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We show that, in a coherent two-level optical amplifier with Kerr nonlinearity and linear loss, any weak seed pulse
evolves into a fixed powerful linearly chirped pulse with quasi-parabolic shape. This process is associated with a
transition from the incoherent into the coherent amplification regime, thus enabling in practice the generation of
pulses with a spectrum wider than the linear gain bandwidth. © 2010 Optical Society of America
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Parabolic pulses are asymptotic self-similar solutions in
the normal-dispersion regime of the amplified nonlinear
Schrödinger equation (NLSE), which implies an ideal
linear gain with indefinitely large bandwidth [1]. Such
pulses, also known as similaritons, are characterized by
a parabolic intensity profile and positive linear chirp [2].
In addition, the similariton peak power and its temporal
and spectral width grow exponentially larger with dis-
tance. Propagation of parabolic pulses in amplifying nor-
mal-dispersion fibers followed by time compression by a
grating pair results in the generation of 100 fs pulses with
megawatt peak powers [3,4]. In practice, the finite linear
gain bandwidth sets an upper limit to the spectral width
of the generated pulses and, hence, a lower bound to the
maximum temporal compression. In this Letter, we sug-
gest an amplifier configuration where these limits are
overcome.
The present scheme utilizes the nonlinear and coher-

ent regime of propagation of pulses through a host Kerr
medium doped with active two-level atoms/ions/quantum
dots. In this case, the pulse spectral width is no longer
limited by the spectral width of the gain but solely by the
linear losses of the host medium [5], as in classical coher-
ent nonlinear optical amplifiers . We analytically obtain
an asymptotic stationary pulse solution (i.e., valid for
large propagation distances) in the form of a central para-
bolic intensity shape with exponentially decaying wings
and an approximately linear chirp. Numerical simula-
tions show not only that such a solution is stable but also
that it represents an attractor for the evolution of an ar-
bitrary weak bell-shaped and initially unchirped seed
pulse. Because of their steady-state rather than self-
similar character, we name the present solutions quasi-
parabolic pulses.
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supplemented by linear loss and Kerr-nonlinearity terms,
describe the propagation of a slowly varying electric field
Eðz; tÞ (represented by the Rabi frequency Ω ¼ dE=ℏ
where d is the dipole moment of the two-level amplifier,
and ℏ the Planck constant). The above one-dimensional
model applies to a waveguide, e.g., a doped optical mi-
crostructure fiber. The polarization Pðz; tÞ decays with
rate γ⊥, whereas the population difference Nðz; tÞ does
not appreciably decay on the time scale of the pulse dura-
tion, so that the corresponding decay rate is set to zero.
The coefficients l > 0, g > 0, and f characterize linear fi-
ber losses, small-signal gain of the active dopants, and
Kerr nonlinearity, respectively.

We look for a solution in the form of a phase-
modulated pulse with a stationary shape moving with the
speed of light c, therefore, depending on the single vari-
able τ ¼ t − z=c. By decomposing the field in amplitude
α and phase ϕ as Ω ¼ α expð−iϕÞ, writing the polari-
zation as P ¼ ðpþ iqÞ expð−iϕÞ and by substituting into
Eqs. (1)–(3), we find

p ¼ ðl=gÞα; ð4Þ

q ¼ −ðf =gÞα3; ð5Þ

N ¼ N0 þ ðl=gÞ
Z τ

−∞

α2dτ0; ð6Þ

_ϕ ¼ −νð3 _ααþ γ⊥α2Þ: ð7Þ

Here, N0 ¼ Nðτ → −∞Þ ¼ 1, ν ¼ f =l, and the dot denotes
differentiation with respect to τ. In terms of the new vari-
able F ¼ R τ

