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Abstract. Parameter estimation for the functional response of predator-prey
systems is a critical methodological problem in population ecology. In this pa-

per we consider a stochastic predator-prey system with non-linear Ivlev func-

tional response and propose a method for model parameter estimation based
on time series of field data. We tackle the problem of parameter estimation

using a Bayesian approach relying on a Markov Chain Monte Carlo algorithm.

The efficiency of the method is tested on a set of simulated data. Then, the
method is applied to a predator-prey system of importance for Integrated Pest

Management and biological control, the pest mite Tetranychus urticae and the
predatory mite Phytoseiulus persimilis. The model is estimated on a dataset

obtained from a field survey. Finally, the estimated model is used to forecast

predator-prey dynamics in similar fields, with slightly different initial condi-
tions.

1. Introduction. Integrated Pest Management (IPM) programs are implemented
with the objective of minimizing losses due to plant pests and controlling insect vec-
tors of important plant, animal, and human diseases, reducing the impact of control
techniques on environment and human health [9]. Biological control techniques are
available to IPM specialists and are based on manipulation of inter-specific rela-
tionships (use of predators, parasites, diseases and plant resistance to suppress pest
populations) [24]. Population dynamics models can provide insight into the com-
plexity of interacting populations systems under the effect of control operations [1]
and contribute to the evaluation and improvement of IPM tactics and strategies.
The following model characteristics and procedures are of critical importance for
a possible contribution of trophic interaction models supporting the design of IPM
and biological control schemes. (a) Models should mimic the qualitative behav-
ior of predator-prey populations systems relevant to biological control tactics and
strategies, for instance, admitting either stable solutions with prey extinction or an
equilibrium with limit cycle. Model analysis can be further detailed defyining how
populations system dynamics and stability depend on variation in both parameters
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values and initial conditions expressed in term of predator and prey abundance.
(b) The selection of an appropriate model for the functional response is critical in
relation to model behavior and the objective of model development in the context
of IPM [17]. Several models of functional response have been proposed [27]. These
functions may be prey dependent or may depend on both prey and predator den-
sities, and take into account different behavioral and physiological aspects [2, 17].
(c) Estimation of ecological parameters used in trophic interaction models is a crit-
ical methodological problem in basic as well as in applied population ecology [22].
Parameter estimation for the functional response is the most troublesome aspect
because of the complexity of behavioral and physiological responses related to the
predation process occurring in a heterogeneous environment. Functional response
parameter estimation can rely on classical experimental approaches performed in
simple arenas or on more complex experimental setups addressing the problem of
scaling up the results from the laboratory to the field. These approaches have been
criticized for the oversimplification of the environment in which predator behavior
occurs [21]. In fact, artificial conditions needed to follow the behavior of a single
individual may affect the predator performance, increasing the efficacy of resource-
capture process. Approaches relying on field observations appear more promising,
particularly those based on the analysis of time series data on prey and predator
abundances [19, 20]. In a natural setup, parameter estimation may exploit the ad-
vantages offered by natural environment in terms of within (canopy) and between
plant complex environment [21] as well as other environmental aspects influencing
the predation process (e.g. semiochemicals).

To explore potentiality of approaches relying on field observations, Gilioli et al.
[12] proposed a Bayesian method for functional response parameter estimation start-
ing from time series of field data on predator-prey dynamics. The method focused on
the estimation of a behavioral parameter appearing in the Lotka-Volterra functional
response when a small number of observations is available. The method by Gilioli
et al. [12] is here further developed considering a different stochastic predator-prey
model described by two stochastic differential equations. The plant dynamics is
not taken into account by the model that only focuses on the interaction between
the prey (phytophagous) and the predator (biological control agent). Behavioral,
demographic and environmental stochasticities are introduced in the model and
represented by noise terms affecting each population as well as their interaction
and depend on parameters that have to be estimated. Three main novelties are
introduced in the approach here adopted.

(i) The simple and linear Lotka-Volterra functional response model in [12] is sub-
stituted with the more general and realistic non-linear Ivlev model [18, 27]. The
Ivlev model was introduced to address the major weakness in the Lotka-Volterra
model that considers an unlimited increase in the predator demand as the prey
density increases [27]. The Ivlev model presents two more interesting aspects. It
displays qualitative properties that well interpret the behavior of the predator-prey
system of interest for biological control and, among the functional response mod-
els having the same properties, e.g. the Holling II functional response, it offers
the advantage of considering only one parameter. The Ivlev model with density-
dependent prey growth presents three equilibrium points. They are characterized
by: extinction of both prey and predator, extinction of the predator, coexistence of
prey and predator (under suitable condition for the parameters - see, for example,



PARAMETER ESTIMATION IN PREDATOR-PREY MODEL 77

[4]). The last point is the most interesting equilibrium state and its stability prop-
erties depend on the value of the behavioral parameter in the functional response.
It can be either a sink or a source and in the latter it generates limit cycles [3, 4].
It follows that a reliable estimate of the behavioral parameter is critical given its
influence on the expected outcome of predator-prey interaction and considering the
meaning of different stability regimes in the context of biological control.

(ii) In Gilioli et al. [12] estimation was restricted to a single parameter expressing
the rate of effective search of the predator. Here four parameters related to behav-
ioral, demographic and environmental stochasticity are estimated. The method
followed in [12] was founded on a Markov Chain Monte Carlo (MCMC) procedure.
In recent years Bayesian methods based on MCMC algorithm have been largely used
to deal with the problem of parameter estimation, in particular when the number
of observed data is small. We recall, among others, the papers by Golightly and
Wilkinson [14, 15, 16], Eraker [8], Elerian et al. [7], where latent data are intro-
duced between real observations. Here we present a MCMC method that combines
parameter estimation with generation of latent data based on the diffusion bridge
proposed by Durham and Gallant [6]. Latent data are new data generated between
successive real observations, and drawn from a distribution depending on the latter
and the system dynamics. This MCMC method differs from the one in [12] because
of a modification in the proposal distribution used to generate latent data. The
estimation problem becomes more troublesome since the presence of parameters in
the diffusion term slows down the convergence of the MCMC, as pointed out by
Roberts and Stramer [26] and Golightly and Wilkinson [15].

