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Generation of unipolar pulses from nonunipolar optical pulses in a nonlinear medium
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A unipolar electromagnetic pulse is a pulse with nonzero value of the static component of the Fourier spectrum
of its real electric field (and not its envelope). We show how to efficiently generate unipolar pulses through
propagation of an initially nonunipolar pulse in a nonlinear optical medium. One of the major results is the
demonstration that the static component can only be generated in equal portions between the forward- and
backward-traveling waves in the presence of nonlinear backscattering in a nonlinear medium.
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I. INTRODUCTION

A sequence of intense unipolar electromagnetic pulses
may coherently accelerate electrons in a plasma, as proposed
in Ref. [1]. This publication was followed by an intense
discussion on the possible applications of nonunipolar pulses:
see for instance in Refs. [2–4], to mention just a few. In the
literature, many authors have expressed their strong doubts that
unipolar pulses, even if they may exist as a formal solution to
the Maxwell equations, can ever be generated by means of
practically available sources. This paper is aimed at resolving
this long-standing controversy by demonstrating, through
approximation-free direct numerical solutions of Maxwell’s
equations, that the generation of unipolar pulses is indeed
possible by injecting in a nonlinear medium an initially
nonunipolar pulse from a “conventional” laser source. By
the term conventional we define the source which delivers
nonunipolar pulses.

II. PHYSICAL CONSIDERATIONS

Unipolar electromagnetic pulses are understood here in
a broad sense, namely as pulses with nonzero value of the
electric field area

AE(z) ≡
∫ +∞

−∞
dt E(z, t) , (1)

where E is the electric field strength and t time. By taking the
Fourier transform of the electric field E(z, t) as Ē(z, ω) =∫
dt exp(iωt)E(z, t) and comparing with Eq. (1), we can

see that the condition of nonzero area means that the static
Fourier component of the electric field is different from zero:
Ē(z, ω = 0) �= 0. Here, we shall only consider for simplicity
the one-dimensional geometry involving the longitudinal co-
ordinate z and reserve a comment on the full three-dimensional
configuration till the end. The one-dimensional model can be
justified by considering a pulse propagating in a nonlinear
medium, which is enclosed into a waveguide without cut-off
frequency, such as for instance a metallic coaxial waveguide.

Oftentimes in the literature on generation of few-cycle
pulses a difference is made between the two following
representations of the electric field: Esin(t) = A(t) sin(ω0t) and
Ecos(t) = A(t) cos(ω0t), where A(t) is an envelope (not nec-

essarily slowly varying), for instance described by Gaussian
function, and ω0 a central frequency. For any time-symmetric
envelope, the first representation yields zero electric area,
while the second representation yields nonzero area. Most
treatments of few-cycle pulses appear cautious of dealing with
nonzero area pulses: typically it is explicitly or implicitly
assumed that pulse tails [which are not included in the
expression of Ecos(t) = A(t) cos(ω0t)] are present so that the
static component of the pulse is exactly compensated to zero.
Moreover, in many studies on few-cycle pulses an important
assumption in the derivation of approximate equations of
motion is the requirement that the electric field area is exactly
equal to zero, without, however, laying convincing physical
grounds for such supposition. The lack of a clear understanding
of which physical situations permit one to safely suppose that
AE = 0, as opposed to what circumstances may enable the
emergence of a sizable static Fourier component of the electric
field, is the motivation behind our study.

A common argument against the possibility of generating
the static component is based on the following analysis of the
one-dimensional wave equation in its general form:(

c2∂2
z − ∂2

t

)
E(t, z) = 4π∂2

t P (t, z). (2)

By taking the Fourier transform of the previous equation,
one obtains that its right-hand side vanishes for ω = 0, so
that ∂2

z E(ω = 0, z) = 0. As a result, the commonly accepted
conclusion is that the static component of the electric field
cannot be amplified (or absorbed) in the course of pulse
propagation through any medium. Although being delusively
straightforward, as we shall see in this paper, such simple
conclusion turns out to be false. As a matter of fact, we will
show that: (i) the static component is always generated in
a nonlinear medium; (ii) at the same time such generation
process is fully compatible with the wave equation.