−∞ α2dτ0, the equation for the field reads as

ð1þ 3ν2 _F2Þ€F þ 2ðγ⊥ν2 _F2 þ F − τ−1p Þ _F ¼ 0; ð8Þ

where τ−1p ¼ ðg=lÞN0 − γ⊥ is the inverse pulse duration.
Indeed, from the linearized version of Eq. (8) in the limit
τ → −∞, it follows that τp represents the pulse duration.
In this limit, and after transforming F back to α, we get
_α ¼ τ−1p α. So, τp is the inverse of the growth rate of the
pulse front edge, which is the definition of pulse duration
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(not to be confused with FWHM). Equation (8) is quad-
ratic in ν; therefore, its solutions are insensitive to the
sign of the Kerr nonlinearity.
In the limit of τ → þ∞, Eq. (8) determines the pulse en-

ergy J ¼ Fðþ∞Þ. Since _F → 0, for τ → þ∞ for any loca-
lized pulse, we find J ¼ 2τ−1p after integrating Eq. (8)
once. Note that the energy J remains the same for all
values of ν. In further analytical developments, we limit
ourselves to the coherent limit, i.e., set γ⊥ → 0. By inte-
grating Eq. (8) once, we arrive to the cubic equation with
respect to _F :

_F þ ν2 _F3 ¼ ðJ − FÞF: ð9Þ
This equation has one real and two complex roots. Only
the real root,
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and may be numerically evaluated, so that, from FðτÞ, we
may recover the amplitude αðτÞ. For ν ¼ 0, the integral in
Eq. (11) may be analytically evaluated and yields αðτÞ ¼
τ−1p sechðτ=τpÞ. Quite general conclusions can be made
about the behavior of the population difference at large
times (τ → ∞). From Eq. (6) and the expressions for the
energy J and the duration τp, it follows that Nðþ∞Þ → −1
for any ν, that is, each stationary pulse of the family turns
the amplifier into an absorber on the trailing edge of
the pulse, similarly to classical π pulses in a coherent
amplifier.
Plots in Fig. 1 illustrate the basic properties of station-

ary quasi-parabolic pulses. The central part of the inten-
sity profile is indeed parabolic as it is demonstrated by a
parabolic fit, while the pulse wings decay exponentially
to zero, as it follows from the analysis of Eq. (8). A direct

consequence of the parabolic intensity shape is the linear
increase of the frequency chirp, which is observed in cen-
tral portion of the pulse. Note that the spectral bandwidth
of the pulses remains approximately constant for all ν. It
is such a bandwidth that sets a lower limit to pulse short-
ening by an appropriate compressor. We conclude that
the quasi-parabolic pulses cannot be compressed any
further than the non-phase-modulated pulses of a hyper-
bolic secant shape that are generated by the same ampli-
fier in the absence of Kerr nonlinearity. With increasing ν,
the quasi-parabolic pulses widen in time; given that, for a
fixed ratio l=g, their energy remains the same, the pulse
amplitude correspondingly decreases.

Figure 2 (for γ⊥ ¼ 0) and Fig. 3 (for γ⊥ ≠ 0) show the
evolution of a weak seed pulse toward a stationary quasi-
parabolic pulse with linear (positive for ν > 0 and nega-
tive for ν < 0) chirp, which demonstrates the stability of
our solutions. Figure 3 shows the transition from the re-
gime of incoherent interaction (i.e., with γ⊥τ0 > 1) into

Fig. 1. (Top) Stationary amplitude αðtÞ and frequency _ϕðtÞ pro-
files for four values of the Kerr nonlinearity: ντ−2p ¼ 0, 1, 3, and 7,
plotted as solutions of Eq. (11). Time is in units of τp, Rabi fre-
quency α and frequency _ϕ are in units of τ−1p . (Bottom) Intensity
profile (α2) for ν ¼ 7τ2p (solid curves), fitted by a parabola
(dotted curves), and corresponding spectra for ντ−2p ¼ 0, 3,
and 7. Here γ⊥ ¼ 0.

Fig. 2. Evolution of initial non-phase-modulated Gaussian pulse of duration τ0 for ν ¼ 3τ20, l ¼ 0:2 g, and γ⊥ ¼ 0 toward a stationary
shape. The seed pulse is not resolved on the main figure, and it is shown in the left inset. Amplitude, frequency, and time are normal-
ized to τ0. Numbers on the right show the distance measured in units of the resonant length ðgτ0Þ−1.
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the coherent regime (i.e., with γ⊥τp < 1). This transition
is accompanied by fivefold shortening of the pulse tem-
poral FWHM, and it leads to breaking the limitation
τp > γ−1

⊥
, which is set to the pulse duration τp by the linear

gain bandwidth. Additional temporal compression can be
achieved by compensating the linear chirp of the quasi-
parabolic pulse by an appropriate compressor. The onset
of a coherent interaction is marked by the development
of characteristic negative regions in the inversion profile.
On the pulse trailing edge, the inversion does not reach
its absolute minimum equal to −1, as it occurs for coher-
ent π pulses, because the emerging quasi-parabolic pulse
is not yet short enough when compared with γ−1

⊥
.