(iii) A forecast on different fields has been performed. We have used three
datasets on the same predator-prey populations system collected in the same pe-
riod in three independent experimental fields in the same area. In the same spirit
of splitting data into training and test sets, the first set is used to estimate the
parameters of the model; the estimated model is then used to simulate the trajec-
tories of prey and predator for the other two predator-prey systems differing only
for initial conditions. Forecasting property of the performed numerical experiments
have been evaluated comparing simulated trajectories and observed biomass.

The paper is structured as follows. In Section 2 we present the model used
to represent the dynamics of the predator-prey system. Section 3 is devoted to
the Bayesian method applied to estimate unknown parameters. An application to
the acarine predator-prey system Phytoseiulus persimilis - Tetranychus urticae is
presented in Section 4. Finally, Section 5 collects concluding remarks.

2. The model. We consider, on the time interval [0, T ], a predator-prey stochastic
system described by the following equations

{
dxt = [rxt(1− xt)− byt (1− e−q0xt)] dt+ bσyte

−xtdw
(1)
t + εxtdw

(2)
t

dyt = yt [b′ (1− e−q0xt)− u] dt− b′σyte−xtdw(1)
t + ηytdw

(2)
t

(1)

with initial condition (x(0), y(0)) = (x0, y0) and where xt and yt are the biomass
of prey and predator at time t per habitat unit (plant) normalized with respect to
the prey carrying capacity per habitat unit; r is the maximum specific growth rate
of the prey, b is the maximum specific predation rate, b′ (b′ < b for the conversion
efficiency) is the maximum specific predator production rate, u is the specific preda-
tor loss rate due to natural mortality and q0 is a measure of the efficiency of the
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predation process [4]. The lumped parameters r, b, b′, u (thoroughly described in
[4]) are known, as the initial condition (x0, y0). The Ivlev [18] nonlinear functional
response (1− e−q0xt) contains the unknown parameter q0 to be estimated. More-
over, also the parameters σ, ε and η have to be estimated. The first diffusion term
in both equations represents the behavioral stochasticity which affects search and
capture processes. It can be obtained supposing that the Ivlev functional response
(1− e−q0xt) of the deterministic term is subject to random fluctuations so that(

1− e−q0xt
)

=⇒
(
1− e−q0xt

)
+ σe−λxtξt

where ξt is a Gaussian white noise and λ is a positive parameter. The Ivlev func-
tional response is an increasing function of xt which converges to 1 as the prey
biomass increases. The fact that q0 is unknown only affects the slope of the curve
but not its shape. All the possible functional responses, obtained for different values
of q0, are similar for large values of xt. It is therefore natural to consider an effect of
random fluctuations more pronounced for small values of xt and then decreasing for
large values of xt; this is also an expected outcome for the random search process of
the predator. The parameter λ allows to set the threshold at which the fluctuations
become negligible. Since our aim is to obtain small fluctuations for values of xt near
one, it would be better to choose λ ≤ q0. For simplicity, we choose λ = 1.

The second diffusion term in both equations can be interpreted as environmental
stochasticity deriving from environmental variables fluctuation [25]. This type of
stochasticity is proportional to the prey and predator population abundance for the
first and second equation, respectively.

We denote by θ = (q0, σ, ε, η) the vector of parameters. The main goal of the
paper is the illustration of an efficient method to estimate θ. A prior distribution
will be specified on θ and inference will be performed based upon its joint posterior
distribution.

For simplicity, we write system (1) in vectorial form

dXt = µ (Xt, θ) dt+ β (Xt, θ) dWt (2)

where Xt = [xt, yt]
T

,

µ (Xt, θ) =

[
rxt(1− xt)− byt (1− e−q0xt)

yt [b′ (1− e−q0xt)− u]

]
, β (Xt, θ) =

[
bσyte

−xt εxt
−b′σyte−xt ηyt

]
.

(3)
The coefficients µ and β satisfy the conditions for the existence and uniqueness

of a strong solution of a stochastic differential equation (see, for example, [23]).
Remark that parameter θ appears both in drift and diffusion coefficients. The pres-
ence of θ in the diffusion term makes estimation, through MCMC methods, more
difficult. Golightly and Wilkinson [15] and Roberts and Stramer [26] emphasize
that, when the diffusion term depends on the parameter θ, the convergence of the
MCMC algorithm is slow. In particular, when the diffusion coefficient depends on
θ, there is dependence between the quadratic variation and the diffusion coefficient.
This fact results in long mixing times of MCMC algorithms. Roberts and Stramer
[26] overcome this dependence by transforming the stochastic differential equation
in an equivalent equation with constant diffusion coefficient. In this case, as in many
nonlinear multivariate diffusions, this transformation cannot be applied. Golightly
and Wilkinson [15] propose an MCMC algorithm based on alternative sampling
from the parameter posterior distributions and the Brownian motion (instead of
the latent data). MCMC algorithms are widely used in Bayesian statistics to get
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a sample from the posterior distribution. They are based on Monte Carlo simula-
tions with draws at each step depending on the ones at the previous step (Markov
property). Theoretical results prove that the posterior distribution is the invariant
measure of the Markov chain, whereas tools have been developed to assess if values
drawn from the Monte Carlo simulation can be considered as a sample from the
posterior distribution, e.g. removing dependence on the initial values (“burn-in”),
decorrelating the draws (taking one draw every n) and performing diagnostics tests
on the sample valued. A detailed illustration of MCMC algorithms can be found
in, e.g., [10]. In our case, in each step of the simulation we draw the parameters,
one at the time, from their conditional posterior distribution and latent data in the
whole time interval. This is a particular MCMC algorithm, called Metropolis within
Gibbs algorithm. It is similar to those presented in [12] where the slow convergence
did not give practical problems for a set of data comparable with the datasets used
in the current work.

