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Contact transformation theory up to second order is employed to treat CH-stretching overtone
transitions and to calculate dipole and rotational strengths. A general Hamiltonian describing two
interacting CH-stretching oscillators is considered, and the Darling—Dennison resonance is
appropriately taken into account. The two CH bonds are supposed to be dissymmetrically disposed,
so as to represent a chiral HCCH fragment, endowed @4iteymmetry. Analytical expressions of
transition moments and dipole and rotational strengths are given in the hypothesis of general electric
and magnetic dipole moments with quadratic dependence on coordinates and momenta. Dipole and
rotational strengths are then calculated together with frequencies for the fundamental and first three
overtone regions in the simplifying hypothesis of the valence optical approach on the
coupled-oscillator framework. Simplified analytical expressions thereof in the relevant parameters
are presented. @002 American Institute of Physic§DOI: 10.1063/1.1504705

I. INTRODUCTION interacting CH stretches in a dissymmetric HCCH molecular
fragment(Fig. 1), with the additional requirement that it pos-

A renewed interest in measuring vibrational circular di- sess a,-symmetry axis bisecting the CC bond; this requisite
chroism (VCD) spectra in the CH stretching overtone does not prevent it from exhibiting optical activity. Our
regiont~® has raised the necessity of calculating overtonesthoice is motivated by the fact that it is the simplest coupled-
rotational strength& For this reason we have undertaken theoscillator model and is still extensively applied for the inter-
study of a simplified model consisting of two coupled oscil- pretation of spectra of CH stretching vibrations in many chi-
lators described by a two-degrees-of-freedom Hamiltoniamal molecule$®-2®> The model is adequate when the CH
including Darling—DennisorDD) terms> This kind of dy-  stretchings can be regarded as dynamically and possibly
namical model has been demonstrated to be quite appropriaggectrically (as we will discuss latgrisolated from other vi-
to study both fundamental and overtone transitions, and hasrational modes. If the valence angles and the dihedral angle
been extensively studied in the literature by means ofn this fragment are fixed, two normal modes are present, one
second-order perturbation thedrigy integration of classical being symmetric and the other antisymmetric with respect to
equations of motion, and semiclassical quantization othe C,-symmetry axis: let the corresponding normal-mode
trajectories’~*We adopt here the method of Van Vleck con- dimensionless coordinates and conjugated momenta be de-
tact transformations, for the main reason that these transfonoted byqs, ps and g,, p,, respectively. Let the corre-
mations can be easily applied to operators, permitting one tgponding frequencies in wave number unitsdaeand w, ,
examine the analytical expressions of the electric and magespectively. Following the notation of Ref. 4, the general

netic dipole moments treated at any desired order. Hamiltonian possessing, symmetry at fourth order is
The contact transformation formalism was originally de- )
veloped for accurately calculating frequencies and for inter- H=HoteH1+eHa, @)

preting high-resolution spectra of molecules in the gasypere
phase’® 12 Afterwards, it was also adapted and used for cal-
culating dipole and rotational strengths in the infrared  Ho=(hc/2){wd (ps/f)?+q2]+ w,l (pa/f)?+ 2]},

range'*~1® Expressions for dipole and rotational strengths (1)
for overtone transitions have been obtained by Bakll’ B 3 2 .
and Polavarap§ for a single chiral oscillator and by eH1 =N Kssdst Ksadllsal, (1)

ourselve$ for a system of two oscillators with strong simpli- 2y 4 4 2.2 "
fying assumptior?/s that will be abandoned in this paper. IF\)/Iore & H2 =N Ksssfls + Kazadlat Kssadlsal: @
recently, the same perturbative method has been applied ta Ref. 4 drastic assumptions regarding anharmonic force
study vibrational manifolds, which are important for over- constants were made; i.e., only diagonal cubic and quartic
tone spectroscopy, with quite high orders of perturbativeermsK;; andK;;; were assumed to be different from zero
terms and increasing number of degrees of freetfom. (the indexi denotes a generic normal modshis simplifica-

We have limited ourselves here to a simple two-tion allows one to avoid the problem of resonances and as-
oscillator model and to low perturbative orders to handlesimilates the many-oscillator problem to the one of a single
simple analytical results. We have studied the system of twascillator. We stated, however, that the inclusion of the inter-
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H' =Ty H- Ty =H{+eH]+e?H)+- . 3
Hp H;
The requirement that one imposes in order to determine the
generating functiorS; is that the off-diagonal elements of
eH;, evaluated on the product harmonic oscillator eigen-
function basis, vanish at first order. We denote|by,n,),
the normal-mode basisuncoupled harmonic oscillatgrs
This is exactly equivalent to saying that the eigenfunctions of
FIG. 1. Definition of the KHC,C,H, dissymmetric system and of dihedral the complete HamitoniaH are obtained at first order inby
angle ¢ between planes 8,C, and H,C,C;: front view (Newman projec- T }ns.Na)n. SinceH, contains odd powers of the coordi-
tion) and side view. nates, the requiremeni(n;,n,|H1|ns,n.),=0, if n,,n}
#ng,N,, corresponds to imposing thdtS,; ,Hy]=—H, and

) o ) to reducing Eq(2) to the following conditions:
action termK;;; (i #]) is necessary, as had been pointed out

by many authoré?=?"in order to account for the transition Hy=Ho, ()
from the normal-mode regime to the local-mode regffhe.
The inclusion of the&Kj;;; term is essential to demonstrate the H=0, (4

equivalence of a normal-mode Hamiltonian with anharmonic
interactions, like the one we use here, to the Hamiltonian of i
harmonically coupled anharmonic oscillatdfsr a review, Hy=H,+ 5[S1,H4l. (4")
see Ref. B
Hamiltonian (1) coincides with the one that Mills and The transformatiors; obtained in this way contains new
Robiette used for water in normal coordinateShe equiva-  terms with respect to those of Ref. 4, due to the presence of

lence between the normal-mode scheme and the local-mo@gipic “nondiagonal” perturbative terms, arg turns out to
scheme, proved by way of a variational perturbative treatygl0

ment, implies the existence of appropriate relations between

the parameters,, y of the bond Morse potential in local S1=S"5P3+ (1/2) Sid PG+ 2ps) + S°3%gp?2
coordinates and the anharmonic coefficiemts, , Kijy A 5
[these relations are reported for completeness in Appendix A, +(1/2)S{,0s(Patat daPa) + S3aPsUa- ®)

Eq. (4)]. Appendix A comprises the general expressions of _ . .
th?a f(re)gweggiesoS andw, rfnd of the agnharmonicpcubic and The five coefficients depgnd on thf‘:‘ cubic force constants
quartic force constants for two interacting Morse oscillators Ksss andKs,, as reported in Appendix A.