Let us start by writing Maxwell’s equations for the linearly
polarized electric E(z, t) and magnetic H (z, t) fields incident
from vacuum on a slab of a nonmagnetic medium (H = B)
without free charges and electric currents:

∂tD + ∂zH = 0 and ∂tH + ∂zE = 0, (3)

where the speed of light c is set to unity. Here the displacement
field D accounts for the medium polarization P : D =
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FIG. 1. Sketch of a typical optical experiment, showing the pulse
incident from vacuum on the boundary with a medium: (a) before
interaction (t = −T → −∞); (b) after interaction (t = T → ∞).
Throughout all simulations, we set the linear refractive index n of the
nonlinear medium equal to unity in order to avoid any linear Fresnel
reflection. A similar goal can be achieved for n different from unity,
provided the nonlinear medium is surrounded by a linear medium
with the same refractive index (index matching).

E + 4πP . Following Ref. [5], we may formulate the area
theorem for the electric field in the form

d

dz

∫ +∞

−∞
dtE(z, t) = 0, (4)

which is derived under the assumption that E vanishes at
t → ±∞, i.e., the radiation is in the form of a time-localized
pulse. It is rather common to draw from this equation the
immediate conclusion that if AE is set to zero at z = −z0, then
it stays zero for all following points in space. The drawback
of this conclusion is that AE(z = −z0) is not a priori a known
value, i.e., before the propagation problem is fully solved:
in order to find AE(z = −z0), we need to know the profile
of E from t = −∞ to +∞. By looking at the sketch in
Fig. 1, we can see that the pulse passes through the point
−z0 twice: first, before the interaction, and then after. Even if
the medium has no sharp boundaries, a back-reflected wave
is always continuously generated while the pulse propagates
through a nonlinear medium. Therefore, AE(−z0) may only
be known after fully solving the pulse propagation problem.
The same conclusion applies at any other point in space.
Strictly speaking, Eq. (4) cannot be considered as an evolution
equation. This is because time t and not space z is the
proper evolution variable for propagation problems based on
Maxwell’s equations. On the other hand, the area theorem

d

dt

∫ +∞

−∞
dzH (z, t) = 0, (5)

which was derived in Ref. [6] for the magnetic field area AH ≡∫ +∞
−∞ dzH (z, t), is indeed a proper evolution equation. On the

basis of Eq. (5), we may predict that if before the interaction
(at t = −T ) the magnetic field area was zero, then it stays
zero at all later times, that is during and after any interaction

with a medium. Thus, for any electromagnetic pulse from a
conventional laser source, we may always set AH = 0.

In this respect, we may note that the wave equation in
the form ∂2

z E(ω = 0, z) = 0, discussed above, similarly to
Eq. (4), is not a proper evolution equation. Therefore, the
wave equation is unappropriate to describe the dynamics of
the static component, as it yields the same conclusions as the
area theorem in the form of Eq. (4).

III. GENERATION OF THE STATIC COMPONENT
IN A QUADRATIC MEDIUM

The previous discussion shows that the only conclusion that
can be derived from Eq. (4) is that at all points in space the
static Fourier component of the electric field is equal to one and
the same value. We are about to show that this value is always
different from zero when a pulse interacts with a nonlinear
medium. In particular, significant nonzero electric field area
may be generated in a quadratic medium, i.e., whenever the
nonlinear polarization reads as P = P (2) = χ (2)E2. As we are
going to show next, the optical rectification process (ω − ω)
(which is known to lead to the generation of low-frequency
radiation) introduces a zero-frequency component in the
electric field of the reflected and transmitted pulses, however,
not in a trivial way.

