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E X T R E M U M  P R I N C I P L E S  

IN E L E C T R O M A G N E T I C  S Y S T E M S  

CLAUDIO GIORGI - ELENA VUK 

Variational expressions and saddle-point (or "mini-max") principles for linear 
problems in electromagnetism are proposed. When conservative conditions are 
considered, well-known variational expressions for the resonant frequencies of 
a cavity and the propagation constant of a waveguide are revised directly in 
terms"of electric and magnetic field vectors. In both cases the unknown con- 
stants are typefied as stationary (but not extremum) points of some energy-like 
functionals. On the contrary, if dissipation is involved then variational expres- 
sions achieve the extremum property. Indeed, we point out that a saddle-point 
characterizes the unique solution of Maxwell equations subject to impedance- 
like dissipative boundary conditions. In particular, we deal with the quasi-static 
problen~_ and the time-harmonic case. 

1. Introduct ion.  

The variational method is one o f  the most  powerful  techniques in 

the theory o f  electromagnet ism. It is capable of  handl ing a large variety 

o f  problems, as e lec t romagnet ic-wave propagation, diffract ion and scat- 

tering problems, waveguides,  resonators and obstacle theory. Moreover,  

ex t remum principles (min imum or "mini-max") ,  i f  avalaible,  allow nu- 

merical methods  to be applied. 

Often, one would  rather calculate a single scalar magni tude  or pa- 

rameter (for example  the resonant  angular  f requency or the propagation 
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constant), than the electromagnetic configuration in the whole domain. 
Variational methods enable an approximate evaluation of such scalar 
quantities, avoiding the necessity of solving differential equations them- 
selves. In the literature a number of variational formulations for a variety 
of these electromagnetic parameters are known [1-5]. Usually, they are 
presented directly in terms of the field vectors E, H (either or both). 

Most of these works attains variational expressions, corresponding 
to linear partial differential problems subject to prescribed conservative 
boundary conditions. For istance, the vanishing of the tangential com- 
ponent of the electric field on perfect conducting surfaces (PCS) and 
the condition which represents the tuning stub junction with a resonator 
(TSJ) are typical conservative boundary conditions [1]. Unfortunately, in 
these cases minimum or "mini-max" principles cannot be achieved. 

The aim of this paper is to stress the dependence of variational for- 
mulation on the prescribed boundary condition in electromagnetic field 
problems. To this purpose we scrutinize linear electromagnetic systems 
related to lossy or nonlossy materials in terms of both electric and ma- 
gnetic field. 

First we revised previous results related to nonlossy materials and 
conservative boundary conditions (PCS and TSJ). In spite of the natural 
approach adopted, some technical difficulties arise because of the non- 
symmetric nature of such a type of boundary conditions with respect to 
electric and magnetic field vectors. In detail we take under consideration 
the resonance in a cavity and the wave propagation along a wavegui- 
de. In both cases we extend previous variational expressions proposed in 
[1,3] to a broader class of trial fields. In particular, for the resonator fre- 
quency or the propagation constant we exhibit functionals in terms of H 
and E such that the stationary property yields both Maxwell equations 
and mixed PCS-TSJ boundary conditions. 

The last part of this paper is devoted to develop variational prin- 
ciples involving situations not covered in the literature. Quasi-static and 
time-harmonic varying problems for lossy and nonlossy systems subject 
to impedance-like boundary conditions are considered. Actually, we take 
into account two kinds of conditions, both describing the behaviour of a 
well (but not perfectly) conducting surface: 

i) the Schelkunoff-Graffi impedance relation (SGI) involving the tan- 



EXTREMUM PRINCIPLES IN ELECTROMAGNETIC SYSTEMS 267 

gential components of electric and magnetic fields at the boundary 
[6,7]; 

ii) the heredi tary impedance-l ike  consti tutive relation proposed by Fa- 
brizio and Morro [8,9] in order to account for a dissipative material 
boundary with memory. 

Condition (i) applies to quasi-static and time-harmonic fields, mainly. 
Condition (ii) works with generally time-dependent fields and recovers 
SGI when they vary harmonically. 