In the present work, the contact transformation approach has V.V'th the aim of treating cpntact trgﬂsformatlons at suc-
to be carried out at least to second ordero contact trans- CESSIVe orders and of calculating transition moments for elec-

formations and in resonance form, since the resonance apt—”C and magnetic dipole moments, we used the algebraic

pears at second order. In fact, we shall show that these Com?ntlpulatokr MA;]LE' This pa;cltgage Iglvgs one éhr? oppl)lortu- d
tact transformations at second order give the same matrig' ¥y 0 Work with noncommutative aigebras and has allowe

elements for the Hamiltonian and, accordingly, the same e us to easily evaluate complicated matrix elements of

ergy levels as obtained in the perturbative treatment by Mill armon_lc-(_)smllator elgen_fu_ncnons. . .
and Robietté® As indicated before, it is essential to consider at least a

second contact transformation, thus diagonalizing the Hamil-

tonian at second order. There are many reasons to go to
II. DETERMINATION OF CONTACT second order. The first reason is that the anharmonic behav-
TRANSFORMATIONS ior of bond-type oscillators is well described by cubic and
Let us briefly recall the contact transformation procedurequartlc. fo.rce congtants; stopping at first order permits one to
. ; ) deal with just cubic force constants and does not allow one to
to illustrate the notation that we are going to use and to , . . : ;

obtain energy levels in correspondence with those spectro-

introduce all the elements needed to obtain the transformed” . . . .
operators scopically observed for the isolated oscillator and to give a

. Lo description equivalent to the well-accepted models present in
The first contact transformation is generated by an op;, . 3 . .
- T . the literature®® Second, in the case of more than one oscil-
eratorT,;=exp(eS;)=1+ieS;+--- that acts on a generic op-

. - 5931 : lator, the importance of the DIRefs. 5, 25, and 26inter-
e_ratorf analogously to the Lie transformatiGfis™in clas- ction terms has been recognized to cause a 2:2 resonance
sical meAc,hanlcs; formally, one can express the transformegnd thus one must go to second order. Last but not least,
operatorf’ as mechanical and electrical anharmonicities beyond first order
(ie)S - g are essential for an acceptable description of overtone ab-

o St (2)  sorption intensities*~3¢
R R The implementation of procedures basedvawLE leads
with [S;,f15=[S,,[S;,...[S;,f]]]; that is to say, the com- first to determine the transformatiol,=exp(e’S,)=1
mutation[ S, ,...] is applieds times onf. When this trans- +ig?S,+- -+ that diagonalizes the Hamiltonian terms at next
formation is applied td, it gives order. In analogy to Eg2) one obtains, for a generit,

=T, 1-T=>
S
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R A (ie?)S R n{Ng,Na|Ho+H5 |n.,nl),, which we carried out algebra-
fr=T,-f'-T, 1:% S [S,.f'1° (6) ically, gives the resonance-corrected energies and the eigen-
' vectors, which we make to constitute the rows of a unitary
BeingH*=H{ +&-H; +&% H, , we obtain matrix U. One may proceed to build the right combination of
by @ the transformed eigenvectofs *- T, *|ng,n,), and obtain
oo the wave functions of the whole Hamiltoniah at second
Hi=H], (7')  order. The wave function® =T; *- T, *U~!|ng,n,), are es-
L sential to calculate the transition moments of the electric and
Hy =H3+i[S;,Hol. (7)) magnetic dipole moment operators and consequently to

As well described in Ref. 11S, must be determined by evaluate the dipole and rotational strengths, as will be done
the requirement that off-diagonal terms be eliminated fromdn the next two sections.

H; . Beside that, one has to chooseSyof the form given We report in Table |, in algebraic form, the eigenvalues
. ) . - + ’ !
in Eq. (8) below to guarantee that; -diagonal terms remain  and eigenvectors for the matri(ng,na[Ho+H; [ng Na)n
unchanged: truncated at first order iny and A for ng+n,=ng+n;
. s 3 s 3 =0,1,2,3. The dynamical problem has been examined by
S;=S"/2)(qsps+ Psds) + Sisd 1/2)(psls + dsPs) many author$?~2’ with the aim of proving the equivalence

of the normal-mode description versus the local-mode de-

a 3 3 3
S22 (AaPat Pada) + Saa( 112)(Pada scription. The expressions reported in the Table satisfy the

