \mathcal{I} \equiv 2 \pmod{3}$
the set \emptyset	the path $[\alpha, h, \beta]$	the cycle $(h_1, \alpha, h_2, \beta)$
	with $h \in \mathcal{I}$	with $h_1, h_2 \in \mathcal{I}$

Table 1: Case i.

ii) For any 3-cycle $C \in C$, the graph $C \cup K_{A,V(C)}$ has a P_4 -decomposition. Thus, $C \cup K_{A,V(C)}$ also admits a P_4 -decomposition.

iii) It is not difficult to see that, for any star $S_c \in \mathcal{S}$ of center c, the graph $S_c \cup K_{A,V(S_c)}$ has a partition into a P_4 -decomposition together with either the path $[\alpha, c, \beta]$ or the graph $(\alpha, c, \beta, v) \cup [c, v]$, where v is any external vertex, depending on whether the number of vertices of S_c is odd or even. Let \mathcal{S}_1 (respectively \mathcal{S}_2) be the set of stars with an odd (even) number of vertices. For any three stars of \mathcal{S}_1 (\mathcal{S}_2) the remnants give P_4 -decomposable graphs. So $\mathcal{S}_1 \cup K_{A,V(\mathcal{S}_1)}$, as well as $\mathcal{S}_2 \cup K_{A,V(\mathcal{S}_2)}$, can be partitioned into a P_4 -decomposition together with the possible remnants outlined in Tables 2 and 3.

(iii_{11})	(iii_{12})	(iii_{13})
$ \mathcal{S}_1 \equiv 0 \pmod{3}$	$ \mathcal{S}_1 \equiv 1 \pmod{3}$	$ \mathcal{S}_1 \equiv 2 \pmod{3}$
	the path $[\alpha, c, \beta]$	the cycle $(c_1, \alpha, c_2, \beta)$
Ø	where	where
	c is the center of a star	c_1, c_2 are centers of two stars

Table 2: Case iii_1 : $S_1 \cup K_{A,V(S_1)}$.

(iii_{21})	(iii_{22})	(iii_{23})
$ \mathcal{S}_2 \equiv 0 \pmod{3}$	$ \mathcal{S}_2 \equiv 1 \pmod{3}$	$ \mathcal{S}_2 \equiv 2 \pmod{3}$
	the graph	the graph
	$(\alpha, c, \beta, v) \cup [c, v]$	$\bigcup_{i=1}^{2} (\alpha, c_i, \beta, v_i) \cup [c_i, v_i]$
Ø	where c is the center	where c_1, c_2 are centers
	and v is an external vertex	and v_1, v_2 are external vertices
	of a star	of two stars

Table 3: Case iii_2 : $S_2 \cup K_{A,V(S_2)}$.

The remnants from i), iii_1) and iii_2) together with the edge $[\alpha, \beta]$ can be combined in 27 different ways to obtain 27 connected graphs with t edges. It is a routine to check that we have exactly 9 cases with $t \equiv i \pmod{3}$, for i = 0, 1, 2.

In Table 4 we will list in detail the 9 cases with $t \equiv 0 \pmod{3}$ and, for each of them, in Table 5 we give the corresponding graph.

	i	iii_1	iii_2
a_1	Ø	Ø	iii_{22}
a_2	Ø	iii_{13}	iii_{23}
a_3	Ø	iii_{12}	Ø

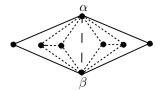
1		i	iii_1	iii_2
	a_4	i_2	Ø	Ø
	a_5	i_2	iii_{13}	iii_2
	a_6	i_2	iii_{12}	iii_2

	i	iii_1	iii_2
a_7	i_3	Ø	iii_{23}
a_8	i_3	iii_{13}	Ø
a_9	i_3	iii_{12}	iii_{22}

Table 4: $t \equiv 0 \pmod{3}$.

Figure 1: Case a_1 . Figure 2: Case a_8 .

Figure 3: Cases a_5 and a_9 .



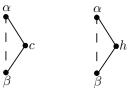
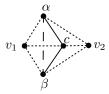
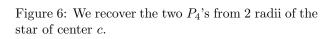


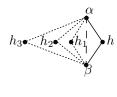
Figure 4: Cases a_2 , a_6 and a_7 . Figure 5: Cases a_3 and a_4 . Table 5: Graphs of the remnants plus edge $[\alpha, \beta]$.