The finite difference time domain (FDTD) method was
employed for integrating Maxwell’s equations with the goal
of solving the propagation problem shown in Fig. 2. In
Fig. 2, we plot the input pulse shape Ein as well as the pulse
shapes after the pulse has experienced an interaction with a
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FIG. 2. Pulse shapes (a) before and (b–d) after interaction with
the quadratic medium in the configuration shown in Fig. 1. The
input shape is given by Esin(z, t = −T ) = A(z) sin(k0z + φ0) with
A(z) = sech[(z − z0)/zp]. Here, ω0 = k0 = 1 (k0 being the central
wave number), zp = 1.25, z0 = 300, L = 50, 4πχ (2) max(Ein) =
0.01, and 2T = 1000. (b) Reflected shape; (c) transmitted shape; and
(d) reflected shape after low bandpass frequency filter. Throughout
all simulations, linear refractive index of the medium n = 1. The
frequency filter filters away frequencies above 1.5ω0. Ein(z) is the
profile of the incident field. The distance (time) is measured in
physical units of k0 (ω0). The field is normalized in such a way
that max(E) = 10−2/χ (2). For the example with GaAs, this means
that one unit is equal to 7000 V/m.
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quadratic medium with 4πχ (2) max(Ein) = 0.01. Key to our
analysis is the study of the reflected pulse, which is composed
of two subpulses. The leading (subsequent) subpulse is the
result of the reflection from the first boundary at z = 0
(second boundary at z = −L). A distributed reflection from
the interior of the medium takes place as well: its level is
50 times lower than the contribution from the boundaries,
therefore it is not visible on the scale of the figure. Note
that in vacuum temporal and spatial Fourier spectra coincide,
therefore the unipolar character in space entails an unipolar
property in time as well. The spectral content of each subpulse
in Fig. 2(b) mainly consists of two contributions. Namely,
low-frequency components and the second harmonic of the
incident pulse. By filtering away all but the low-frequency
components by means of a lowpass filter, we clearly observe
in Fig. 2(d) the unipolar character of each subpulse. Our
simulations show that the electric field area of the reflected
portion of the input pulse computed at z = −z0 is exactly
equal to the electric field area of the transmitted pulse that is
computed at z = z0 + L, namely AE = −0.000846. Indeed,
the computations confirm that in between these two points the
area has strictly the same value, in full accordance with the area
theorem in Eq. (4). Note that the areas of the two subpulses in
reflection do not exactly compensate for each other, as it may
look from visually inspecting Figs. 2(b) and 2(d). We also
confirmed by direct calculation that the magnetic field area
is conserved and stays equal to zero at all times, as dictated
by Eq. (5); see Fig. 3. However, when we separated the total
magnetic area in between reflected and transmitted waves, we
observed that the reflected and transmitted portions introduced
as (AH )ref = ∫ ∞

0 dz H and (AH )tr = ∫ 0
−∞dz H are (AH )ref(t =

T ) = −(AH )tr(t = T ) = 0.000864; see Fig. 3. Therefore, the
static component is shared in equal portions between forward-
and backward-traveling waves (with opposite signs for the
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FIG. 3. (Color online) Evolution of the total magnetic area AH

(dotted green), the magnetic area (AH )ref of the reflected portion of
the pulse (dashed red), and the magnetic area (AH )tr of the transmitted
portion of the pulse (solid black), as functions of time. Three stages are
shown. Stage I (from t = 0 till t ≈ 300): propagation in vacuum prior
to the interaction with the nonlinear medium. Stage II (from t ≈ 300
till t ≈ 400, the total interaction time with the nonlinear medium of
the forward- and backward-traveling waves being equal to 2L/c):
propagation through the nonlinear medium. Stage III (from t ≈ 400
further on): propagation of the forward- and backward-traveling
waves in vacuum after the interaction has finished. Parameters are
as described in the legend of Fig. 2.

magnetic field and equal signs for the electric one), and it is
only present owing to nonlinear backscattering.

It is important to note that neither the transmitted nor the re-
flected area in isolation defines the static component. Only the
total area defines the static component, because the static com-
ponent must be defined along the entire time axis (by the inte-
gral over H from −∞ to +∞ in time). The decomposition into
the transmitted and reflected areas is introduced merely for the
illustration of the dynamics of the magnetic field. So, the static
component of the magnetic field stays strictly zero at all times,
while the static component of the electric field is not zero.