+02pa) + S22 1/2) p2(psUs+ GsPs) relations|E 1, — E 1| >|Epa— Ea¢| > |Esc— Esql for any value
. , , x>0 and\+0. It is well knowrf* that when\<y, the two
+ S3°1/2)p5(Palat GaPa) + Sad 1/2)95(PsTs lowest eigenvalues within each manifollf, , E,. andEs.,
2 Esq here become nearly degenerate with increasing total
*0sPs) + Sasd 12)G5(Pallat daPa). ® quantum number, in systems consisting of two identical os-
The eight coefficient$S°*>-Si can be determined by cillators.
the condition,(ng,n,/H [ns,n),=0, if nl,ni#ng,n,, in Consideration of the eigenvectors of Table | at zeroth
the nonresonant case. This condition can be written explicithprder in\ and y gives also the right combinations respecting
in the following way: the symmetry of the two identical CH oscillators. Using the
et I\ . appropriate expressions of the harmonic-oscillator wave
n{Ns.NalHalNg .N2)n= = Tn(Ns.Nal[ Sz Hollng .na)n functions” ¢;(q;) substituted in|ng,Ny)n= ¢s(qs) ba(da),
= —ihc(Ngws— Nawy)y and considering the coordinate transformation, at zeroth or-
L der in g, from normal coordinatesqgg,q,) to local coordi-
X(Ns,Na| S Ng,NZ)n - (9 nates @l,,Al,) we obtain the following correspondence at
In our model, this relation cannot be applied whe=n, ~ Z€ro order:
+2 and n;=naf_f(—2) without incurri_n_g the proble_m of ¢2a:(2)*1/2(|0,2>n+|2,0>n):(2)*1/2(|0,2>€+|2,0>€),
small denominators. The additional requirement 1
(ng,n,|[S,,HolIn.,n2)n=0 for the statesn.=ng*+2n, 2p=11,0,=(2)""4]0,2,—12,0)),
=n,*(-2) aIIovx_/s one to+determ|n32. Thls gives rise toa Wae=(1/2)[0,3),+ (3Y%2)|2,),
noncompletely diagonaHt, . We report in Appendix A the
coefficients ofS,, and we give all the relations necessary to =(2)"Y%10,3,-13,0),

express all of the coefficients iH* andS, in terms of just _ 12
three useful parameters widely used in the literafirey ¥3a=(112)[3,0n+(3712)|1.2),
and y which characterize the Morse-oscillator Hamiltonian =(2)"Y4]0,3,+]3,0)),
of Eq. (Al) [see also Eq(A2)] equivalent to the quartic
potential used here through relatio3), and\ such that
wa=wot+ N and wg=wy—\. We do not report the expres-
sion for the matrixH,+H; , since it is too unwieldy without
simplifying approximations. We just say that we have veri-
fied that its Taylor expansion ig and\, when truncated to
first order iny/wy and\/wg, is exactly the matrix obtained
by the usual perturbative treatment reported by Mills ano?
Robiette?® apart from ay/4 additive term in the diagonal
introduced later by Lehmafi. These matrices are reported
for the first five manifolds also by Halonérgpart from the
zero-point energy. The first-order expansion yhw, and

M wg is equivalent to the usual simplifiegK relations. The
complete matrixd ™, instead, corresponds to maintaining the ~ We have modeled the operators of electric dipole mo-
more generaly-K relations as reported by Halongiof — mentu and magnetic dipole moment in a valence-optical
course, apart from bending and Coriolis couplings which arepproach; accordingly, they are determined only by
reported in Ref. B The exact algebraic diagonalization of individual-bond electric dipole moments, which have been

lv1,02)¢=d1(Al) @d,(Al,) being local-mode harmonic
wave functions. This means that the two lowest-energy states
in each fs+n,) manifold are local modes, the involvement
of both coordinates|, and |, being required by
symmetry’>~2’ The above relations, providing the local
quantum-number—normal-quantum-number correspondence,
re correct only at zeroth order énsince the transformations

1 and T, applied on the Hamiltonian imply coordinates
transformations too.

IIl. DETERMINATION OF DIPOLE TRANSITION
MOMENTS

Downloaded 16 Jul 2004 to 159.149.71.60. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



7578

J. Chem. Phys., Vol. 117, No. 16, 22 October 2002

Abbate, Gangemi, and Longhi

TABLE I. Analytical expressions of eigenvalues and unnormalized eigenvectors of the rrafringHo
+HJ|nl,nl) for ng+n,=nl+n,=0, 1, 2, 3. The matrix was first truncated to first ordehiandy, and then
it was diagonalized. For the notation, see text; the first quantum number refers to the symmetrig thede

second one refers to the antisymmetric made

1

Eo=wo—§)( V=100

5
E1a=2w0—§)(—)\ \Iila:‘oil>

5
E1b=2w0—§)(+)\ Vy,=[1,0

11 Z+ANT—2)\
Eh=3wo—?x—\/)(2+4)\2 ¥,,=0,2+ %Q,O)

13

Esc=3wo— X Toe=1,1)

11 V2 +4N2+ 2\
E2b=3w0—7)(+ \/)(2-4-4)\E \PZb:|0,2>f Xfp,@

21
Ezc=4wo— ?Xf)\72\/)(2+)\27)()\

V32N — x—2\) P+ 27— x\)

o=[03 - o 2.2
21 3(— 20— x—2VxZ+NFH X\
Ezg=4wo— 3x+7\—2w2+>\2+x>\ V34=13,00— ¥3( X 3 X X )|1,2>
21 3(20— x+2xZ+N2=xA
Esa=4wo— ?X_)\"’z\/m q’3a=|013>_ \/_( X 3XX X )|2’1>
21 3(— 20— x+2xZH N2+ xA
Esp= 40— o X+ A+ 23T+ Xk W=]3,0— V3 X 3 X LLNPPA
considered to depend on coordinates and momenta at second | gpu i R
order’®=*1The electric dipole momeni, in this approxima- o= 50" ZZ W(; SA-tAa), (12
tion, is given by u=3;m(A¢;), and for each bond we “0 '
assume § being the Wilsof’ vector relating internal coordinates to
. -0 e 5 o i 5 Cartesian displacements atyg, being given in Appendix A.
pi(Al)=pi+e—g Abi+e®—rg) ALY, (10 Referring to the molecular fragment of Fig. 1, the trans-
| 0 i