3. A Bayesian algorithm to estimate θ. As well known, in the Bayesian setting
estimation of parameter θ is based on its posterior distribution, obtained starting
from a prior distribution of θ and a set of field observations. Since posterior distri-
bution of θ cannot be found in closed form, we will have to resort to apply MCMC
methods and use a sample from the algorithm to estimate parameters.

3.1. The posterior distribution. We introduce a prior distribution for the un-
known vector θ. Denote by X̂ = (X0, X1, ..., Xp) the vector of observations; then,
due to Markovianity of the process X, the posterior distribution of θ is given by

π
(
θ|X̂

)
∝ π(θ)

p∏
i=1

f (Xi|Xi−1, θ) (4)

where

f (Xi|Xi−1, θ) ∝
∣∣∣[β (Xi−1, θ)β

T (Xi−1, θ)
]−1∣∣∣ 12

· exp

{
−1

2
[Xi −Xi−1 − µ(Xi−1, θ)∆i]

T [
∆i β (Xi−1, θ)β

T (Xi−1, θ)
]−1

(5)

[Xi −Xi−1 − µ(Xi−1, θ)∆i]
}

; ∆i = ti − ti−1

is the conditional distribution of Xi given the observation at previous time and the
value of the parameters.

Substituting µ and β of (3) in (5) and recalling that Xi = [xi, yi], after some
straightforward, but cumbersome, calculations, we obtain

f (Xi|Xi−1, θ) ∝
exi−1

σyi−1 (b′εxi−1 + bηyi−1)
· exp

{
−1

2

e2xi−1

σ2∆i (b′εxi−1 + bηyi−1)
2

·
[
−ηµxi−1 + εµyi−1

xi−1
yi−1

+ ∆ie
−q0xi−1 (b′εxi−1 + bηyi−1)

]2}
where

µxi−1 = xi − xi−1 − rxi−1 (1− xi−1) ∆i + byi−1∆i

µyi−1 = yi − yi−1 + (u− b′) yi−1∆i.
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We suppose, for simplicity, that the joint prior distribution is the product of
independent distributions

π(θ) = π(q0)π(σ)π(ε)π(η).

The discussion can be generalized to the case of a generic joint prior distribution
π(q0, σ, ε, η).

The expression of f(Xi|Xi−1, θ) suggests to choose π(σ2) as an inverse gamma
distribution, so that, given the observations and the value of the remaining param-
eters, we obtain an inverse gamma conditional posterior distribution for σ2. On the
contrary, even if we choose a known form for the prior distributions of q0, ε, and
η, their conditional posterior distributions, given the observations and the value of
the remaining parameters, will not have a known form.

The parameter q0 is positive since it measures the efficiency of the predation
process; therefore we choose a gamma prior for q0 because it is simple to deal with
and sufficiently flexible for the presence of two parameters (other prior distributions,
with positive support, can be alternatively considered). We suppose that parameters
ε and η are positive as well, so we choose again gamma priors for them for the same
reason. More precisely, we take

π(q0) =
λξ00

Γ(ξ0)
e−λ0q0qξ0−10

π(σ2) =
γα0
0

Γ(α0)

(
σ2
)−α0−1

e−
γ0
σ2

π(ε) =
λξεε

Γ(ξε)
e−λεεεξε−1

π(η) =
λ
ξη
η

Γ(ξη)
e−ληηηξη−1.

It follows that σ2 has an inverse gamma conditional distribution with parameters

α = α0 +
p

2
; γ = γ0 + γ1

where

γ1 =
1

2

p∑
i=1

e2xi−1

∆i (b′εxi−1 + bηyi−1)
2

·
[
−ηµxi−1 + εµyi−1

xi−1
yi−1

+ ∆ie
−q0xi−1 (b′εxi−1 + bηyi−1)

]2
.

3.2. The MCMC algorithm. A fundamental problem in dealing with discrete
observations and Euler approximation of (1), is to employ a sufficiently large number
of (real and latent) data to ensure that the discretization bias is arbitrarily small
(see [7], for a detailed discussion).

In many problems of population dynamics only few observations are available
due to difficulties and time required for data collection (e.g. a sample point per
week). In this case time intervals between observations are too large to guarantee a
good approximation of the maximum likelihood. To overcome this problem, many
authors suggest to generate additional data, in literature usually called latent data,
between two consecutive real observations (see, for example, [28, 8, 7, 15]). In this
work we will follow this procedure. In general, the MCMC method based on latent
observations is composed of three fundamental steps:
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1. draw a value for σ2 from the prior distribution π
(
σ2
)
;

draw a value for q0 from the prior distribution π (q0);
draw a value for ε from the prior distribution π (ε);
draw a value for η from the prior distribution π (η);

2. generate latent data between each pair of real observations using their poste-
rior density given the current value of θ;

3. sample a value for θ from its conditional posterior distribution through a
Gibbs algorithm:
sample a value for σ2 from its inverse gamma conditional posterior density;
sample a value for q0 from its conditional posterior density π(q0|X̂, σ, ε, η);

sample a value for ε from its conditional posterior density π(ε|X̂, σ, q0, η);

sample a value for η from its conditional posterior density π(η|X̂, σ, q0, ε).
Applying recursively steps 2 and 3, after an initial burn-in period, we obtain a
sequence of θ-values giving an approximation of the posterior densities of θ.

3.2.1. Step 2 of the MCMC algorithm. In step 2 of the MCMC algorithm, latent
data have to be generated. We follow the method proposed by Eraker [8] and then
applied by Golightly and Wilkinson [14] and by Gilioli et al. [12], among others. In
this method a diffusion bridge between data at two consecutive times ti and ti+1

is considered to generate latent observations. Here, as in [12], we update observa-
tions in blocks; more precisely we generate simultaneously latent data between two
consecutive real observations, as done also by Durham and Gallant [6].

We generate M equidistant latent data between each pair of real observations.
In particular, we introduce the same number of latent data in each interval between
two consecutive observations, independently of the different width of the intervals.
Another possible choice would be to introduce different numbers of latent data for
each interval to obtain equidistant latent data over all the whole interval [0, T ]. The
choice of the optimal M is generally suggested by an empirical study, as discussed
in next section.