It is worth noting that mixed PCS-SGI boundary conditions lead 
to existence, uniqueness and continuous dependence for time-harmonic 
[10], quasi-static [11] and arbitrary space-time dependent [12] solutions 
of Maxwell equations. In this framework we exhibit here two variatio- 
nal expressions concerning the quasi-static and time-harmonic problem, 
respectively. The former is built up on the basis of a bilinear form whi- 
ch is actually an inner product, whereas the latter rests upon a non de- 
generate bilinear form on complex valued fields. What is more, every 
(unique) solution can be characterized as a saddle-point of the correspon- 
ding functional by means of an appropriate decomposition of the (possi- 
bly complex-valued) electromagnetic pair (E, H).  

2. Setting of the problem. 

Let (X i, t) i = 1, 2, 3 be a Lorentz reference frame where (X i) 
represent rectangular coordinates and t the time parameter; in this frame 
the local form of Maxwell equations is 
(2.1) 

V • E ( x ,  t) + - ~ B ( x ,  t) = I i (x ,  t),  V .  B ( x ,  t) = 0 

0 
V x H ( x ,  t) - - - D ( x ,  t) = J ( x ,  t) -t- J i (x ,  t), V .  D ( x ,  t) = 0 

Ot 

provided that the free charge density vanishes in the open bounded do- 
main f2 C R 3, with smooth boundary 0f2, where (2.1) apply. 

Vector fields B, E, H, D and J represent the magnetic flux density, 
the electric field, the magnetic intensity, the electric displacement and the 
induced electric current density, respectively. Ii and Ji denote the forced 
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magnetic  and electric current density, and are known vector functions on 
the space-time domain Q = f2 x 11~. 

In order to obtain a determinate system of equations for the fields 
appearing in (2.1) it is necessary to append constitutive relations, depen- 
ding on the nature of the material in which the electric and magnetic 
fields occur. In the sequel we will focus our attention to conducting ma- 
terials modelled by 
(2.2) 

D(x ,  t) = e (x )E(x ,  t), B(x ,  t) = I , ( x ) H ( x ,  t), J (x ,  t) = er(x)E(x,  t) 

where e, >, ~,  are complex-valued second-order tensors, called permitti- 
vity, permeability and conductivity, respectively. 

We observe that e, b~, a are assumed to be symmetric tensors when 
isotropic materials and materials with crystalline anisotropy, lossy or non- 
lossy, are considered. On the contrary, they are hermitian tensors when 
nonlossy gyrotropic media  are allowed [1]. 

Regarding to (2.1), we will scrutinize different boundary conditions: 

Conservative boundaries 

a) If  the boundary is a perfect conductor, then 

(2.3) n(x)  • E(x ,  t) = O, x ~ Of 2 

where n is the unit outnormal to 0f2. 

b) I f  the boundary is a two dimensional  manifold representing the 
junct ion of a resonator and a tuning stub [1], then in the presence of 
t ime-harmonic fields of  angular frequency 09 

(2.4) n(x) x [ / z - l (x )V x E(x ,  w)] = - i o g T ( x ,  og)Er(x,~o), x ~ Of 2 

where Er is the tangential component  of  E and T is an anti-hermitian 
second-order tensor acting on the tangent bundle rx of 0~2 in x. 

Dissipative boundaries 

a) If  the boundary is a good (non perfect) conductor, i.e. a med ium 
with a high but finite electric conductivity a , ,  then in the presence of 
t ime-harmonic fields 

(2.5) E~(x, o~) = ;~(x, o 0 H ( x ,  ~o) x n(x) ,  x ~ 0f2 
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where ~., called surface impedance, is a symmetric second-order tensor 
on rx. In the isotropic case L is a scalar quantity vanishing when the 
electrical conductivity of the boundary tends to infinity. According to 
[13,14] we assume 

(2.6) ~(x, co) = J 
/z,(x) 

V co) 

where e', = e , -  i - -  and e,,  /x,, or, summarize the electromagnetic pro- 
w 

perties of the boundary medium. The boundedness of ~. as the frequency 
tends to infinity, namely 

(2.7) lim Z(x, co) = J / z , ( x )  
o ~ + ~  V e , (x)  

is regarded as Graffi's condition (see [7]). Conversely, if we neglect e, 
in comparison with cr,/co into (2.6), then we obtain the Schelkunoff's 
impedance relation (see [6]) 