IV. DISCUSSION

The latter observation deserves some elaboration. In a
weakly nonlinear medium (understood here as a medium
whose linear index of refraction is perturbed only slightly by
the nonlinear interaction with the field) the electromagnetic
field contains electric and magnetic fields in portions of
nearly identical intensity. This means that the spectrum of
the electric field approximately coincides with the spectrum
of the magnetic field. As it follows from the magnetic area
theorem, the value of the static component stays zero before,
during, and after the interaction of the field with a medium.
This conclusion is compatible with the observation that the
partial magnetic areas (AH )ref and (AH )tr are only different
from zero because of the flip of the sign of the magnetic field
upon reflection from the boundary, i.e., (AH )tr = −(AH )ref . In
contrast, the electric field does not flip its sign: as a result, the
value of the static component of the electric field is nonzero
on the entire z axis. As long as the medium is only weakly
nonlinear, we can write AE ≈ (AH )tr = −(AH )ref .

The conservation of the total magnetic field area AH (it
stays zero forever, if it is zero initially) implies that pulses
with nonzero partial (AH )tr and (AH )ref magnetic areas can
only be generated in pairs. The transmitted portion of this
pair has nonzero (AH )tr and it propagates forward. Whereas
the reflected portion has (AH )ref = −(AH )tr and it propagates
backwards. Therefore, in the unidirectional approximation
of electromagnetic field propagation, with initial conditions
set by a nonunipolar pulse, no static electric or magnetic
component may ever appear. Note that the reflected wave is a
necessary companion of any nonlinear interaction, even in the
absence of sharp boundaries, since a continuous distributed
reflection always takes place. As a consequence, we may
conclude that all unidirectional field propagation theories
suffer from the inaccurate description of the low-frequency
part of the pulse spectrum.

In our simulations, we observed that the value of the electric
field area grows larger when increasing the intensity of the
incident pulse. Another method of increasing the value of
the static Fourier component of the electric field is to
separate the two reflected subpulses. Supposing, for example, a
nonlinear medium optical thickness of 1 cm, the subpulses are
separated in time by 60 ps, which would permit to switch out
one of the subpulses by means of a fast (electro-optical) mod-
ulator. Another way to spatially separate the two subpulses is
by using oblique (as opposed to normal) incidence of the input
pulse into the nonlinear medium. In this way the two reflected
subpulses will travel along different spatial directions.
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It is possible to obtain some analytical insight into the
problem of generating nonzero area electric pulses by perform-
ing a perturbation study assuming that nonlinearity is weak;
see Appendix for detailed derivations. We solved the initial
boundary value problem of Maxwell’s equations for a short
electromagnetic pulse incident on a slab of nonlinear medium.
We applied the continuity condition for the electric and mag-
netic fields on both boundaries. As a representative example,
we consider the reflected wave, calculated in the given field
approximation. In this approximation, the polarization inside
the medium is supposed to be a function of the incident field
Ein(z − ct) at the boundary, as opposed to the exact local field
in the nonperturbative approach. The reflected pulse is simply

Eref(z − t) = π [P (z − 2L − ct) − P (z − ct)] (6)

(see Appendix A), where P = P (Ein) is an arbitrary nonlinear
polarization. Here the two terms in the right-hand side arise
from reflections at the two boundaries, similarly to what
was observed in Fig. 2(b). As follows from Eq. (6), in the
given field approximation the area of Eref appears to be zero.
Therefore, in the previously shown numerical results for the
case of a quadratic medium with P = P (2), the nonzero area
was obtained as a result of the interaction beyond the given
field approximation [indeed, the transmitted pulse shown in
Fig. 2(c) is sizably distorted as compared to the input shape in
Fig. 2(a)]. However, as expected, the area of each subpulse
in Eq. (6), χ (2)

∫
dtE2

sin(t), can be rather large. Actually,
because sin2(ω0t) = 1

2 [1 − cos(2ω0t)], the intensity of the
static component in each subpulse is as large as the intensity
of the second harmonic.

Equation (6) formally shows that the static component of
the polarization appears as a source of the electric field. This
observation stands in contrast with the common (and false)
argument, based on the observation that the source of the field
in the wave equation is the second time derivative of P , stating
that the static component of P cannot act as a source of the
electric field. As a matter of fact, the correct approach entails
representing the solution of the field in the form of a double
integral. This eliminates the double differentiation and sets
the bare P as the proper source of the field, as expressed by
Eq. (6).