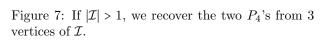
It is easy to determine a P_4 -decomposition of the graphs in Figures 1, 2, 3, 4. In cases a_3 and a_4 (Figure 5) a P_4 -decomposition is clearly not possible, thus we proceed back tracking one step in the construction. How to deal with case a_3 is explained in Figure 6.





In case a_4 we have to distinguish several subcases depending on the size of \mathcal{I}, \mathcal{C} and \mathcal{S} . When $|\mathcal{I}| > 1$ see Figure 7. For $|\mathcal{I}| = 1$ and $|\mathcal{C}| \neq 0$, see Figure 8.





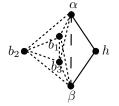


Figure 8: If $|\mathcal{I}| = 1$ and $|\mathcal{C}| \neq 0$ we recover the three P_4 's from a C_3 .

When $|\mathcal{I}| = 1$ and $|\mathcal{C}| = 0$ we have two possibilities. If there is one star of \mathcal{S} with at least two edges, we proceed as explained in Figure 9.

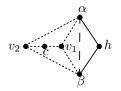


Figure 9: If $|\mathcal{I}| = 1$, $|\mathcal{C}| = 0$, and $\exists S_c \in \mathcal{S}$ with $P_3 \leq S_c$ we recover the two P_4 's from 2 radii of S_c .

Otherwise, G'' consists of an isolated vertex h and a set \mathcal{P} of disjoint P_2 's. Since $|E(\Gamma')| \equiv 0 \pmod{3}$, the size of \mathcal{P} is also divisible by 3, let $|\mathcal{P}| = 3p$. It is easy to see that for any 3-subset of \mathcal{P} , say P^3 , the graph K_{A,P^3} has a P_4 -decomposition. After p-1 steps, the remnant is the graph in Figure 10, which likewise admits a P_4 -decomposition. This concludes the case $t \equiv 0 \pmod{3}$.

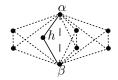


Figure 10: If $|\mathcal{I}| = 1$, $|\mathcal{C}| = 0$ and S is a disjoint union of P_2 's we recover the 15 edges from the last but one step.

With similar arguments, when $t \equiv 1, 2 \pmod{3}$ it is possible to find a P_4 -decomposition of $E(\Gamma)$ leaving as remnants, respectively, one or two edges.

3 Embeddings and down-links to *P*₄-designs

The results presented in the previous section are used to prove the existence of embeddings and down-links to path designs. In particular, we shall focus our attention on P_4 -decompositions.

Theorem 3.1. Any partial (K_v, P_4) -design can be embedded into a (K_n, P_4) -design for any admissible $n \ge v + 2$.

Proof. Let \mathcal{B} be a partial (K_v, P_4) -design. Let A be a set of vertices disjoint from $V(K_v)$ with $v + |A| \equiv 0, 1 \pmod{3}$ and $|A| \ge 2$. Let Γ be the graph such that $V(\Gamma) = V(K_v) \cup A$ and $E(\Gamma) = E(K_{v+|A|}) \setminus E(\mathcal{B})$. Since $|A| \ge 2$, by Theorem 2.2 there exists a (Γ, P_4) -design \mathcal{B}' and, clearly, $\mathcal{B} \cup \mathcal{B}'$ is a $(K_{v+|A|,P_4})$ -design.

Corollary 3.2. For any (K_v, Γ) -design with $P_4 \leq \Gamma$

$$\{n \ge v + 2 \mid n \equiv 0, 1 \pmod{3}\} \subseteq \mathcal{L}_2\Gamma(v) \subseteq \mathcal{L}_1\Gamma(v).$$

Proof. Let \mathcal{B} be a (K_v, Γ) -design with $P_4 \leq \Gamma$. Choose a P_4 in each block of \mathcal{B} and call \mathcal{P} the set of such P_4 's. Obviously, \mathcal{P} is a partial P_4 -decomposition of K_v . Hence, by Theorem 3.1, \mathcal{P} can be embedded into a (K_n, P_4) -design \mathcal{B}' for any admissible $n \geq v + 2$. The construction also guarantees the existence of a down-link from \mathcal{B} to \mathcal{B}' .

Theorem 3.3. For any even integer k, a P_k -design of order $n \equiv 0, 1 \pmod{k-1}$ can be embedded into a P_k -design of any order m > n + 1 with $m \equiv 0, 1 \pmod{k-1}$.