Denote by Xj = (x(tj), y(tj)) a real datum at time tj , by X∗i = (x∗(ti), y
∗(ti))

a latent datum at time ti, and by Y =
(
X0, X

∗
1 , ..., X

∗
M , XM+1, ..., X

∗
n−1, Xn

)
the

matrix of all data, where n = pM + p+ 1 is the total number of observations.
At the first step we consider a “guess” value for θ drawn from the prior distribu-

tion π (θ) and generate latent data by means of a linear interpolation between two
consecutive real observations.

At this point we generate a new value for θ as shown in Step 3. Then we update
latent observations on the whole time interval [0, T ].

Suppose, at a generic step of the algorithm for the estimation of θ, to have
updated the observations up to Xk. We have to update the M -block X∗(k+1,k+M) =(
X∗k+1, ..., X

∗
k+M

)
. The conditional density of X∗(k+1,k+M) is given by

f
(
X∗(k+1,k+M)|Xk, Xk+M+1; θ

)
∝

k+M∏
j=k+1

π
(
X∗j |X∗j−1, Xk+M+1; θ

)
where X∗k = Xk and

π
(
X∗j |X∗j−1, Xk+M+1; θ

)
∝ P

(
Xk+M+1|X∗j ; θ

)
P
(
X∗j |X∗j−1; θ

)
∝
∣∣∣[β (X∗j−1)βT (X∗j−1)]−1∣∣∣ 12 ∣∣∣[β (X∗j )βT (X∗j )]−1∣∣∣ 12
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· exp

{
−1

2

[
X∗j −X∗j−1 − µ(X∗j−1; θ)∆j

]T (
∆j β(X∗j−1)βT (X∗j−1)

)−1
[
X∗j −X∗j−1 − µ(X∗j−1; θ)∆j

]}
· exp

{
−1

2

[
Xk+M+1 −X∗j − µ(X∗j ; θ) (tk+M+1 − tj)

]T
(tk+M+1 − tj)−1 (6)(

β(X∗j )βT (X∗j )
)−1 [

Xk+M+1 −X∗j − µ(X∗j ; θ) (tk+M+1 − tj)
]}
.

In general, this is not a density of a standard form, so we apply a Metropolis-

Hastings (M-H) algorithm to simulate from f
(
X∗(k+1,k+M)|Xk, Xk+M+1; θ

)
. In the

M-H algorithm a proposal density has to be specified. Then we sample a value from
this density and accept or reject it on the basis of the “acceptance probability” (see
[13], p. 5, for a detailed explanation of the M-H algorithm).

In this case the variables X∗j represent population abundance, so they must be
non negative. Then we choose a truncation of the bivariate normal distribution
used by Golightly and Wilkinson [16] and Durham and Gallant ([6], p. 305), as
proposal for the M-H algorithm

g
(
X∗(k+1,k+M)|Xk, Xk+M+1; θ

)
∝

k+M∏
j=k+1

I(0,∞)×(0,∞)(X
∗
j )

·N
(
X∗j−1 +

Xk+M+1 −X∗j−1
tk+M+1 − tj−1

∆j ,
tk+M+1 − tj
tk+M+1 − tj−1

∆j · β(X∗j−1)βT (X∗j−1)

)
.

This distribution is different from the truncated bivariate normal distribution
presented in [12]. In fact, here mean and variance of the proposal distribution
are obtained considering the modified diffusion bridge proposed by Golightly and
Wilkinson [16]. This approach is based on the diffusion bridge of Durham and
Gallant [6], which uses a discretization of the stochastic differential equation rep-
resenting the dynamics of the system. In [12] the mean of the truncated normal
distribution is simply obtained as average of two points: the positions at times
tk+M+1 and tj−1.

Suppose to dispose of all latent data and parameters at step s of the algorithm

used to estimate θ. Denote by X
∗(s)
(k+1,k+M) the value of X∗(k+1,k+M) at the sth

iteration. To calculate the value of X∗(k+1,k+M) at the (s+ 1)th iteration, we draw

a value w from the proposal density and we compute the acceptance probability to
decide if the candidate vector has to be accepted or rejected.

The acceptance probability, depending on the conditional density f and on the
proposal density g, is given by

α(X∗(k+1,k+M), w|Xk, Xk+M+1; θ) =

min

1,
f (w|Xk, Xk+M+1; θ) g

(
X
∗(s)
(k,m)|Xk, Xk+M+1; θ

)
f
(
X
∗(s)
(k,m)|Xk, Xk+M+1; θ

)
g (w|Xk, Xk+M+1; θ)

 .

We generate a uniform random number a.
If a ≤ α(X∗(k+1,k+M), w|Xk, Xk+M+1; θ) then we accept the candidate vector w and

set X
∗(s+1)
(k+1,k+M) = w, otherwise w is rejected and we keep the value of X∗(k+1,k+M)

at the s-th iteration setting X
∗(s+1)
(k+1,k+M) = X

∗(s)
(k+1,k+M).

At this point, we generate a new value for θ.
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3.2.2. Step 3 of the MCMC algorithm. To generate a value for σ we use the known
conditional inverse gamma distribution of σ2. The posterior distributions of q0, ε
and η have not a standard form, then we again use a M-H algorithm to sample from
them.