Quite strikingly, we found that the generation of the static
Fourier component of the electric field in a cubic medium (with
P (3) = χ (3)E3) can also be very efficient, although in the given
field approximation [Eq. (6)] its intensity is zero, even for
each reflected subpulse. When using 4πχ (3) max(E2

in) = 0.01,
the simulation result shown in Fig. 4 reveals that the total
electric field area in between points (z0 + L) and −z0 is AE =
−0.0004 (when compared with the value of AE = −0.000846
that was obtained for a quadratic medium under similar
conditions). Figure 4 shows that the frequency filtered reflected
subpulses clearly exhibit a unipolar character, although this is
not as pronounced as in the quadratic medium.

For relatively narrow band pulses, the cascaded frequency
conversion processes (or higher harmonic generation), which
take place in a cubic medium, may only lead to odd harmonics
of the carrier frequency of the incident pulse. So, the generation
of the static component does not appear to be possible. On
the other hand, when using ultra-broadband pulses (e.g., a
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FIG. 4. Same as described in the legend of Fig. 2 but for the cubic
medium, P = χ (3)E3, with 4πχ (3) max(|Ein|2) = 0.01.

1.25-cycle pulse in the example of Fig. 4, such pulses recently
became available, see Ref. [7]), the nonlinear frequency con-
version within the initial spectrum may lead to the generation
of virtually any frequency, including the static component or
zero frequency. In other words, the ultra-broadband nature
of the incident pulse in our example explains the observed
highly efficient generation of the static Fourier component;
see Ref. [8].

In summary, our simulations have demonstrated the genera-
tion of the static Fourier component from an intense ultrashort
pulse that does not contain this component and incident on
either quadratic or cubic nonlinear media. As the nonlinearity
of any nonlinear medium can be expanded in a series on E,
thereby containing quadratic or cubic terms, or a combination
of both, we may conclude that the generation of the static
Fourier component of the electric field is a rather general
feature of the nonlinear interaction of the electromagnetic
field with nonlinear media. The intensity of the static Fourier
component grows larger when increasing the efficiency of the
frequency conversion process. Clearly, no new frequencies can
be generated in a linear medium. Note that our definition of
unipolar pulses via the requirement of the static component to
have nonzero value is more rigorous than the plain observation
of half-cycle bursts of radiation, which are followed by a tail
that in some cases may even fully compensate the area of
these bursts to zero. Moreover, according to this definition the
unipolar pulses are not necessarily half-cycle pulses, as those
observed, for instance, in Ref. [9]. As a matter of fact, the time
duration of unipolar pulses can be as long as desirable.

V. ABSORPTIVE AND DISPERSIVE
NONLINEAR MEDIUM

In the discussion presented above we were dealing with
a minimal model, in which the medium exhibited only
nonlinearity. However, in addition to its nonlinear properties,
media can be absorptive and also dispersive. In this section,
we shall study the efficiency of the generation of the static
component in presence of absorption and dispersion. First, let
us start with the absorption.
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Here, the absorption properties of the medium result from
the interaction of the electric field with free carriers. From a
practical point of view, this type of absorption is relevant to
semiconductors interacting with electromagnetic fields with a
carrier frequency below the bottom of the conduction band.
In this situation, the absorption of light by bound electrons is
inhibited, and only free electrons are able to absorb radiation.
Then, the wave equation for the electric field reads

∂2E

∂z2
− 4π

c

∂j

∂t
− ∂2D

∂t2
= 0. (7)

In its turn, the electric current obeys the Drude equation:

dj

dt
+ νj = ω2

p

4π
E. (8)

Here, ωp is the plasma frequency, ν is the frequency of
collisions of free electrons with ions and atoms. The model of
conductivity that is supplied by the Drude equation [Eq. (8)]
assumes the following form of the frequency-dependent
conductivity:

σ (ω) = ω2
p

4π

1

ν − iω
. (9)

As estimated in Ref. [6] for GaAs, ν ≈ 3 THz. Then, for an
infrared field with the central frequency ω0 = 300 THz, we
get rather a rather steep dispersion of the conductivity: being
σ (0) = ω2

p/4πν for the static field, the conductivity drops
down to σ (ω0) = ω2

pν/4πω2
0 = 10−4ω2

p/4πν at the central
frequency of the excitation field. Note that the condition of
causality expressed by the (not shown but implied) Kramers-
Kronig relation, does not allow us to separate the absorption
from dispersion. The two characteristics come hand in hand.