Proof. Let \mathcal{B} be a (K_n, P_k) -design with $n \equiv 0, 1 \pmod{k-1}$ and let $m = n + s \equiv 0, 1 \pmod{k-1}$. As $K_{n+s} = K_n \cup K_s \cup K_{n,s}$, for the existence of a (K_m, P_k) -design embedding \mathcal{B} it is enough to find a P_k -decomposition of $K_s \cup K_{n,s}$. Since $n, n+s \equiv 0, 1 \pmod{k-1}$, one of the following cases occurs

•
$$n = \lambda(k-1), s = \mu(k-1) \Rightarrow K_s \cup K_{n,s} = K_s \cup \lambda \mu K_{k-1,k-1}$$

- $n = \lambda(k-1), s = 1 + \mu(k-1) \Rightarrow K_s \cup K_{n,s} = K_s \cup K_{\lambda(k-1),k+(\mu-1)(k-1)} = K_s \cup \lambda K_{k-1,k} \cup \lambda(\mu-1) K_{k-1,k-1}$
- $n = 1 + \lambda(k-1), s = \mu(k-1) \Rightarrow K_s \cup K_{n,s} = K_s \cup K_{k+(\lambda-1)(k-1),\mu(k-1)} = K_s \cup \mu K_{k,k-1} \cup \mu(\lambda-1) K_{k-1,k-1}$
- $n = 1 + \lambda(k-1), s = k-2 + \mu(k-1) \Rightarrow K_s \cup K_{n,s} = K_s \cup K_{1+\lambda(k-1),s} = K_s \cup K_{1,s} \cup K_{\lambda(k-1),s} = K_{s+1} \cup K_{\lambda(k-1),k-2+\mu(k-1)} = K_{s+1} \cup \lambda K_{k-1,k-2} \cup \lambda \mu K_{k-1,k-1}$

So, to find a P_k -decomposition of $K_s \cup K_{n,s}$ it is sufficient to know P_k -decompositions of

- K_s and K_{s+1} , which exist by [13],
- $K_{k-1,k-1}$, whose existence is proved in [10],
- $K_{k-1,k}$ and $K_{k-1,k-2}$, whose existence follows from Proposition 2.1.

The following corollary is a straightforward consequence of Theorem 3.3.

Corollary 3.4. If $n \in \mathcal{L}_i \Gamma(v)$, then

 $\{m \ge n+2 \mid m \equiv 0, 1 \pmod{3}\} \subseteq \mathcal{L}_i \Gamma(v).$

Remark 3.5. Set $\eta_i = \inf \mathcal{L}_i \Gamma(v)$. By Corollary 3.4, $\mathcal{L}_i \Gamma(v)$ contains all admissible values $m \ge \eta_i$ apart from (possibly) $\eta_i + 1$. Thus to exactly determine the spectra it is enough to compute η_i and ascertain if $\eta_i + 1 \in \mathcal{L}_i \Gamma(v)$.

4 Cycle systems and path-designs

Here we shall provide some partial results on the existence of down-links from cycle systems and path-designs to P_4 -designs.

We recall that a k-cycle system of order v, that is a (K_v, C_k) -design, exists if, and only if, $k \leq v$, v is odd and $v(v-1) \equiv 0 \pmod{2k}$; see [2], [12].

Theorem 4.1. For any admissible v and any $k \ge 9$

$$\left\{n \ge v - \left\lfloor \frac{k-9}{4} \right\rfloor \mid n \equiv 0, 1 \pmod{3}\right\} \subseteq \mathcal{L}_2 C_k(v) \subseteq \mathcal{L}_1 C_k(v).$$

Proof. Let $k \ge 9$ and let \mathcal{B} be a (K_v, C_k) -design. Write $t = \lfloor \frac{k-9}{4} \rfloor$. Take t+2 distinct vertices $x_1, x_2, \ldots, x_t, y_1, y_2 \in V(K_v)$. Observe that it is possible to extract from each block $C \in \mathcal{B}$ a P_4 whose vertices are different from $x_1, x_2, \ldots, x_t, y_1, y_2$, as we are forbidding at most 4(t+1)+2 = 4t+6 = k-3 edges from any k-cycle. Use these P_4 's for the down-link. Let S be the image of the down-link, considered as a subgraph of $K_{v-t} = K_v \setminus \{x_1, \ldots, x_t\}$ and remove the edges of S from K_{v-t} to obtain a new graph R. It remains to show that R admits a P_4 -decomposition. Observe that |V(R)| = v-t and y_1, y_2 are two vertices of R of degree v - t - 1. To apply Theorem 2.2 we have to distinguish some cases according to the congruence class modulo 3 of v - t.