In linear amplifiers, in the absence of the above-
described nonlinear pulse compression mechanism, the
lower limit to the pulse duration is fundamentally deter-
mined by the finite linear gain bandwidth. On the other
hand, we have shown that breaking through this limit
may be obtained, thanks to the power broadening of the
two-level amplifier by the strong pulse. For instance,
rare-earth-doped fibers behave as linear amplifiers for
the usual megawatt range of peak powers of amplified
picosecond and femtosecond pulses. For entering the
nonlinear and coherent amplification regime, gigawatt
peak powers would be necessary, which almost certainly
would damage the material. In contrast, with a micro-
structure fiber doped with quantum dots exhibiting
gigantic dipole moments [6], a peak power of a few tens
of watts in a pulse of less than 100 fs pulse would be suf-
ficient to implement the nonlinear and coherent regime
of interaction. In addition, the present study is practically
relevant to the case of semiconductor optical amplifiers.
The quasi-parabolic pulses are shaped by two physical

mechanisms. The first and dominant mechanism forms
stationary resonant coherent π pulses through a balance
between coherent nonlinear gain responsible for tempo-
ral compression and linear broadband losses. The second
shaping mechanism results from a counterbalance be-

tween spectral broadening induced by the Kerr non-
linearity and the resonant dispersion of the amplifying
two-level systems. Such dispersion is induced by the
pulse itself and is purely nonlinear; see q in Eq. (5). Linear
resonant dispersion is strictly equal to zero. Therefore,
the second mechanism is basically different from the
physics of soliton formation in the NLSE. Indeed, it is re-
markable that the pulse leads to anomalous nonlinear
resonant dispersion for a positive sign of the Kerr non-
linearity and to normal dispersion for a negative Kerr
nonlinearity. For either sign of f , dispersion counterba-
lances the Kerr nonlinearity for arbitrary large values
of f , in contrast with the case of two-level absorbers,
where the formation of stationary shapes is possible only
for f smaller than a threshold value [7].

In conclusion, a two-level coherent nonlinear amplifier
with Kerr nonlinearity is shown to support the formation
of stationary quasi-parabolic π pulses with linear chirp.
This chirp allows for a compression of the emerging
quasi-parabolic pulse by a pair of diffraction gratings.
The nonlinearity of the amplifier allows for breaking the
limit on the pulse shortening, which is set by the finite
linear gain bandwidth.

References

1. K. Tamura and M. Nakazawa, Opt. Lett. 21, 68 (1996).
2. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley,

and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).
3. T. Schreiber, C. K. Nielsen, B. Ortac, J. Limpert, and A.

Tünnermann, Opt. Lett. 31, 574 (2006).
4. D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E.

Mottay, E. Cormier, and P. Georges, Opt. Lett. 32, 2520
(2007).

5. J. P. Wittke and P. J. Warter, J. Appl. Phys. 35, 1668 (1964).
6. H. C. Y. Yu, A. Argyros, G. Barton, M. A. van Eijkelenborg,

C. Barbe, K. Finnie, L. Kong, F. Ladouceur, and S. McNiven,
Opt. Express 15, 9989 (2007).

7. V. V. Kozlov and É. E. Fradkin, Opt. Lett. 20, 2165
(1995).

Fig. 3. Same as in Fig. 2 for γ⊥τ0 ¼ 4 with the same seed pulse, demonstrating the dynamic breaking of the linear gain bandwidth
barrier (τpγ⊥ ¼ 1), i.e., evolution of the temporal FWHM (shown in the left inset) from τ0 > γ−1

⊥
to τp < γ−1

⊥
. The right inset shows the

output inversion profile. Here l ¼ 0:02 g and ν ¼ 0:0125τ20.
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