Figure 5(a) shows the value of the spectral power of the
static component in a quadratic medium with the inclusion
of the conductivity obtained by numerically simulating the
previously described model. For relatively small values of
the conductivity (i.e., 4πσ (0) < 0.1ω0), its influence on the
generation of the static component is negligible. This range
corresponds to semiconductors with moderate doping. For
heavily doped semiconductors, the conductivity may rise up
to 4πσ (0) ∼ 100ω0. As we can see from Fig. 5(a), with a
conductivity in this range the power of the static component

varies near the no-absorption value, with a minimum of about
four orders of magnitude less than in the no-absorption case
and with maximum of about two orders of magnitude larger
than in the no-absorption case. Higher values of conductivity
are quite rare for semiconductors and more characteristic to
metals. In this metallic limit, the static component is generated
rather inefficiently, even in reflection.

From the previously discussed results, it is quite difficult
to conclude whether the nonmonotonic dependence of the
spectral power of the static component should be attributed
to the absorptive properties of the conductive medium or to its
dispersive characteristics. In order to address this ambiguity,
we performed computations with ν = 100ω0, a value that
is hardly achievable for optical fields but that gives us the
possibility to study absorption in its pure form, i.e., without the
admixture of dispersion. In this case the effects of dispersion
are negligible when compared to absorptive effects.

In Fig. 5(b), we plot the same dependence as in Fig. 5(a)
but with ν = 100 instead of ν = 0.01. The overall decay of
the value of the static component takes place as a result of
the reduction of the efficiency of the process of nonlinear
frequency conversion. However, it is important to point out
that the spectral power of the static component is related to the
total reflected field, that is to simultaneously both subpulses in
reflection. These subpulses are π phase-shifted and therefore
their contributions are subtracted from each other. If for some
reason one of the subpulses becomes relatively smaller in
intensity, then the overall efficiency of the generation of the
static component is increased. This is exactly the case of
severe absorption, when the subpulse coming from the second
boundary is heavily absorbed, while the subpulse reflected
from the first boundary is not. This compromise between the
reduction of conversion efficiency leading to a reduction of
the spectral power on the one hand and the strong attenuation
of the second subpulse leading to the increase of the spectral
power on the other hand, explains the appearance of humps in
Fig. 5. Results shown in Fig. 5(a) are modified with respect
to the results shown in Fig. 5(b) by the additional influence of
dispersion.

Note that for very high values of conductivity, the principle
of equality of the static components generated in forward- and
backward-traveling waves no longer holds (red circles and

(a) (b)

FIG. 5. (Color online) The spectral power of the static component in the quadratic medium with conductivity as a function of the conductivity
normalized to the central frequency of the excitation field ω0: 4πσ (0)/ω0. Red circles (black squares) indicate the value of the spectral power
of the static component in the forward- (backward-)traveling wave. Other parameters are: 4πχ (2)Ein = 0.01, (a) ν = 0.01ω0; (b) ν = 100ω0.
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FIG. 6. (Color online) Spectral power of the static component in the quadratic medium with embedded two-level systems as a function
of the resonance strength α. Red circles (black squares) indicate the value of the spectral power of the static component in the forward-
(backward-)traveling wave. The inset shows the spectral power of the second harmonic of the forward-traveling wave for the same parameters
as in the main figure. Parameters are: the resonance line is centered at ωres = 2.5ω0, relaxation time of polarization γab = γa/2 = 0.005ω0,
where γa is the relaxation time of the upper level, the lower level is the ground level. Other parameters are as in Fig. 2, except that for figure
(b) the duration of the pulse is four times longer than in (a).

black squares do not coincide in Fig. 5). The reason is that the
magnetic portion of the electromagnetic field no longer copies
the shape of the electric field. Therefore, the conservation of
the total magnetic area and its equality to zero does not give
us any longer a hint of how the electric field behaves. Note
that in this limit of high conductivity, optical fields decay so
fast that nonlinearity has no chance to efficiently generate
new harmonics. Such nonlinear media are impractical and
are not used in optics. From this viewpoint, the principle
of equality of the static components in the forward- and
backward traveling waves is the principle which characterizes
all practically relevant situations.