If $v - t \equiv 0 \pmod{3}$, then $|E(R)| \equiv 0 \pmod{3}$ so the existence of a (R, P_4) design is guaranteed by Theorem 2.2. Furthermore, if we add a vertex to K_{v-t} we can apply Theorem 2.2 also to $R' = R \cup K_{1,v-t}$ since $|E(R')| \equiv 0 \pmod{3}$. Hence there exist down-links from \mathcal{B} to (K_{v-t}, P_4) -designs and to (K_{v-t+1}, P_4) -designs.

If $v - t \equiv 1 \pmod{3}$, then $|E(R)| \equiv 0 \pmod{3}$, hence by Theorem 2.2, there exists a (R, P_4) -design. So we determine down-links from \mathcal{B} to (K_{v-t}, P_4) -designs.

Finally, if $v-t \equiv 2 \pmod{3}$, it is sufficient to add either u = 1 or u = 2 vertices to K_{v-t} and then apply Theorem 2.2 to $R'' = (K_{v-t} \cup K_u \cup K_{v-t,u}) \setminus S$ in order to down-link \mathcal{B} to (K_{v-t+1}, P_4) -designs or to (K_{v-t+2}, P_4) -designs, respectively. The statement follows from Remark 3.5.

Arguing exactly as in the previous proof it is possible to prove the following result.

Theorem 4.2. For any admissible v and any $k \ge 12$

$$\left\{n \ge v - \left\lfloor \frac{k-12}{4} \right\rfloor \mid n \equiv 0, 1 \pmod{3} \right\} \subseteq \mathcal{L}_2 P_k(v) \subseteq \mathcal{L}_1 P_k(v).$$

4.1 Small cases

We shall now investigate in detail the spectrum problems for $\Gamma = C_4$ and $\Gamma = P_5$. In order to obtain our results, we shall extensively use the method of *gluing of down-links*, introduced in [3]. We briefly recall the main idea: a down-link from a (K_v, Γ) -design to a (K_n, Γ') -design can be constructed as union of down-links between partitions of the domain and the codomain. To give designs suitable for the down-link, we will use difference families; here we recall some preliminaries, for a survey see [1]. Let Γ be a graph. A set \mathcal{F} of graphs isomorphic to Γ with vertices in \mathbb{Z}_v is called a $(v, \Gamma, 1)$ -difference family (DF, for short) if the list $\Delta \mathcal{F}$ of differences from \mathcal{F} , namely the list of all possible differences x - y, where (x, y) is an ordered pair of adjacent vertices of an element of \mathcal{F} , covers $\mathbb{Z}_v \setminus \{0\}$ exactly once. In [6] it is proved that if $\mathcal{F} = \{B_1, \ldots, B_t\}$ is a $(v, \Gamma, 1)$ -DF, then the collection of graphs $\mathcal{B} = \{B_i + g \mid B_i \in \mathcal{F}, g \in \mathbb{Z}_v\}$ is a cyclic (K_v, Γ) -design.

Lemma 4.3. For any $v \equiv 1,9 \pmod{24}$, v > 1, there exists a down-link from a (K_v, C_4) -design to a (K_v, P_4) -design. For any $v \equiv 9,17 \pmod{24}$ there exists a down-link from a (K_v, C_4) -design to a (K_{v+1}, P_4) -design.

Proof. Take $v = s + 24t \ge 9$, with s = 1, 9, 17, and $V(K_v) = \mathbb{Z}_v$. Consider the set of 4-cycles

$$\mathcal{C} = \left\{ C^a = \left(0, a, \frac{v+1}{2}, \frac{v-1}{8} + a \right) \mid a = 1, 2, \dots, \frac{v-1}{8} \right\}.$$

It is straightforward to check that

$$\Delta C^a = \pm \left\{ a, \frac{v+1}{2} - a, \frac{3v+5}{8} - a, \frac{v-1}{8} + a \right\}.$$

Hence $\Delta \mathcal{C} = \mathbb{Z}_v \setminus \{0\}$, so, by [6], the C^a are the $\frac{v-1}{8}$ base blocks of a cyclic (K_v, C_4) -design. The development of each base block gives v different 4cycles, from each of which we extract the edge obtained by developing [0, a]. The obtained P_4 's will be used to define a down-link in a natural way. The removed edges can be connected to complete the P_4 -decomposition of K_v as follows: for each triple $\{[0, a+1], [0, a+2], [0, a+3]\}$, for $a \equiv 1 \pmod{3}$ where $a \in \{1, 2, \dots, \frac{v-1}{8}\}$, consider the three developments and connect the edges $\{[i+1, a+1+(i+1)], [i, a+2+i], [i, a+3+i]\}$ obtaining the paths (i+1, a+i+2, i, a+i+3), with $i \in \mathbb{Z}_v$.