Let θ(s) be the value of the parameter at the generic iteration s. We have to
generate a value for θ at iteration s + 1. We apply a Gibbs algorithm to obtain
the parameters σ, q0, ε, η. In the Gibbs algorithm we generate the values of the
parameters recursively refreshing the conditioning variables. Since σ2 has a known
conditional posterior distribution, we start by generating σ2 from its inverse gamma
conditional posterior distribution. From this value we obtain σ(s+1). Then we draw

q
(s+1)
0 from π

(
q0|σ(s+1), ε(s), η(s)

)
, ε(s+1) from π

(
ε|σ(s+1), q

(s+1)
0 , η(s)

)
, and η(s+1)

from π
(
η|σ(s+1), q

(s+1)
0 , ε(s+1)

)
. It does not matter the order chosen here for the

update of q0, ε, η; any other order can work well. To obtain the values of the
last three parameters (q0, ε, η) we apply a M-H algorithm since their posterior
distributions are not of a known form. It follows that we apply a Metropolis within
Gibbs algorithm. To clarify the procedure, we illustrate it for the parameter q0.
Then analogous procedures can be followed for ε and η. Let ḡ (q0|Y, σ, ε, η) denote
the proposal density for the M-H algorithm relative to q0. Let q∗0 be a value drawn
from the proposal distribution. The acceptance probability is

ᾱ(q∗0 |Y, σ, ε, η) = min

{
1,
π(q∗0 |Y, σ, ε, η)ḡ(q0|Y, σ, ε, η)

π(q0|Y, σ, ε, η)ḡ(q∗0 |Y, σ, ε, η)

}
.

We generate a uniform random number a. If a ≤ ᾱ(q∗0 |Y, σ, ε, η), then set q
(s+1)
0 =

q∗0 ; otherwise set q
(s+1)
0 = q

(s)
0 .

The proposal distributions we choose for the M-H algorithms relative to q0, ε, η
are gamma distributions, a quite standard choice in this context.

4. Application to a field case. The parameter estimation procedure here pro-
posed is applied to a predator-prey system of primary importance for biological
control, the acarine system Tetranychus urticae-Phytoseiulus persimilis. The pop-
ulation dynamics is described by system (1) where parameters q0, σ, ε and η are
unknown. To test the efficiency of the method here described, it will be applied to
parameters estimation in case of simulated data. Then an application to observa-
tional data will be performed. Both posterior medians and means can be considered
as parameter estimates; we observe that here they have very similar values.

4.1. Datasets and model parameters. Datasets. To estimate the parameters
q0, σ, ε and η, a dataset of predator-prey dynamics has been purposely arranged
[11]. This dataset derives from an intensive biological control survey of the pest
mite Tetranychus urticae (prey) by the artificially introduced biological control
agent Phytoseiulus persimilis (predator) on a field annual crop of strawberry. Two
main problems were considered in the design of the experiment. Ivlev model de-
pends only on prey abundance; different initial conditions, in terms of predator-prey
ratio, have been considered to account for possible role of different predator-prey ra-
tios. Furthermore, since population dynamics are known displaying high variability
among experimental replications, availability of averaged dynamics from different
replications could regularize sampled trajectories. Accordingly, the experimental
design was organized as follows. Three independent population dynamics were es-
tablished in the same period in three different experimental fields A, B, C. The fields
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were located in the same area, with the same crop and are in the same agronomic
conditions. Time series from field A is used for parameter estimation. Then, the
estimated parameters are used in the dynamics (1) to simulate trajectories for fields
B and C, and compare them with observed data. In each field four isolated plots
were designed and a different predator-prey ratio was tested in each plot. Initial
prey condition in each plot was different but the four prey-predator ratios were the
same in the three experiments. The four dynamics in each field were considered as
replication at different densities of the same process and a single average predator-
prey dynamics was calculated. Time evolution of prey and predator abundance was
followed during the period in which the system develops on the host plant by means
of an intensive sampling protocol. Twelve local predator-prey dynamics (three fields
and four replications within field) were sampled. To obtain high precision in the
estimated abundance a large number of sample units (single leaf) were collected
and observed in laboratory using stereomicroscope to count individuals belonging
to each biological stage of the two species. Sampling variables are defined as prey
and predator biomass per plant. To convert numbers into biomass the procedure in
[4] was applied.

Biodemographic parameters. The biodemographic lumped parameters r, b and b′ in
system (1) have been estimated by Buffoni and Gilioli [4] starting from experimental
data obtained at individual level

r = 0.11 day−1 ; b = 0.88 day−1 ; b′ = 0.35 day−1 ; u = 0.19 day−1.

4.2. Simulated data. In this section we simulate data from model (1) with initial
conditions:

x0 = 0.1 ; y0 = 0.007,

final time tfin = 90 days, and parameters q0 = 6, σ = 0.05, ε = 0.09 and η =
0.05. We generate 20 observations, at equidistant times as average of 5 trajectories
obtained from system (1).

Now, we use these data as field observations for model (1) and try to estimate
parameters q0, σ, ε, and η through the MCMC algorithm described in Section 3.
We consider two different cases.
CASE 1). If we have information about the true values of the parameters (based on
experts’ assessment), we use the information and consider prior distributions with
mean near the true value of the parameter and small variance:
- parameter q0: gamma distribution with mean 6.5 and variance 3;
- parameter σ2: inverse gamma distribution with mean 4 · 10−4 and variance 10−9;
- parameter ε: gamma prior with mean 0.08 and variance 0.00001;
- parameter η: gamma prior with mean 0.04 and variance 0.000001.

The proposal densities at step s+ 1 of the MCMC algorithm are as follows:

- parameter q0: gamma distribution with mean q
(s)
0 and variance 0.5;

- parameter ε: gamma distribution with mean ε(s) and variance 0.000005;
- parameter η: gamma distribution with mean η(s) and variance 0.000005.

As parameter estimate we consider the mean of the parameter posterior distribu-
tion obtained performing 100,000 simulations with a burn-in of 50,000 simulations.
When introducing only one latent datum between two consecutive observations, the
parameter estimates are quite bad, but starting from 5 latent data there is a con-
siderable improvement (Table 1). The differences in the estimates between 20 and
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30 latent data are negligible, denoting convergence of the estimates; furthermore,
they are also very close to the true values of the parameters.

Table 1. Estimates of q0, σ, ε and η (mean of the posterior dis-
tribution) in the case of 20 data simulated from equation (1) and
prior distributions in CASE 1.

Latent True
data 1 5 10 20 30 values

q̂0 7.5550 6.6702 6.4176 6.2408 6.2198 6
σ̂ 0.0694 0.0475 0.0473 0.0499 0.0525 0.05
ε̂ 0.0907 0.0939 0.0897 0.0905 0.0897 0.09
η̂ 0.0502 0.0448 0.0499 0.0517 0.0503 0.05

Figure 1 shows the histograms of the posterior distributions obtained for 30 latent
data simulated between two consecutive observations. Histograms are obtained from
100,000 simulations with a burn-in of 50,000 simulations.