0 formations relating CH-stretching internal coordinates to di-
with no contributions from cross-termsu;/d¢;|, with ~ mensionless normal ones are simply

i #]. This simplifying assumption easily allows one to use

electro-optical parameters derived from absorption overtone  Ga= @aM/2(A¢,—AL)),  ds=asym2(A€,+ALy),
spectroscopy"*® but may be eventually dropped if one N _

wants to use the parameters of more advanced calculation¥Nere a; are the coefficients allowing one to go from the
As is usual in overtone spectroscopy, in our HCCH fragmenf‘sua| normal coordl_nates to mz_iss-welghted ones, reported in
we consider just the CH bond dipole moments and we ignor&9- (A4) of Appendix A, andm is the reduced mass of the
the CC bond contribution: then, the inderuns from I to Il CH bond. Since/u; /3¢ |, are identical in magnitude for the
(we use Roman numbers for bonds and Arabic numbers fdW0 CH bonds, due to thé, symmetry, and since they are
orders of approximation In order to apply the perturbative assumed to be directed along the bonds, i /d¢i|

approach illustrated above we need to work in normal coor=9#/7¢ ol (U; being the unit vector of bond i =1,11), the
dinates, the dipole moment being coefficients of Eq.(11) as functions of valence optical pa-

. rametersiu/ 9€ |, and >ul 9€?|, are
;‘*: i“0+82 ﬁaqa+82 B} 2 i"aﬂqa'qﬁ
a 2 a,B

L. om|  oum| Ox0 _ .
”’a:&_ﬂ :£ —— (+ if a=s,— if a=a)
:ﬁ0+ 8ﬁ1+ 82[_;,2. (11) Qo 0 0 zmaa (13)
Considering the general relation between normal and local
coordinates, one obtaitls*® and
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. P
Hab™ 90,004
Fu| 0=y :
=07 om, a different from g. (15
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ﬁ+=T2'T1'iL'TIl'T£1

=po tepy el tedng Telny
mt=T,-T,;-m-T; > T,

=mg +em; +&2My +e3m3 +&m; .

Considering homologous terms énand being the initial op-
eratorsu and m in Egs. (11) and (17) of the form f=f,

For the total magnetic dipole momeii, we adopt the bond ¢ f1+e% f5, with fo independent op andq, the trans-
dipole valence optical approach, as described in Refs. 39 af@rmations(2) and(6) can be written

40:

.1 N
m ZE' (Fai X B+ pi XTg;), (16)

whereA; andB; are the two atoms defining bondReferring

to the chiral fragment of Fig. 1, let us take the coordinate (21)

origin in C,; in the hypothesis thatc,, is fixed and that;

and z; are always parallel to the fixed direction given by
the equilibrium orientation of bong one obtains

.1, .
m= Ty X gy -

2c (16)

~ ~ 1 ~ ~
f3=i[S;,f2]— E[Sla[slufl]]+i[821f1]a

~ 1 ~ i ~
fi=—3ISulSyfall- ISl IS Fall]

+i[ S, F2]—[S2,[S1, F111.

Analogously to the electric dipole moment, we need an exqp, the calculations presented in the next paragraph we keep
pression ofm as a function of normal coordinates and/or terms up to fourth order. The expressions of the transformed

conjugated momenta:

> > - - a’ + "Ma
R LY
a a,B
:ﬁ10+8'ﬁ11+82r_ﬁ2. (17)

Sinceq,=a?2-p, (see Appendix A
I ) 1 . 2
3 —2Crcu><0-,€“ (; SZA'tAa) Qg

1. 1% a, . . .
:i_rc||x<_ﬂ> _au“, +|fa:S,_|fa:a,
0

2C ot v2m
(18)
Sﬁ—““l* Tu| _as +if a=pB, —if
a—_zrcux W Omully | a—ﬁ, —I1 C(?é[)’
19
The rotational strength
7?«:Im(n<\lr0|/—l|\l,f>n'n<\I’f|r—ﬁ|\I’0>n) (20)

operators, as functions of the electric and magnetic dipole
moment coefficientg, , sz, &, & and of the transforma-
tion coefficientsS; andS;, , are very long. We report them

in Appendix B, Eqgs.(B1)—(B6), truncated at third order. In
Appendix C we report the proof of the origin independence
of the rotational strengths obtained with the transformed op-
eratorsu”™ andm™, for the first two overtone transitions.
With the aid of the algebraic manipulator used to byid

and m*, one can easily substitute numerical values for
aul 9o and 9?ul 9€?|y and wg, x, and\, and one can cal-
culate numerically dipole and rotational strengths for HCCH
fragments with different dynamical and electrical character-
istics. Before considering the specific numerical example
treated in the following paragraph, a few comments on the
analytical findings are worthwhile.

The transition moments based on harmonic uncoupled-
oscillator wave functiongng,n,), depend on the electroop-
tical parametergu,, pop, &os §§ and on theS;j, and Sjj
coefficients. Of course, first-order termsdrcontribute only
to 0—1 transitions by linear electrical coefficier(tsith mi-
nor corrections from all successive odd-order terms
terms contribute only to-8:2 transitions by linear electrical
terms multiplied byS;;, and quadratic electrical terntand

has been demonstrated to be origin independent for the fufininor corrections from successive even-order territhie
damental transition-0-1.%° The same invariance needs to be 9.3 transitions have contributions fron?® terms, linear
proved for the overtone and combination transitions. Dipoleg|ectrical terms are multiplied b or by Sij Sivjrir , and
strengths and rotational strengths are obtained from the tragpadratic terms are multiplied 15; . The 0—4 transitions
sition moments evaluated on the perturbed wave functiongerive frome* terms. From Appendix A we know that in the
=T, T, 2U""|ng,n,), . Alternatively, one may apply Van  approximationew,=w,=w, the coefficients of the generat-
Vleck contact transformations directly on Operators; we Car]ng functions are of the fo”owing orders of magnitude:
easily construce™ andm™ from Eqgs.(2) and(6), with the

help of the algebraic manipulator code: Sik=Vxlwo, Sij=x/wp.
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TABLE II. Final statesy; at zero order iny and\, approximate transition frequencies— w; in the hypothesia <y, and principal terms iR/y/ o of dipole
strengthsD and rotational strength® from the ground stat®,0) towards the final stateg; for ng+n,=1, 2, 3. For the definition of symbols used, see text.