If $v \equiv 1 \pmod{24}$, we have the required P_4 -decomposition.

If $v \equiv 9 \pmod{24}$, we have the required P₄-decomposition except for the development of [0,1]. The v edges of such a development can be easily connected to give the v-cycle $C = (0, 1, \dots, v-1)$, which obviously admits a P_4 -decomposition. So, for $v \equiv 1,9 \pmod{24}$, there exists a down-link from a (K_v, C_4) -design to a (K_v, P_4) -design. Under the assumption $v \equiv 9$ (mod 24), n = v + 1 is also admissible. In this case, add the vertex α to $V(K_v)$ to obtain a K_{v+1} supporting the codomain of the down-link. Actually, the star $S_{[\alpha;V]}$ of center α and external vertices the elements of $V(K_n)$ has been added. Proceed as before till to the last but one step, namely do not decompose the v-cycle C obtained by developing [0,1]. So it remains to determine a P_4 -decomposition of the wheel $W = C \cup S_{[\alpha;V]}$. It is easy to see that W can be decomposed into 3 + 8t copies of the graph W' in Figure 11, which evidently admits a P_4 -decomposition.

Figure 11: The graph W' as union of two P_4 's.

If $v \equiv 17 \pmod{24}$, proceeding as before, we determine the required P_4 decomposition except for the two developments, say d_1 and d_2 , of the edges [0,1] and $[0,\frac{v-1}{8}]$. Keeping in mind that we must also add a vertex, say α , to the codomain, we have to arrange the edges of d_1 , d_2 and $S_{[\alpha;V]}$. It easy to see that we can obtain the P_4 's as $[\alpha, 1+i, i, \frac{v-1}{8}+i]$, for $i \in \mathbb{Z}_v$. So, for $v \equiv 9,17 \pmod{24}$ there exists a down-link from a (K_v, C_4) -design

to a (K_{v+1}, P_4) -design. **Theorem 4.4.** For any admissible v > 1,

$$\mathcal{L}_1 C_4(v) = \{ n \ge v \mid n \equiv 0, 1 \pmod{3} \}; \tag{1}$$

$$\{n \ge v + 2 \mid n \equiv 0, 1 \pmod{3}\} \subseteq \mathcal{L}_2 C_4(v) \subseteq \{n \ge v \mid n \equiv 0, 1 \pmod{3}\}.$$
(2)

Proof. Let \mathcal{B} and \mathcal{B}' be, respectively, a (K_v, C_4) -design and a (K_n, P_4) -design. Suppose that \mathcal{B} can be down-linked to \mathcal{B}' . Clearly, $n \ge v$. Hence $\mathcal{L}_2C_4(v) \subseteq \mathcal{L}_1C_4(v) \subseteq \{n \ge v \mid n \equiv 0, 1 \pmod{3}\}.$

To prove the reverse inclusion in (1) observe that a (K_v, C_4) -design exists if, and only if, $v \equiv 1 \pmod{8}$ and a (K_n, P_4) -design exists if, and only if, $n \equiv 0, 1 \pmod{3}$. So it makes sense to look for a down-link from a (K_v, C_4) -design to a (K_v, P_4) -design only for $v \equiv 1, 9 \pmod{24}$. Likewise, a down-link from a (K_v, C_4) -design to a (K_{v+1}, P_4) -design can exist only if $v \equiv 9, 17 \pmod{24}$. The existence of such down-links is proved in Lemma 4.3. The statement of (1) follows from Remark 3.5. The other inclusion in (2) immediately follows from Corollary 3.2.