In Fig. 5(b), we consider the case for which absorption
is greatly dominating over dispersion. It is instructive to
consider the opposite limit. Such a dispersive limit arises,
for instance, on a far-off-resonant wing of a resonant line of
a two-level system. The absorption is also present in this case
as demanded by Kramers-Kronig relations, but its magnitude
is much smaller than the value of dispersion. As a specific
model, we choose a quadratic medium with two-level systems
embedded in it. The resonance is located at ωres = 2.5ω0,
where ω0 is the central frequency of the excitation field. The
dimensionless resonance strength defined as α = 4πNd2/h̄ω0

determines the refractive index and the absorption coefficient.
Here, d is the dipole moment of the resonant transition and
N the concentration of the two-level systems. The steepness
of the dispersion and absorption is regulated by the response
function

F (ω) = ω0
γab + i(ω − ωres)

(ω − ωres)2 + γ 2
ab

, (10)

where γab = 0.005ω0 is the relaxation time of the polarization.
For α = 1, the index of refraction at ω = ω0 is ≈ (1 + 2/3),
while at ω = 0 it is only ≈ (1 + 1/4). This dispersion is strong
enough, so that we may cover a wide range of situations by
scanning α from 0 to 1.3, as in Fig. 6. As we can see, the role of
absorption is not crucial. Thus, in the process of transmission
through a medium, the pulse only loses 10% of its energy for
α = 1.3 in the case shown in Fig. 6(b).

The decaying character of the curves in Figs. 6(a) and 6(b)
with the increase of the dispersion is attributed to the temporal
spreading of the pulse. This spreading is accompanied by a
drop in intensity, therefore a degradation of the frequency
conversion results. The spreading and the drop in intensity
is not so pronounced for longer pulses; see Fig. 6(b) in
comparison with Fig. 6(a).

An important question is whether the process of generation
of the static component needs to be phase-matched. Our answer
is no. This conclusion is based on the analysis of Fig. 6
and its inset. We can see that the reduction of the spectral
intensity of the static component is negligible in comparison
with the two orders of magnitude decrease of the intensity
of the second harmonic, whose generation in its turn requires
phase-matching between the fundamental frequency and its
second harmonic.

VI. CONCLUDING REMARKS

We performed extensive simulations showing that the
generation of the static component of the electric field in a
dispersive medium is as efficient as in a dispersionless medium.
Therefore, this process appears to be qualitatively different
from any other harmonic generation process, in that it does
not require obeying phase-matching conditions. In addition,
our simulations also show that moderate levels of absorption
do not influence the static component generation effect.

In physical units, our example of a quadratic medium would
correspond to the case of a 12 fs pulse at the carrier wavelength
of 3.31 μm with a peak intensity of 10 MW/cm2 incident
on a 26-μm-thick slab of GaAs with χ (2) = 138 pm/V, [11].
Whenever the subpulses in reflection are not separated, the
spectral power of the static component is 3 × 10−7 lower than
the peak spectral power at the fundamental frequency. On the
other hand, if the subpulses are resolved, then the conversion
efficiency into the static electric field component is 25 times
larger. Experimentally, the low-frequency part of a reflected
pulse (below 0.1 THz) can even be resolved by electronics, as
it was done in the classical experiment on optical rectification;
see Ref. [12].
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So far, our analysis was restricted to the one-dimensional
geometry, as we assumed the use of a waveguide configuration
in order to combat diffraction. In free space, the dynamics of
the unipolar pulses are essentially three-dimensional because
of the short diffraction length which is characteristic to the low-
frequency components of the Fourier spectrum of a unipolar
pulse. As a matter of fact, the diffraction length vanishes for
the static component, which diffracts as a spherical wave. At
the same time, the high-frequency portion of the spectrum
diffracts at a substantially slower rate. As a consequence of
the strong asymmetry in the strength of diffraction for low-
frequency components, on the one hand, and high-frequency
components, on the other hand, the on-axis temporal shape
of the unipolar pulse is severely distorted, as described for
instance in Ref. [10]. Note, in this respect, that for an efficient
generation of the static component the waveguide geometry is
significantly advantageous over the free-propagation regime.