Ut - ; D R
-2 W
0,2) wo—2x—\ %Jr > et
P hoos
1,0 wg—2xtX\ %+ s bt
1 2\2 1. . ¥ . \? N X-\| (= = X -
E(|012>+|2v0>) 2w0_6X—T 1_6 HMaat Mss— 2 ;ﬂs +ee g Paat Mss— 2 ;I"s | &aat &2 ;gs +
1,2 2wy—6 . . \° ae - (3,3 X3
! 0~ oX 2\ Msa” Ny Ma + 2\ Msam \ j Mal- g+&-2 Z‘fa +-
1 2\2 1. ., oL L ..
E(|0,2>—|2.0>) 2“)0_4X+7 1_6(I‘aa_ﬂss) +ee g(l-‘aa_l-‘ss)'(‘faa_gss)"""'
1 V3 32 3)(( 2\[,)2 3x/. 2\F,' 3. . \/‘
§|0,3>+7\211> 30)0—12)(—@ dwlta 3V gk o hig o\ Msa™ 3 Zﬂa)' (&t &)—2\ &l
1 3 3\2 3x[1 . Z\FAZ 3x(1 . . 2\ﬁ, 3. \/}»
E|3|0>+7‘172> 3w0712X7W ZZ E(MserlLaa)*g ;ﬂs +eee hza(i(ﬂss+ﬂaa)7§ ;Ms . Ega372 ;gs +--
3 3\2
1 —8y— = 0 0
- 103-52)  Bwo=8x=2h+
B3 3\2 1 3 x
— 30— = X - C0FE Y.
2 3.0 2‘1’2> 3w078X+2)\+E 16w(ﬂaa I‘ss) +- ﬁ16 (Fraa™ s gaa 269+
In Table Il we report the leading term ifiy/ w for dipole In conclusion, the presence of electrical anharmonicity is

and rotational strengths. These approximate analytical exiecessary to ensure the right decrease of intensities among
pressions give an estimate of absorption and VCD spectra fatifferent manifolds and confirms the predominance of the
the fundamental transition;E&ng+n,=1), as well as for two low-frequency transitions within the same manifold.

the first two overtone regionsE 2,3). The limitations of Rough estimates of the intensity parameters are obtained
these approximations will be tested in the numerical exampléntroducing the quantityy= (1/2m) VhNa/2cw, (y=0.075 A
given in the next section. A few observations can be madevhen w,=3000cm ). We have

based on the results of Table Il. As long as electrical anhar-

monicity can be ignored, as, e.g., in the fixed partial charge I

I
approximatiort® the dipole strengths for the first overtone "~ 7 g€ o g ~htmreey 7o ot wo'
region (ng+n,=2) are smaller than those for the fundamen-
tal region by a factor of/w and those for the second over- az,u 5,1 ) 2u
tone region s+ n,=3) by a factor of /w)?2. As a conse- g™~V W o Eg=h T eey 902 O“’O'

guence, a decrease in intensity of nearly two orders of

magnitude at each overtone ordéwith reasonable CH Regardless of the electro-optical parameters adopted,
stretching parameter values as those used in the next sectiofyu/ €|, and 9?u/d€?|,, and taking rec=1.54A, w,

is to be expected. This rapid decrease is indeed observed3000cm %, one hasR,_,,=1.4x10 *.D,_,,. This gives
only from fundamentals to first overtones; for successivea dissymmetry factolG=4R/D=4mntccwo=6x10"*
overtones, there is a less marked decrease and this has befmpendently ofv, as experimentally observed thus far in
attributed to the fact that electrical anharmonicity is most case&*?

important®*~3¢ A further consequence of the hypothesis of  Let us make a final comment regarding the number of
zero electrical anharmonicity is that the two transitions atransformations needed in the Van Vleck procedure. The
lowest frequency within each manifold are the only onesHamiltonian of Eq.(1) has been diagonalized to second or-
predicted to be observable: moreover, they have nearly equdkr ine, and the use of zeroth order eigenfunctions is justi-
absorption intensity and opposite rotational strengths. Deafied since the corrections are taken into account on the op-
ing with the An=3 region, one sees from Table Il that the erators. In general the transformed Hamiltonian

two lowest-lying transitions are so close as to make any ob-

servation of rotational strength impossible. H*=Hg+e-Hj+e®H, +e Hy+e* Hy +
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TABLE IIl. Values for the mechanical CH bond parameters, x,\A and for the electric bond dipole moment
parametergu/d€|,, 9°ul 3€?|, employed in the numerical example of Table (fér the latter parameters see
Ref. 31). We also report the corresponding normal-mode parameters derived as described in Appendix A.

wo=3000cm'!

x=60 cm?! duld]o=—0.14%

A=20 cnit Pl 907 y= —0.48%/A

Parameters derived from the preceding ones

s 3020 cm?