Theorem 4.5. For any admissible v > 1,

$$\mathcal{L}_1 P_5(v) = \{ n \ge v - 1 \mid n \equiv 0, 1 \pmod{3} \}; \tag{3}$$

$$\{n \ge v + 2 \mid n \equiv 0, 1 \pmod{3}\} \subseteq \mathcal{L}_2 P_5(v) \subseteq \{n \ge v \mid n \equiv 0, 1 \pmod{3}\}.$$
(4)

Proof. The first inclusion in (4) follows from Corollary 3.2. In order to prove the second, it is sufficient to show that for any admissible v there exists a (K_v, P_5) -design \mathcal{B} wherein no vertices can be deleted. In particular, this is the case if each vertex of K_v has degree 2 in at least one block of \mathcal{B} . First of all note that in a (K_v, P_5) -design there is at most one vertex with degree 1 in each block where it appears. Suppose that there actually exists a (K_v, P_5) -design $\overline{\mathcal{B}}$ with a vertex x as above. It is easy to see that in $\overline{\mathcal{B}}$ there is at least one block $P^1 = [x, a, b, c, d]$ such that the vertices a, band c have degree two in at least another block. Let $P^2 = [x, d, e, f, g]$. By reassembling the edges of $P^1 \cup P^2$, it is possible to replace in $\overline{\mathcal{B}}$ these two paths with $P^3 = [d, x, a, b, c]$, $P^4 = [c, d, e, f, g]$ if $c \neq f, g$ or $P^5 =$ $[a, x, d, c, g], P^6 = [a, b, c, e, d]$ if c = f or $P^7 = [c, d, x, a, b], P^8 = [b, c, f, e, d]$ if c = g. Thus we have again a (K_v, P_5) -design. By the assumption on a, b, call the vertices of this new design have degree two in at least one block.

Now we consider Relation (3). Let \mathcal{B} and \mathcal{B}' be respectively a (K_v, P_5) design and a (K_n, P_4) -design. Suppose there exists a down-link $f : \mathcal{B} \to \mathcal{B}'$. Clearly, n > v - 2. Hence, $\mathcal{L}_1 P_5(v) \subseteq \{n \ge v - 1 \mid n \equiv 0, 1 \pmod{3}\}$.

To show the reverse inclusion in (3) we prove the actual existence of designs providing down-links. Since a (K_v, P_5) -design exists if, and only if, $v \equiv 0, 1 \pmod{8}$ and a (K_n, P_4) -design exists if, and only if, $n \equiv 0, 1 \pmod{3}$, it makes sense to look for a down-link from a (K_v, P_5) -design to a (K_{v-1}, P_4) design only if $v \equiv 1, 8, 16, 17 \pmod{24}$. For the same reason, it makes sense to construct a down-link from a (K_v, P_5) -design to a (K_v, P_4) -design only for $v \equiv 0, 1, 9, 16 \pmod{24}$. In view of Remark 3.5, in order to complete the proof, we have also to provide a down-link from a (K_v, P_5) -design to a (K_{v+1}, P_4) -design for every $v \equiv 0, 9 \pmod{24}$.

To determine the necessary down-links, we analyze a few basic cases and then apply the *gluing method*. To this end, we will use the following obvious relations in an appropriate way: $K_{a+b} = K_a \cup K_b \cup K_{a,b}$ and $K_{a+b,c} = K_{a,c} \cup K_{b,c}$. In particular,

$$\begin{aligned} K_{\ell+24t} &= K_{\ell} \cup K_{24t} \cup K_{\ell,24t}; \\ K_{24t} &= tK_{24} \cup \binom{t}{2} K_{24,24} = tK_{24} \cup 48\binom{t}{2} K_{3,4}; \\ K_{\ell=rs,24t} &= rK_{s,24t} = rtK_{s,24} = 6rtK_{s,4} = 8rtK_{s,3}. \end{aligned}$$

Let us now examine the possible cases.

• $(K_v, P_5) \rightarrow (K_{v-1}, P_4)$ -design with $v = \ell + 24t > 1, \ \ell = 1, 8, 16, 17.$

P_5 -design of order	basic components	\rightarrow	basic components	P_4 -design of order
1 + 24t	$(K_{25}, P_5), (K_{3,4}, P_5)$		$(K_{24}, P_4), (K_{3,4}, P_4)$	24t
8 + 24t	$(K_8, P_5), (K_{24}, P_5)$		$(K_7, P_4), (K_{24}, P_4)$	7 + 24t
	$(K_{4,3}, P_5)$		$(K_{4,3}, P_4), (K_{3,3}, P_4)$	
16 + 24t	$(K_{16}, P_5), (K_{24}, P_5)$		$(K_{15}, P_4), (K_{24}, P_4)$	15 + 24t
	$(K_{4,3}, P_5)$		$(K_{4,3}, P_4), (K_{3,3}, P_4)$	
17 + 24t	$(K_{17}, P_5), (K_{24}, P_5)$		$(K_{16}, P_4), (K_{24}, P_4)$	16 + 24t
	$(K_{4,3}, P_5)$		$(K_{4,3}, P_4), (K_{3,3}, P_4)$	