~ co/z,(x) 
(2.8) ~.(x, co) = (1 + i) 2cr,(x) 

so that 

lim L- l  (x, co) = O. 
co--+ --k o o  

b) It is worth noting that condition (2.5) can be expressed in the 
form 

(2.91) n x E = - L n  x n x H 

provided that ~. commutes with " n x " ,  namely n • ~.v = ~.(n x v). In 
addition, if ;~ can be inverted then (2.9) is equivalent to 

(2.92) n x H = ~ . - l n • 2 1 5  

Neglecting the dependence on co in ~., conditions (2.9) may be re- 
ferred to arbitrary fields [12]. However, this assumption corresponds to 
a special physical case as pointed out in [9]. 

c) An appropriate generalization of (2.5) to time-dependent fields is 
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given by the hereditary model proposed in [8,9] 

Er(x ,  t) = Oo(x)H(x,  t) x n ( x ) +  

(2.10) 
-t- O(X, s )Ht (x ,  s) x n(x)ds ,  x ~ Of 2 

~o 

where n t ( x ,  s) -~ H ( x ,  t -  s), s E ]~+, is the history of the magnetic 
field and 00, 1/ are scalars or symmetric second-order tensors acting on 
the tangent bundle rx. In fact, (2.10) reduces to (2.5) if time-harmonic 
fields are considered and 

C L(x,  co) = rlo(X) + rl(x, s) exp(- i~os)ds .  

The local dissipativity of the boundary medium results in the validity 
of the inequality 

(2.11) E~(x,  t) x I t ( x ,  t ) .  n ( x ) d t  > 0, x E OS2 

for any non trivial cycle of duration d. For all cases a), b) and c), (2.11) 
implies 1) 

(2.12) ReL > 0, Yx E Of2, Vo9 E R +. 

Remark 2.1. When fields are time-harmonic and forced current den- 
sities vanish, condition (2.4) outwardly looks similar to (2.5) if we set 
T = _~-1 .  Nevertless, when T is rather assumed to be anti-hermitian 
than symmetric in (2.4) the boundary 8~2 is conservative. Indeed, taking 
into account the first Maxwell equation V • E + i~ l~H = 0, from (2.4) 
it follows 

n •  

and the energy balance leads to the vanishing of the Poynting flux vector 

(2.13) E(x ,  t) • H ( x ,  t ) .  n(x)  = - E r ( x ,  t ) .  T E r ( x ,  t) ---- 0, x ~ 8f2. 

Moreover, applying the operator " n •  to (2.4), we obtain 

(2.141) n(x)  x T(x ,  og)E(x, 09) = - H r ( x ,  09) 

1) For any tensor A, the notation A > 0 (A >__ 0) means that A is positive definite (semi- 
definite) on the space of the symmetric tensors Sym. 
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Now, if there exist two real functions 04/3 such that 

[ i ~ / 3 ] w i t h t ~ t ( x ,  to)#:]:/3(x, to) V(x, to), 
T : _/3 ia ' 

then T can be inverted and commutes  with the operator " n x " ,  so yiel- 
ding 

(2.142) n(x)  • E(x ,  to) = - T - l ( x ,  to)Hr(x,  to). 

3. Variational formulations for conservative problems. 

In this section we present some variational expressions related to 
the resonator frequency and propagation constant of  waveguides under 
boundary conditions (2.3)-(2.14), in terms of both electric and magnetic 
field. We prove that stationary points satisfy both Maxwell  equations 
and conservative boundary conditions, so generalizing some results of 
[1,3] 2). Unfortunately, in either case min imum or "mini-max" principles 
cannot be achieved. 

3.1. The resonant cavity. 

In the presence of t ime-harmonic fields of frequency to 

E(x ,  t) ---- E(x ,  to)e it~ H(x ,  t) = H(x ,  to)e i~~ 

system (2.1) yields 

(3.1) 
V x E(x ,  to) q- i totz(x)H(x,  to) = Ii(x, to) 

V x H(x ,  to) - itoe'(x, to)E(x,  to) = Ji(x, to) 

O" 
where e ' =  e -  i - -  and E,  H are complex-valued vectors such that 

t o  

V .  H(x ,  09) = 0 

(3.2) V -  E(x ,  o9) = 0 

2) In our view, the inclusion of two additional boundary terms in formulas (4.120), 
(4.126) of Hammond's book [3] is unnecessary because their overall contribution vanishes 
identically. 