W, 2980 cm'! | gl =0.872x10 P esucm fi|é4=0.706x 10" 2 esucm
Kses —210.1 cm! |1£2]=0.620< 10" ¥ esu cm fi|€,/=0.702< 10" esu cm
Ksaa —638.7 cm! |sd=0.110< 10 * esucm #1]€3]=0.865<10 2°esu cm
Kssss 17.3 cm? |12 =0.112< 10" * esu cm 7| €8] =0.854< 10" % esu cm
K aaaa 17.7 cm?t | sal =0.785< 10" *2esu cm 1| €42l =0.859 10 %6 esu cm
Kssaa 105 cmit fi|ésd=0.859< 10 2 esu cm

contains terms ire2,e4,... which are not diagonal and can V. NUMERICAL EXAMPLE

be diagonalized by introducing further contact transforma-

tions generated by5;,S,,.... These generating functions In this section we present a numerical example where we
give rise to further corrections on the operatarandm. Our  have used the complete expressions of opergicaadm to
treatment has been coherently developed up to third order ifpurth order in order to calculate intensities and rotational
e for w andm. Indeed, from Eq(21) one observes thes, strengths for a case representing aliphatic CH's. The opera-
gives origin to corrections ia? andS, to corrections ire®. tors, due to all the relations given in Appendix A, ultimately

If one imagines to carry on the perturbative treatment with adepend only on the mechanical parametegs x, and\ and
function S;, the third-order term will not be corrected any- on the electrical parametewgu/d€|, and d*uld€?|,. The
more (u3 “=pu3), While the fourth-order term will become values for those parameters used in the calculation are given
s "=y +i[Ss,u1]. This is the reason why our treatment in Table Ill. Herew, and x values refer to no specific mol-
can be considered satisfactory for the =1,2,3 transitions ecule but are well representive of aliphatic CH’s. Also,
and needs to be improved fdr =4. Since the contribution du/d€|, and 9*uld€?|, have been taken from a previous
of electrical anharmonicity«, term) is greater than the.; ~ work by our group on overtone absorption intensities,
term>® we expect our results to be quite acceptable also fowhere overtone experimental absorption intensity data were
Av=4 in the numerical case we examined, even withoutused to parametrize the bond electric dipole moment, ex-
making the transformatioB;; of course, this would not be pressed through a linear plus a quadratic dependence on the
the case with#?m/ 3€%|,~0. The analytical expressions for bond stretching coordinate. In that work, as in many other
Av=4 do not allow any further insight into the description well-known paper¥~3¢in the literature, the importance of

of the normal-mode to local-mode transition, and we do noklectrical anharmonicity had been pointed out, and different
report them here. functional dependences have also been proposed. In Table IlI

TABLE IV. Final states, transition frequencies dipole strength®, and rotational strengtt® calculated for the fundamental and first three overtones in the
numerical case defined by the parameters reported in Table Il on the basis of the perturbative treatment, with no further approrionatisnl—4 In

columns 5 and 6 the corresponding approximated values for the fundamental and first two overtones have been obtained according to the results of Table |

Final stateU ~|ng,n,) w (cm™) D (esd cnd) R (esd cn?) D (esd cnd) R (esd cn?)
0,2 2862 0.23x 10°%8 —0.19% 10 % 0.19x 10738 —0.16% 10 %2
(1,0 2903 0.46x 10 %8 0.19%x 10 0.38x 10 %8 0.16x 10
0.890,2+0.472,0) 5632 0.29x 10740 0.18x 1074 0.37x 10740 0.31x 107
(1,2 5644 0.16x 10°%° —0.21x 107 0.19%x 104 —0.31x 107
0.470,2—-0.882,0) 5780 0.29x 1074 0.20x 107 0.14x 10748 0
0.640,3+0.77%2,1) 8280 0.16x 1074 —0.41X 1074 0.50x 10~%? —0.12%x 10745
0.393,0+0.921,2 8281 0.33x 1074 0.41X 10 % 0.99% 10 % 0.12Xx 10 %
0.642,1)—0.770,3 8497 0.37x 1074 —0.96%x 104" 0 0
0.923,0-0.391,2 8579 0.42x 10 0.55%x 10~%7 0.27%x 10°%° —0.26x 10 %2
0.440,4+0.284,0+0.852,2 10802 0.25< 10 %2 —0.52%x 1076