CASE 2). If we have an idea, not very precise, about the values of the parameters,
we choose prior distributions with mean that can be far from the true value of the
parameter and variances larger than those of the previous case. For example, using
the following prior distributions:
- parameter q0: gamma distribution with mean 10 and variance 5;
- parameter σ2: inverse gamma distribution with mean 2.5 · 10−4 and variance
1.6 · 10−9;
- parameter ε: gamma prior with mean 0.03 and variance 0.002;
- parameter η: gamma prior with mean 0.1 and variance 0.01;
and using the same proposal densities of the previous case, we obtain parameter
estimates in Table 2.

Table 2. Estimates of q0, σ, ε and η (mean of the posterior dis-
tribution) in the case of 20 data simulated from equation (1) and
prior distributions in CASE 2.

Latent True
data 5 10 20 30 values

q̂0 7.2590 7.1364 6.1846 6.0336 6
σ̂ 0.0278 0.0359 0.0408 0.0461 0.05
ε̂ 0.2106 0.1493 0.1320 0.0832 0.09
η̂ 0.1916 0.1382 0.0877 0.0523 0.05

The estimates show a convergence towards the true values even if more slow due
to “far” prior distributions. In the first case only 10 latent data are sufficient to
assure a good estimate, while in the second case it is necessary to use 30 latent data
to obtain a comparable approximation.

If we have no information about the true values of the parameters we can use
non informative priors. In this case a greater number of latent data is necessary to
obtain satisfactory estimates.
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Figure 1. Histograms obtained applying the MCMC algorithm
with 100,000 simulations, with burn-in of 50,000 iterations, taking
one value every 10 data, for 20 observations generated from model
(1) and 30 latent data between each couple of real data. Prior
distributions in CASE 1.

The efficiency of the method proposed is confirmed by the goodness of the fit
given by the trajectories of prey and predator reported in Figure 2. These trajecto-
ries are obtained considering the mean over 100 simulations of trajectories for each
one of 50 different values of the parameters q0, σ, ε, η drawn from their estimated
posterior distributions obtained for 30 latent data and prior distributions in CASE
1. We recommend to get 10 - 30 latent data since estimates seem to be robust.
Moreover, to support the goodness of the estimates and the fairly good mixing
properties of the Markov chain, the usual convergence tests have been applied [5].

4.3. Field data. In this subsection we consider the three datasets of predator-prey
dynamics described in subsection 4.1.

As already said, to reduce variability among different trends in the four predator-
prey dynamics of each field, the predator and prey abundance per habitat (single
plant) unit, normalized with respect to the prey carrying capacity for spatial unit,
have been considered.

4.3.1. Parameter estimates. Time series from field A have been used for model
parameters estimation. The estimation procedure has been restricted to the first
population cycle of the prey under predator control, from the 2nd to the 9th weekly
observation in the time series. Restriction in the considered time series is justified
as follows. First, the necessity to consider homogeneous biological and ecological
processes operating in the system, avoiding phenomena such as very low population
density that could modify predator functional response and prey growth (i.e. un-
dercrowding effects), and may require modification of model (1). Secondly, model
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Figure 2. Prey and predator biomass as function of time, for
30 latent data. Trajectories are obtained considering the mean
over 100 simulations and 50 values of the parameters q0, σ, ε and
η drawn from their estimated posterior distributions. Asterisks
denote simulated data. Prior distributions in CASE 1.

(1) assumes predator-prey systems are in a relatively constant environment both
in terms of environmental forcing variables and plant resource condition. For the
latter, in particular during the late phase of population dynamics, it can be hypoth-
esized that the plant withering may switch the system to other dynamical patterns
for which model (1) is likely to be unfit.

The initial condition for the prey in field A is given by x0 = 0.088; while the
predator is introduced in the system after 9 days. The biomass of introduced
predator, at time t = 9, is y9 = 0.0035.

The prior distributions are chosen as follows:
- parameter q0: gamma distribution with mean 10 and variance 2;
- parameter σ2: inverse gamma distribution with mean 4 · 10−4 and variance 10−9;
- parameter ε: gamma prior with mean 0.02 and variance 0.00001;
- parameter η: gamma prior with mean 0.02 and variance 0.00001.

The proposal densities at step s+ 1 of the MCMC algorithm are as follows:

- parameter q0: gamma distribution with mean q
(s)
0 and variance 0.5;

- parameter ε: gamma distribution with mean ε(s) and variance 0.00005;
- parameter η: gamma distribution with mean η(s) and variance 0.00005.

The estimates for parameters q0, σ, ε and η are calculated for different values of
latent data and reported in Table 3. As estimate we have chosen the mean of the
posterior distribution (which is very similar to the posterior median); the posterior
distributions for 30 latent date are represented in Figure 3 (for 5 - 20 latent data,
histograms of the posterior densities are very similar to those in Figure 3).
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Figure 4 shows prey and predator trajectories for different values of latent data.
The trajectories are obtained considering the mean over 100 simulations of trajec-
tories for each one of 50 different values of the parameters q0, σ, ε and η drawn from
their estimated posterior distributions. It can be seen from the simulated trajecto-
ries that there are not great differences between the trajectories obtained using the
different set of estimates in Table 3. It also follows, as pointed out in Section 2, that
in this case the problem of long mixing times of MCMC algorithm is not relevant.
All the trajectories reported in Figure 4 show a good fit of the observations, for a
number of latent data between 5 and 30.

We observe that for q0 > 0.8, the deterministic system admits a stable coexistence
state as equilibrium point. If follows that the trajectories of prey and predator,
solutions to stochastic system (1), fluctuate around this deterministic equilibrium.
In the figures of the present section this behavior is not evident because we limit
our study to the first cycle of the system and at this point the predator takes very
low values.