In conclusion, we have shown that unipolar electromagnetic
pulses are generated in the course of the interaction of an
intense broadband pulse with a weakly nonlinear medium. The
static components of such unipolar pulses are equally intense
in transmission and in reflection. In reflection, the unipolar
character of the pulses is more pronounced, provided that the
linear index of refraction of the nonlinear medium is equal to
the index of the surrounding medium, so that there is no linear
reflection. Therefore, existing theories based on assuming a
zero value of the electric field area require modifications for
properly taking into account the unavoidable generation of the
static Fourier component of the electric field in virtually any
nonlinear interaction with matter.
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APPENDIX: BOUNDARY-VALUE PROBLEM FOR A
NONLINEAR SLAB

Let us suppose that the electric field Ein incident on a slab
of a nonlinear medium is split into a reflected Eref and a
transmitted Etr part. Thus, we may write (for the pulse incident
on the first boundary at z = 0 and passing through the second
boundary at z = L),

E(z, t) = Ein(z − t) + Eref(z + t),z < 0 (A1)

E(z, t) = Etr(z − t),z > L. (A2)

Assuming that the nonlinearity is relatively weak, we can de-
velop a perturbation theory with the strength of the nonlinearity
as small parameter: E = E0 + E1 + E2 + . . .. In the zeroth
order, D = E0, therefore

∂2E0

∂z2
− ∂2E0

∂t2
= 0. (A3)

The solution to this equation is the forward-traveling pulse
E0 = Ein(z − t), as dictated by the problem under considera-
tion. In the first order, we write

∂2E1

∂z2
− ∂2E1

∂t2
= 4π

∂2

∂t2
P [Ein(z − t)], (A4)

so that the right-hand side is a given function of ξ = z − t . We
can write Eq. (A4) in terms of ξ and η = z + t as

∂2E1

∂ξ∂η
= π

∂2

∂ξ 2
P [Ein(ξ )]. (A5)

The general solution to this equation reads

E1(ξ ,η) = πη
∂P

∂ξ
+ F (ξ ) + B(η). (A6)

Here, the functions F and B are to be determined. If for the
transmitted pulse we write Etr(ξ ) = Ein(ξ ) + δEtr(ξ ), then we
get in terms of the original variables

E1(z, t) =
⎧⎨
⎩

Eref(z + t) for z < 0,

π (z + t)P ′
t (z − t) + F (z − t) + B(z + t) for 0 < z < L,

δEtr(z − t) for z > L.

(A7)

Using the conditions that the electric field and its derivative
are continuous on both boundaries we get four equations. Two
equations hold for joining solutions at z = 0:

Eref(t) = πtP ′
t (−t) + F (−t) + B(t), (A8)

E′
ref(t) = πP ′

t (−t) + πtP ′′
t t (−t) + F ′

t (−t) + B ′
t (t), (A9)

and two equations hold for joining solutions at z = L:

δEtr(L − t) = π (L + t)P ′
t (L − t) + F (L − t) + B(L + t),

(A10)

δE′
tr(L − t) = πP ′

t (L − t) + π (L + t)P ′′
t t (L − t)

+F ′
t (L − t) + B ′

t (L + t). (A11)

By differentiating Eq. (A8) by t and combining with
Eq. (A9) we obtain

E′
ref(t) = πP ′

t (−t) + B ′
t (t), (A12)

0 = πtP ′′
t t (−t) + F ′

t (−t). (A13)
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After changing t to −ξ Eq. (A13) yields

F (ξ ) = πξP ′
ξ (ξ ) − πP (ξ ) (A14)

after integrating it once. In its turn, Eq. (A12) yields

Eref(t) = B(t) − πP (−t). (A15)

Similar manipulations with Eqs. (A10) and (A11) lead to
relation

B(t) = πP (2L − t). (A16)

Combining Eqs. (A15) and (A16) we finally get

Eref(t) = π [P (2L − t) − P (−t)] . (A17)
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