0.623,1)+0.791,3 10802 0.14x 10742 0.55% 10746

0.41(4,0—0.860,4+0.31(2,2) 11149 0.21x 107 % —0.46%x 108

0.621,3-0.783,1) 11182 0.18< 1074 0.58x 10748

0.2600,4)+0.874,0—0.422,2 11336 0.20< 10° % —0.44x 107 %
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we also give the corresponding values of the normal-mod&. CONCLUSIONS
anharmonic force constants;; , Kjj, and of the normal-
mode electric and magnetic dipole moment coefficignts In this work we have presented the analytical expres-
Paps € £, according to the relations in Appendix A and sions of frequencies, dipole strengths, and rotational
to Egs.(13)—(15) and (18), (19). In Table IV we report the strengths for the fundamental CH-stretching region and the
results for frequencies, dipole strengths, and rotationalirst two overtone regions in a HCCH chiral fragment with
strengths of the transitions from the ground state to eigen€, symmetry. This work has been made possible by the use
states of the fourth-order Hamiltoniad® up to the third of the Van Vleck contact transformation scheme performed
overtone, with inclusion of the DD resonance, that is to sayby means of an algebraically based computer code. The ex-
the states™!|ng,n.), (with ng+n,=4). In Table IV we pressions obtained for the transformed operators in Appendix
also compare the numerical results obtained by running thB8 and for approximate dipole and rotational strengths in
perturbative treatment to the best of the present approximarable Il are valid for the most general dipole with quadratic
tion with the results obtained with the approximate analyticaldependencésee Eqgs(11) and (17)]; they do not require a
derivations of Table II: the approximate formulas give thevalence bond optical model. It is only the evaluation of the
correct orders of magnitude only for the two most intensecoefficients of Eqgs.(11) and (17) that is based on the
transitions at each overtone order. This is due to the approxeoupled-oscillator valence optical hypothesis. Our final nu-
mation ws=w,, which is not acceptable for the other tran- merical calculations rely on the assumption of bond-
sitions. localized mechanical and electrical properties. Despite the
The results presented in Table IV are quite satisfactoryapproximations made, the analytical dependences on the pa-
First of all, the decrease of overtone absorption intensities byameters allow one to gain a deep insight into the normal-
two orders of magnitude in going from fundamentals to firstmode to local-mode transition and the spectroscopic signa-
overtones and by one order of magnitude at each successivigre of it. The role of each parameter is well evidenced by
overtone has been observed also in CD for some terpenese present treatment. As already well known, it is the DD
and cyclic ketone$ These observations are matched by ourcoupling that is essential in generating the eigenstates that
numerical results of Table IV foAn=1,2,3,4. The electrical reproduce the usually observed local modes at Higts.
parameters are such thatu/d¢?|, starts to contribute at From the expressions obtained for dipole strengths the role
An=2, and at this overtone order its contribution is in partof the electrical anharmonicity and the prevalence of low-
canceled by the contribution of the linear term, thus exp|ainfrequency modes in absorption are well documented. The
ing the more rapid decrease of the first overtone with respegiovelty of this work, however, mostly regards rotational
to the others. strengths of overtone transitions. The numerical results given
Furthermore, we observe that the highest absorption inm Table IV can be considered to represent well both funda-
tensities within each manifold are due to two nearly degenmenta| and overtone data for a transition from a normal-
erate vibrations at very low frequen¢got yet degenerate at mode regime to a local-mode one. For this reason a treatment
An=2). As can also be seen from Tables | and Il fon ke the one undertaken here is beyond the two crude simpli-
=2,An=3, both these two states are linear Symmetric Com'fying starting schemes—that is to say, the normal-mode ap-
binations of statefns,n,), coupled via DD interactions. Al proach and the local-mode approach. If the two bonds are
other vibrational states correspond to dipole strengths at leagiechanically identical as imposed here, they give origin to
one order of magnitude lower. From our calculations we se@egenerate local modes with rotational strengths of opposite
that the same happens for rotational strengths, but at ea%ns_ Of course, the prediction that no VCD beyahd
overtone order the two degenerate states have opposite sign$ can be observed for an HCCH fragment of the sort ex-
and so they tend to cancel one another. amined here, with two identical oscillators, is in some cases
The results obtained here for dipole strengths are exactlggainst experimental evidenddt this point the following
as expected in the local mode p_icture:_ considering the W@ssumptions need to be revised in the mofigthe two CH
CH bonds as *“local” anharmonic oscillators of quantum ponds are equivalentji) coupling to other modes such as
stateqv;,vy)e ?%**both from classical and quantum studies, iorsjorf is negligible, andii) molecular electric and mag-
one obtains that overtonds,0), (with v=v,+vy) have petic dipole moments are generated by bond electric dipole
lower frequencies and higher intensities than combination,oments. Anyway, the procedure of Van Vleck transforma-
states, so that the_ bands usually obs_erved in near-infrarggh g adopted here is quite promising also in view of over-
(NIR) spectroscopyin absence of Fermi resonangese due  ;oming these limitations: it can be extended to a higher num-
to nearly degenerate states0),=[0uv),. If one considers por of oscillator® and, what is more important for CD, it
these states in E@20) as defining rotational strengths, in the can be applied to operatogsandm with the general form of
valence bond approach of E40) and(16), one has Egs. (11) and (17) without the too severe hypothesis of va-
lence bond optical approach. In fact, our experimental find-
R=Im((0,0 | (v,0) = (0))¢- ¢((v,0) = (0,0)|My|0,0),) ings propose both cqnservative bisigpate spectra compatible
with coupled bond dipoles, as described here, and noncon-
servative monosignate specfrayhich require a different
model for the magnetic moment operator, as already recog-
nized and amply done to interpret VCD spectra in the
thus giving origin to rotational strengths of opposite signs. infrared’*43

- fele 5
==1Im| «(0,0mv,0),- 2c X (0,0 fy[0,0¢ |,
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APPENDIX A: DEPENDENCE OF S; AND S,
COEFFICIENTS ON ANHARMONIC FORCE
CONSTANTS

Rotational strengths for overtone transitions 7583
2 2
‘ Vxwh 3\xw A63
sss 32 saa 172
2wg 205 ‘wq
K Txw} Txw} Txw}
SSSS 24@5 1 aaaa 24(0621 1 ssaa 4wswa .
(A6b)

The coefficients relating normal coordinates to Cartesian co-
ordinates are

We wish to recall here the dependences of the anhar-

monic force constant&gqg, Ksaa, Kssss Kaaaa: aNdKggaa

of Hamiltonian (1) in the text, considering it as the fourth-
order approximation of two harmonically coupled symmetry-
equivalent Morse oscillators representing two equivalent
bonds and transformed from bofidcal) coordinates to nor-
mal coordinates, i.e.,

H = (p2/2m)+ (p2/2m) + D[ 1 —exp{ —a(l,— ) }]2

+D[l_eXp{_a(lll_IO)}]2+KI,II('I_IO)(lll_lo)-
(A1)

R 1. ; 1
—\Uu, —\Uy,
Is m | IIs om 1l
: 1. : 1 .
__u 1 __u 1
la m | lla \/m 1]

where u; and u;, are the unit vectors of bondsld; and

We recall the relations between Morse paramedieasnda to

the mechanical frequenay, and anharmonicity:*2*
D=wjl4y, a=+8mw’mcy/h. (A2)

The third and fourth derivatives of the Morse potential evalu-
ated at equilibrium are

Ky =(*VIal®)=—-6a°D, Ky, =(d*V/dl*)=14a"D.

(A3)

The Hamiltonian used in the perturbative treatment is ob-
tained by diagonalizing the zeroth-order term, i.e., consider-
ing normal modes. The frequencies of the two normal oscil-
lators are

ws=wot\, wa=wp—N\,

where\ = 3K, ,/4m2c®maw,, with m the reduced mass of the
CH bond. Dimensionless normal coordinatgsare related

to the usual one®, by q,= «,Q,, where
a,=[2mcw, /h]Y? (a=s,a). (A4)

The Hamiltonian used in the perturbative treatment is that of
Eq. (1) with coefficients given by

Ksss= (6v2m¥2he) ~Lag 3Ky, (A53)
Ksaa= (2V2m*?hc) tagta, %Ky, (A5b)
Kssse= (48m?he) " tag *Kyy (A50)
Kaaaa= (48m?hc) "o Ky, (A5d)
Kssaa= (8M?hc) ~tag 2oy 2Ky - (A5€)

Inserting Egs.(A3) into Egs.(A5) and making use of Eq.
(A2), one obtains

CyH,, respectively.