Comparison between field data and simulated trajectories has been conducted
using some numerical indexes summarizing important information on potential prey
impact on the crop; these indexes are also applied to predator population expressing
the capacity for the biological control agent to control the pest.

1. Smax: maximum size of the population.
2. tmax: time required to reach the maximum population size.
3. t0.5: time required to halve the maximum size of the population.
4. t0.1: time required to reduce the population to one tenth of its maximum size.
5. The integral of the abundance up to t0.1: it represents the population pressure

on the resource.
6. The residual, that is the square root of the sum of the square differences

between observed and simulated data at the observation times.

Table 4 reports the values of these indexes for simulated trajectories in Figure 4
for data from field A, in the case of 20 latent data. Apart from the case of the
maximum value of the predator abundance, a close agreement between indexes in
experimental and simulated data is observed. The residuals are very low for both
the prey and the predator strengthening that observed population dynamics is well
approximated by the simulated trajectories.

We remark that the time required to generate the posterior distribution for 30
latent data and 100,000 iterations of the algorithm is about 10 minutes with a
FORTRAN program on a AMD Athlon MP 2800+, 2.25 GHz processor.

Table 3. Estimates of q0, σ, ε and η (mean of the posterior dis-
tribution), in the case of field observations (field A), for different
values of latent data.

Latent
data 1 5 10 20 30

q̂0 9.309 6.7421 6.2795 6.3719 5.8677
σ̂ 0.1312 0.0995 0.0921 0.0987 0.1009
ε̂ 0.0486 0.0562 0.0658 0.0641 0.0569
η̂ 0.0221 0.0308 0.0387 0.0416 0.0522
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Figure 3. Histograms representing the posterior distributions of
parameters q0, σ, ε and η, for field A, obtained applying the MCMC
algorithm with 100,000 simulations, with burn-in of 50,000 itera-
tions, taking one value every 10 data, and 30 latent data between
each couple of real data.

Table 4. Indexes representing key-aspects of prey and predator
population dynamics. 2nd column: maximum abundance Smax.
3rd column: time required to reach Smax. 4th column: time re-
quired to halve Smax. 5th column: time required to reduce the
population to one tenth of Smax. 6th column: integral of the curve.
In the case of field data the integral of the curve is obtained linking
the field data with segments. 7th column: residual (square root of
the sum of the square differences between simulated and observed
data). Indexes are relative to 20 latent data.

Smax tmax t0.5 t0.1 Integral Residual
(days) (days) (days)

Simulated
prey 0.4907 27.21 37.34 43.37 13.1086 0.0929

Observed
prey 0.5044 27 36.26 48.09 12.7152

Simulated
predator 0.1135 39.32 46.86 56.61 2.0338 0.0455
Observed
predator 0.1424 42 47.53 55.64 2.2678
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Figure 4. Prey and predator biomass as function of time in field
A, for different values of latent data. Trajectories are obtained
considering the mean over 100 simulations and 50 values of the
parameters q0, σ, ε and η drawn from their estimated posterior
distributions. Asterisks denote field data.

4.3.2. Posterior predictive estimation of trajectories. Fields B and C are distinct,
but close, from field A and they all share similar agro-ecological characteristics.
Furthermore data in the three fields were collected at the same times and all of
them were the average of four dynamics, as pointed out previously. Finally the
initial conditions of prey and predator are quite close. For those reasons, we think
it is possible to consider data from the three fields as similar and we can apply the
same model (1) and the posterior distribution from field A to make forecast on the
dynamics in fields B and C.

Therefore, we consider data from field A as a training set and we use the param-
eters posterior distribution based on them, obtained in the previous subsection, to
forecast the dynamics of prey and predator in the fields B and C, considered as test
sets. In particular, we draw 50 values for θ from its posterior distribution; then,
for each θ, we generate 100 trajectories using model (1) with the initial values of
biomass in field B (or C) and, finally, we average over all trajectories. The mean
trajectory is compared with field data.

In field B the average initial conditions are x0 = 0.1408 and y9 = 0.0011. Figure
5 shows the trajectories of prey and predator obtained considering the mean over
100 simulations of trajectories for each one of 50 values of the parameters q0, σ, ε
and η drawn from the posterior distributions obtained for field A in case of 20 latent
data. In field C we start from the initial conditions x0 = 0.1207 and y9 = 0.0017.
Figure 6 shows the trajectories of prey and predator obtained considering the mean
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Figure 5. Prey and predator biomass as function of time in field
B. Trajectories are obtained considering the mean over 100 simu-
lations and 50 values of the parameters q0, σ, ε and η drawn from
the estimated posterior distributions of field A relative to 20 latent
data. Asterisks denote field data.

over 100 simulations for each one of 50 values of the parameters q0, σ, ε and η drawn
from the posterior distributions obtained for field A in case of 20 latent data.

In general we observe that simulated trajectories satisfactorily approximate the
experimental data, especially for the predator population. In particular, in both
cases we have a good approximation of the time required to reach the maximum
predator abundance. There is also a good approximation of the time required for
the prey decrease towards zero.

We claim that the Bayesian method here proposed is not only able to give good
parameter estimates for a training dataset, but the estimated parameters allow to
forecast prey and predator dynamics with a good approximation in test datasets,
obtained in similar experimental fields.

4.4. Estimates from field B. Since the three fields A, B, C have the same agro-
ecological characteristics, we might expect that direct estimates on field B, for
example, give similar results than prediction on field B starting from parameters
estimated in field A. To verify this conjecture we consider field B data and apply the
estimation procedure described in section 3. Results, for different values of latent
data, are summarized in Table 5.

As in the previous subsection, we draw 50 values of the parameters from their
conditional posterior distributions obtained for 20 latent data and consider 100 tra-
jectories obtained using model (1) with these parameters. The mean trajectories
obtained are compared, in Figure 7, with the predicted trajectories in Fig. 5. Dif-
ferences are negligible, in fact, residuals for the prey are 0.3693 in case of prediction
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Figure 6. Prey and predator biomass as function of time in field
C. Trajectories are obtained considering the mean over 100 simu-
lations and 50 values of the parameters q0, σ, ε and η drawn from
the estimated posterior distributions of field A relative to 20 latent
data. Asterisks denote field data.