• $(K_v, P_5) \rightarrow (K_v, P_4)$ -design with $v = \ell + 24t > 1, \ \ell = 0, 1, 9, 16.$

P_5 -design	basic components	\rightarrow	basic components	P_4 -design
of order				of order
24t	$(K_{24}, P_5), (K_{3,4}, P_5)$		$(K_{24}, P_4), (K_{3,4}, P_4)$	24t
1 + 24t	$(K_9, P_5), (K_{16}, P_5)$		$(K_9, P_4), (K_{16}, P_4)$	1 + 24t
	$(K_{24}, P_5), (K_{3,4}, P_5)$		$(K_{24}, P_4), (K_{3,4}, P_4)$	
9 + 24t	$(K_9, P_5), (K_{24}, P_5)$		$(K_9, P_4), (K_{24}, P_4)$	9 + 24t
	$(K_{3,4}, P_5)$		$(K_{3,4}, P_4)$	
16 + 24t	$(K_{16}, P_5), (K_{24}, P_5)$		$(K_{16}, P_4), (K_{24}, P_4)$	16 + 24t
	$(K_{3,4}, P_5)$		$(K_{3,4}, P_4)$	

•
$$(K_v, P_5) \rightarrow (K_{v+1}, P_4)$$
-design with $v = \ell + 24t > 1, \ \ell = 0, 9.$

P_5 -design	basic components	\rightarrow	basic components	P_4 -design
of order				of order
24t	$(K_{24}, P_5), (K_{3,4}, P_5)$		$(K_{25}, P_4), (K_{3,4}, P_4)$	1 + 24t
9 + 24t	$(K_9, P_5), (K_{24}, P_5)$		$(K_{10}, P_4), (K_{24}, P_4)$	10 + 24t
	$(K_{3,4}, P_5), (K_{9,24}, P_5)$		$(K_{3,4}, P_4), (K_{10,24}, P_4)$	

It is straightforward to show the existence of such basic down-links. For instance we provide a down-link ξ from a $(K_{9,24}, P_5)$ -design to a $(K_{10,24}, P_4)$ design. Let $A = \{a, b, c, d, e, f, g, h, i\}$ and $B = \mathbb{Z}_{24}$, that is $K_{9,24} = K_{A,B}$. The following are the 54 paths of a P_5 -decomposition of $K_{A,B}$:

r ne tonowing (are one or par	mo or a r J acce		- A,D ·
[6, a, 12, b, 1]	$[\underline{1, c}, 12, d, 6]$	$[\underline{6}, \underline{e}, 18, f, 1]$	$[\underline{1}, \underline{g}, 12, h, 0]$	$[\underline{12, i}, 0, a, 18]$
$[\overline{7, a}, 13, b, 2]$	$[\overline{2, c}, 13, d, 7]$	$[\overline{7, e}, 19, f, 2]$	$[\overline{2, g}, 13, h, 1]$	$[\overline{13, i}, 1, a, 19]$
$[\overline{8, a}, 14, b, 3]$	$[\overline{3, c}, 14, d, 8]$	$[\overline{8, e}, 20, f, 3]$	$[\overline{3, g}, 14, h, 2]$	$[\overline{14, i}, 2, a, 20]$
$[\overline{9, a}, 15, b, 4]$	$[\overline{4, c}, 15, d, 9]$	$[\overline{9, e}, 21, f, 4]$	$[\overline{4, g}, 15, h, 3]$	$[\overline{15, i}, 3, a, 21]$
$[\overline{10, a, 16, b, 5}]$	$[\overline{5, c}, 16, d, 10]$	$[\overline{10, e, 22, f, 5}]$	$[\overline{5, g}, 16, h, 4]$	$[\overline{16}, i, 4, a, 22]$
$[\overline{11, a}, 17, b, 0]$	$[\overline{0, c}, 17, d, 11]$	$[\overline{11, e}, 23, f, 0]$	$[\overline{0, g}, 17, h, 5]$	$[\underline{17, i}, 5, a, 23]$
[18, b, 6, c, 19]	[19, d, 0, e, 12]	[12, f, 6, g, 19]	[19, h, 6, i, 18]	
$\frac{[18, b, 6, c, 19]}{[19, b, 7, c, 20]}$	$\frac{[19, d, 0, e, 12]}{[20, d, 1, e, 13]}$	$\frac{[12, f, 6, g, 19]}{[13, f, 7, g, 20]}$	$\frac{[19, h, 6, i, 18]}{[20, h, 7, i, 19]}$	
$\left[\overline{19, b}, 7, c, 20\right]$	$\left[\overline{20, d}, 1, e, 13\right]$	$\left[\overline{\underline{13,f}},7,g,20\right]$	$[\overline{20, h}, 7, i, 19]$	
$[\overline{\underline{19, b}}, 7, c, 20] \\ [\overline{\underline{20, b}}, 8, c, 21]$	$\overline{[20, d, 1, e, 13]}$ $\overline{[21, d, 2, e, 14]}$	$[\overline{13, f}, 7, g, 20] \\ [\overline{14, f}, 8, g, 21]$	$[\overline{\underline{20,h}},7,i,19] \\ [\underline{21,h},8,i,20]$	
$[\overline{\underline{19, b}}, 7, c, 20] [\underline{20, b}, 8, c, 21] [\underline{21, b}, 9, c, 22]$	$[\overline{\frac{20, d}{20, d}, 1, e, 13}]$ $[\overline{21, d}, 2, e, 14]$ $[\overline{22, d}, 3, e, 15]$	$[\overline{\underline{13, f}}, 7, g, 20] \\ [\overline{\underline{14, f}}, 8, g, 21] \\ [\overline{\underline{15, f}}, 9, g, 22]$	$[\overline{\underline{20,h}}, 7, i, 19] \\ [\overline{\underline{21,h}}, 8, i, 20] \\ [\overline{\underline{22,h}}, 9, i, 21]$	

We obtain the image of any P_5 via ξ by removing the underlined edge. Now, to complete the codomain, we have to add a further vertex to A, say α , together with all the edges connecting α to the vertices of B. Thus, it remains to decompose the graph formed by the removed edges together with the star of center α and external vertices in B. Such a P_4 -decomposition is listed below:

References

- Abel, R.J.R., Buratti, M., Difference families, in: CRC Handbook of Combinatorial Designs (C.J. Colbourn and J.H. Dinitz eds.), CRC Press, Boca Raton, FL (2006), 392–409.
- [2] Alspach, B., Gavlas, H., Cycle decompositions of K_n and K_n I, J. Combin. Theory Ser. B 81 (2001), 77–99.
- [3] Benini, A., Giuzzi, L., Pasotti, A., *Down-linking* (K_v, Γ) -designs to P_3 -designs, to appear on Util. Math. (arXiv:1004.4127).
- [4] Bosák, J., "Decompositions of graphs", Mathematics and its Applications (1990), Kluwer Academic Publishers Group.

- [5] Bryant, D., El-Zanati, S., Graph Decompositions, CRC Handbook of Combinatorial Designs, C.J. Colbourn and J.H. Dinitz, CRC Press (2006), 477–486.
- [6] Buratti, M., Pasotti, A., Graph decompositions with the use of difference matrices, Bull. Inst. Combin. Appl. 47 (2006), 23–32.
- [7] Harary, F., "Graph Theory" (1969), Addison-Wesley.
- [8] Lindner, C.C., Rosa, A., The metamorphosis of λ-fold block designs with block size four into λ-fold triple systems, J. Stat. Plann. Inference 106 (2002), 69–76.
- [9] Ling, A.C.H., Milici, S., Quattrocchi, G., Two generalizations of the metamorphosis definition, Bull. Inst. Combin. Appl. 43 (2005), 58– 66.
- [10] Parker, C. A., Complete bipartite graph path decompositions, Ph.D. Thesis, Auburn University (1998).
- [11] Quattrocchi, G., Embedding G_1 -designs into G_2 -designs, a short survey, Rend. Sem. Mat. Messina Ser. II 8 (2001), 129–143.
- [12] Sajna, M., Cycle decompositions III: complete graphs and fixed length cycles, J. Combin. Designs 10 (2002), 27–78.
- [13] Tarsi, M., Decomposition of a complete multigraph into simple paths: nonbalanced handcuffed designs, J. Combin. Theory Ser. A 34 (1983), 60–70.