272 CLAUDIO G1ORGI - ELENA VUK 

Under the ipothesis o" = 0 (e' = e), we match system (3.1) with 
conservative mixed (PCS)-(TSJ) boundary conditions. Let 0f2 = 0fZl U 
0f22, with 0~l  C) 0~2 = 13 and assume 

n(x) x E(x,  co) = 0 on 0~21 
(3.3) 

n(x) x E(x,  co) = - -T - l (x ,  co)Hr(x, co) on 0~'22 

We will study system (3.1)-(3.3) assuming e,/x to be hermitian and 
T anti-hermitian tensors (i.e. no losses are present). Furthermore the for- 
ced current densities are assumed to vanish. This represents an eigenva- 
lue problem and the variational expression is used for the calculation of 
resonant frequencies. Now we introduce the following operators 

[ 0 i V x ]  [ 0 i n x ]  
R = - i V x  0 " N = ' - i n x  0 

where " V x "  denotes the curl differential operator and " n x "  stands for 
the antisymmetric tensor related to the unit outnormal n, namely 

n x  ~ 7l 3 0 - - n l  �9 

--n2 nl 0 

If we let 

P =  - i n x O  " A =  with ' X - l n x  0 
X = - - T - l ;  

then the following properties hold 

N *T ~-- - - N ;  A 2 = --N2; NA = -A*TN;  

where superscripts " , "  and "T" stands for complex conjugation and tran- 
sposition, respectively. Multiplying (3.1)1, (3.3) by - i  and (3.1)2 by i, 
system (3.1)-(3.3) takes the form 

R U + c o K U = O  in f2 

(3.4) ( ~ l )  NU = - P U  on 3f21 

NU = N A U  o n  0~'2 2 
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If U, V are complex-valued vector fields, we define the following 
bilinear symmetric forms 

[U, V i a =  R e f U * . V d x ,  [U, V]~f2 = Refofu*.Vda.  

It is easy to check that the following properties hold 

(P1) [U, NV]o~ = -[NU, V]0a 

(P2) [U, AV]o~ = --[AU, Viola 

(P3) [NU, A V]o~ = -[U, NA V]of2 = [AU, NV]of2 

(P4) [U, RV]a = IV, RU]f2 + [U, NV]of2 

In order to give an accurate formulation of problem ~1 
conditions (3.2), we first introduce suitable functional spaces 

including 

L2(f2) = {u 6 f2 --+ C3 " u measurable and ]]ull2 = f lu(x)12dx < -k'oo} 

olivo(~2) ~ - -  {g E L2(~) "Vu E L2(~) and V .  u = O} 

jt~ = H,~ivo(f2) • HJi~o(~2). 

Of course, if ( E , H )  e ~ ( ~ )  then V x E and V x H belong 
to L2(~).  Moreover, by standard trace embedding theorems n x E and 
n x H both belong to L2(Of2) (see [15], Chapter IX), so that boundary 
conditions (3.3) are well-defined. In connection with problem ~1 we are 
able to prove the following 

THEOREM 3.1. Given U = (E, H) E ,.~(f2), the functional 

1 
-[U, RU]~ + -~[U, PU]o~, + ff[AU, NU]o~2 

(3.5) co(u)  = 
[U, KU]fz 

has a stationary point 0 on o~(S2) if and only if (1 satisfies, almost 
everywhere, problem ~1. 
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P r o o f  By means of the hermitian character of /z and e, the anti- 
hermitian character of L and previous properties (P1)-(P4) we get 

[U, KU]a&o9 = - 2[&U, ogKU]a - 2[&U, R U ] a  + [&U, NU]aa~ 

+ [3U, NU]o~2 2 + [N&U, AU]o~ 2 + [SU, P U ] , f  h 
(3.6) 

= -- 2[&U, R U  +ogKU]f~  + [&U, N U  + PU]~a~ 

+ [&U, N U  - N A U ] ~  z 

(/~, H) satisfies The variation of o9 vanishes provided that D = 

(3.5). 