Table 5. Estimates of q0, σ, ε and η (mean of the posterior dis-
tribution), in the case of field observations (field B), for different
values of latent data.

Latent
data 10 20 30

q̂0 6.5936 6.7384 6.4621
σ̂ 0.0956 0.1008 0.0997
ε̂ 0.0454 0.0476 0.0440
η̂ 0.0559 0.0627 0.0724

and 0.3257 in case of direct estimate, while for predator residuals are 0.0686 in case
of prediction and 0.07 in case of direct estimate. The small differences in residuals,
confirm the fact that direct estimate gives results similar to prediction starting from
estimates on field A.

Now, using posterior densities obtained from direct estimate in field B, we predict
trajectories in field A. Figure 8 shows the comparison between trajectories estimated
starting from data of field A (represented also in Figure 4 with a continuous line) and
trajectories forecast using estimates of field B. The behavior of the trajectories are
similar; we observe only a little advance in the time required to reach the maximum
predator abundance.
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Figure 7. Prey and predator biomass as function of time in field
B. Trajectories are obtained considering the mean over 100 simula-
tions and 50 values of the parameters q0, σ, ε and η drawn from the
estimated posterior distributions relative to 20 latent data. Aster-
isks denote field data. Continuous line: direct estimate on field B.
Dashed line: predicted trajectories, starting from estimated poste-
rior distribution on field A.

5. Concluding remarks. In this work, we follow a Bayesian approach for param-
eter estimation and forecast in a stochastic predator-prey model with a nonlinear
functional response.

As far as parameter estimation is concerned, the major novelty introduced in the
paper is the consideration of the non-linear Ivlev’s functional response which takes
into account predator physiological saturation and admits three equilibrium points
with different stability properties, depending on the values of the parameters. To the
best of our knowledge, the problem of statistical parameter estimation in a predator-
prey model with functional response of Ivlev type, based on time series of field data,
has never been considered, not only in a Bayesian framework. Parameter estimation
is performed considering the stochastic version of a predator-prey model and the
estimation concerns four model parameters: a behavioral parameter appearing in
the functional response and three parameters related to environmental stochasticity.
The stochastic model presents some advantages with respect to the non-stochastic
model. In fact, from the comparison between the trajectories of the stochastic
model and those of the deterministic model (not shown in this paper), it can be
seen that, even if the non-stochastic model gives a good fit of field data, its residuals
are larger than those of the stochastic model: 0.1470 for the prey and 0.0539 for
the predator in the deterministic model and 0.0929 for prey and 0.0455 for the
predator in the stochastic model (see also Table 4). The need of introducing and
estimating environmental stochasticity is based on the ecological meaning of the
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Figure 8. Prey and predator biomass as function of time in field
A. Trajectories are obtained considering the mean over 100 simula-
tions and 50 values of the parameters q0, σ, ε and η drawn from the
estimated posterior distributions relative to 20 latent data. Aster-
isks denote field data. Continuous line: direct estimate on field A.
Dashed line: predicted trajectories, starting from estimated poste-
rior distributions on field B.

stochastic terms that could take into account for perturbations in both predator and
prey population dynamics. Such perturbations are due to change in environmental
driving variables and factors not explicitly considered in the model (e.g., the effect of
temperature and rainfall variability that affects all the biodemographic processes).
This guarantees a greater flexibility of the model.

Since the number of available data is small, we opt for a Bayesian estimation
method based on a MCMC algorithm. This method is similar to the one presented
in [12] for the estimation of a single parameter, but with a different proposal dis-
tribution for the generation of latent data. The proposed algorithm performs fairly
well in estimating the parameters, in terms of both computational time and accu-
racy (as shown by the usual convergence tests applied to the samples drawn from
the MCMC algorithm). The small number of field observations seems to have a
limited effect on the estimates, as well.

A remarkable result is given by the posterior predictive estimation which allows
us to forecast the dynamics of prey and predator sampled in fields similar, in terms
of initial population and agronomic conditions, to those used for the parameter
estimation. The estimated curves show a fairly good qualitative behavior when
compared with observed data. Although the forecast concerns only two fields, it
suggests that for fields with analogous properties the model can be able to pre-
dict, with a good approximation, the dynamics of prey and predator. This is also
confirmed by the study carried out changing the role of the fields. In fact, similar
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results are obtained performing the estimation on one of the two fields previously
used for prediction and then predicting the trajectories on the field initially used
for estimation.

In order to test model suitability to describe population dynamics in different
conditions it would be important to validate the model in different combination
of population densities and experimental conditions. Nevertheless, this would be
problematic due to the high cost for data collections in natural setup. However,
collecting data from many experimental dynamics remains the only possibility for
the generalization of model forecast capability.

Even considering the limited available dataset, the model was able to capture
all the essential qualitative aspects of the predator-prey dynamics as shown by
indexes summarizing important population dynamics characteristics (time to reach
the maximum abundance and densities at the population maxima, and time and
mode of prey decline as effect of predation) providing indication of model forecast
capability.

In the present work we consider an Ivlev functional response because, with respect
to other functional responses with the same properties, it offers the advantage of
considering only one parameter. It is, however, possible to extend the study to other
functional responses, for example the Holling II. In this case we will have additional
complexity due to the presence of new parameters to be estimated.

The obtained results can be of particular importance for the design of environ-
mentally sound and effective means of reducing or mitigating pests and pest effects
through the use of natural enemies acting as predators in agro-ecosystems. In
fact, biological control programs could benefit from predator-prey models support-
ing decision on timing and amount of control agent release. When model forecast
capability is generalizable to a wider range of initial conditions then computer simu-
lations can be performed for the design of biological control strategy. In particular,
predator-prey model (1) can be considered as constraint in a stochastic control
problem where we have to maximize producer utility, expressed in term of increase
of crop production and decrease of costs. This analysis could be of great importance
in making biological control more rational and effective.
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