We report here, for sake of completeness, the coeffi-

cients of the generating functiol® and S,:

S55%= — (2/3)[ Koo 0512,

St= —[Kssd s ],

$*2%= — (2/%)[ Ksaal (40— 02) (05 05,
S2a= — (21)[ Ksaal (403~ 3) ] 0,

Saa= — (Uh)[Ksaal (45— 02) (203~ 03/ o,

B i ZKSSS@S_SKSSS
s 16 f3ws ’

SS_

1 6Kaaaa(w§—4wsw§)+Kiaa(8w§—3w§)
© 18 R~ 402+ 0D waos |

aa__

1 10K sssgvs— 9K§ss
§sss: - 1_6 ﬁwz )
s
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1 10Kaaaa(a) 4a)sw§) + Kgaa(Swg— 5w§)

aaa” 16 A(— 4w§+ 02) 0,04 '
ssaa_ _ 1 KSSaeﬂwS 8wswa+2waws)+K aa(Swa +2waw )—i—Ksa,les,Ss(lOwswa w§+8w§—2waw§)
8 (—4a)§+ws)(wa+ws)ﬁ3 wg '

1 Kssae(3w5—12w wa—Swaa—i- Zwaw )+Ksaa6waws+ KSE‘E,KSS46(1)SCz)a 3ws+8wa—2waw )

saa— g hwi(—4wit 02)(w,+ og) '
1
Sgsa_ - g
Kssaa(ng— 8w§w§— 12wsa)g+ 3waw§) + Kgaa(Gwsa)g-i- 4waw§—4wg) +KgsaaKssd 12a)sw§— 6w§’+ 10w2— 7waw§)
hwawy — 405+ 02)(0a+ wg) '
gssa_ _ E
a8

Kssad 208 —8w2w2— 4wsw3+ wawd) + K2, (20w’ + dw,wi+ 40d )+KsaaKSSS(12wa — 6w+ 14wd- 5waw2)
(— 4w +ws)(wa+ws)h w

APPENDIX B: TRANSFORMED ELECTRIC DIPOLE MOMENT AND MAGNETIC DIPOLE MOMENT OPERATORS
UP TO 2ND ORDER

We report here the terms in, €2, ande® of the transformed electric dipole moment and magnetic dipole moment
operatordsee Eqgs(11) and ff. and(16) and ff. in the texk

M1 :l_:‘sqs"' ﬁaQa1
S 1. 2, > 1. 2, > 2 S ~2 Saa~2 SS§A2 > sa
Mo :Eﬂssqs+ﬂsaqSQa+Eﬂaaqa"'ﬂsﬁ(szsqs""saaqa_"s apa+3s Sps)+ﬂaﬁ(5§aq5%+25 apspa)v

=, 1 1
ps = usa( 7S 03+ h S8t hSL020a + 27 %22 (APt Pslls) Pat 3157 Piba+ £ S%4 (qap3+ piqa))

+ Mss

- 1 1
+uaa( 21 5% (aPat Palla) Ps+ 7 S5,050s hSS08+hS3, 0505+ 30 S°°%5 (plas+ qsp§)+ﬁssaaqsp§)

+ua(2ﬁ83aa (qsps+psqs)pa+h52aaqa+3ﬁsaaa (QaP3+ Pada) + 7S5 H20at S Pi0at 5 ﬁzsiasé‘aqa
1
+3 ﬁZSSSSSSapsqa zsé‘assaa (P30at0aP2) + 5 ﬁz[(Sia)z+§ssSaa]qsqa—2ﬁ235aaS§sz (AsPs+ Pss)Pa

o thssaassaapgqa) + ;‘s

1 1
hSSadlalst 20 S57%5 (QaPat Paba) Ps+ S35 + 775,853,005+ 3 55°%5 (dsPs

+P2hs) + %S5 703+ A SI D205+ 1S3, S5050s— A 8L S HpZas - 3ﬁ285358§a2 (QaPa+ Palla)Ps

1
+ 25785 pla, ~ 31258 (pAast aspd) |,
My = £pst &xpa,

5352 (GsPs+ Psdls) + §aa2 (GaPat Palla) + £5Ps0a+ EPa0s+ £25241 | 28265 (APt P)+ S Say (P ot
+ E51(S20sPat25340aPs),
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=& h(h S

3 1 .
= 5 S5 (3Pt psdls) — [A(Sio+ S50) S0+ SI¥% ]pgpst A%(S39) 5 (a5pst psqi)) +&

283 1) UaPat (A SESha— SLaa) (AsPst Psls)d

—BSiaa)(qipa+paQ§) = (2S3%%+ SE S ) hpd

1
—28(5) 5 (GaPat Palla)Os— (S$°% 3S* i) ApS+ A (4S5,

——ﬁ(4ﬁ

+&
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Sga_ S:aa_ §sssgaﬁ ) qus

1
E (ﬁZSga( Sga_ st)

1
E SZasgaﬁ

1
S+ 25354 35°532 7)) pZp,+ Sh

h(—2S+S%) 5 (qsps+psqs)qa+ﬁ28‘°'spspa

] 1
hSSay S (apt paqa)) +§§( (S8s~ S i0ZPa—hSa(UsPst Pslls) G+ SEdiPa+ 37 S°°Papl + 57 S5(Palls

- 1 1
+ qua) + fss 3S°°% p:st'_ §ssﬁ pspg_ E Sgaﬁqs(qapa+ paqa) + §aah psqg_ E Sgsﬁ(qus+ psqs)

+ faa2ﬁ ( stpspg_ Szapsqg) .
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