3.2. Propagat ion  constant  o f  cylindrical waveguides .  

The propagation constant of a trasmission line along the z-axis can 
be obtained in a similar manner. Let this constant be denoted by y and 
let the field vectors be given by 

E ( x ,  y ,  z,  t )  = E ( x ,  y)e i(wt-yz), H(x,  y,  z,  t)  = H ( x ,  y)e i(~~ 

with E, H three-dimensional vectors. From Maxwell equations, with 
cr = O, Ii = O and Ji = O, we have 

(3.7) [ V • E + icolzH = i y a z  x E 

I V • H - i w e E  = i y a  z x H 

where a z is the unit vector in the z-direction. As in the previous case 
we consider 0f2 = 0f21 U 0f22 and boundary conditions (3.3). Let A and 
C be the operators defined by [0 oz ] [; 0] 

A =  , C = w  . 
az x 0 Iz 

Then, problem (3.7) can be rewritten in the compact form 

(3.8) 

R U + C U - y A U = O  in f2 

N U  = - P U  on Of 21 

N U  = N A U  on 0f22 

Since A T =  A ,  we are able to prove the following 
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THEOREM 3.2. Given U = (E, H) E ~ ( f 2 ) ,  the funct ional  
(3.9) 

1 1 
[U, RU]~  + [U, CU]~ - - f [U ,  PU]ofh - -~-[AU, NU]o~2 

y (U)  ---- [U, AU]~ 

has a stationary point  0 on ~ ( f 2 )  i f  and only i f  (1 satisfies, almost 
everywhere, problem 5~2. 

Proof. In order to prove that (3.9) is indeed a variational exPression 
we evaluate the first variation of  V, namely 

(3.1o) 
[U, A U ] ~ y  = -2 [~U,  y A U ] ~  + 216U, RU]~ 

+ 2[~U, CU]~ - [6U, NU]o~I 

- [6U, NU]af22 - [N6U, AU]~f2z - [~U, PU]o~I 

= 2[~U, R U  + C U  - yAU]f2 - [~U, N U  + P U ] o ~  

- [6U, N U  - N A U ] o ~ 2 2  

As a consequence,  the statement is attained. 

4. A saddle-point principle for the quasi-static problem. 

The evolution problem we are interested in is described by the qua- 
0 

sistatic approximation of system (2.1) (i.e. by assuming Ot D = O, 

0 
- - B  = 0) 
0t 

(4.1) 
V x E(x ,  t) = I i(x,  t) 

V x H ( x ,  t) = cr(x)E(x ,  t) + Ji(x ,  t) 

and mixed boundary conditions (2.3), (2.9), namely 

(4.2) n(x)  x E (x ,  t) = 0 on 0f21 
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(4.3) 
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n(x) x E(x,  t) = -)~(x)n(x) x n(x) x H(x,  t) 

on 0~'~2 

n(x) x H(x,  t) = L -1 (x)n(x) x n(x) • E(x, t) 

where 0f2 = 0~l  U 0f22, 0~ l  Cl 0~2 = 0. Here we assume that the 
impedance tensor L does not depend on co. When losses are present, 
tensors o" and ~ are supposed to be symmetric and inequality (2.11) 

0 n x ] ;  

n •  0 

0 -~,nx ] 
k - l n x  0 

yields 

(4.4) c r > 0 ,  ) ~ > 0  

By introducing the operators 

l R =  ; N =  
V 0 

P =  ; A =  
n x  0 

a straightforward calculation proves the following properties 

N T = - N ;  p T = p ;  A 2 = _ N 2 ;  N A = - A T N .  

// 

in f 2 x ~  

on 0~1 • 

on 8~2 • 

If we let [o 0] 
D =  ; U =  

0 0 

system (4.1)-(4.3) can be rewritten as 

RU = DU + F 

(4.5) (~-~3) NU = - P U  

NU = N A U  

Since all quantities considered are real valued, we can define the 
scalar products 

(U, V)~ = f U.  Vdx,  (U, V)a~ = fa U.  Vda 

so that the following properties hold 

(Q1) (U, NV)of2 = - ( N U ,  V)o~ 

(Q2) (U, AV)o~ = (ArU,  V)0n 
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(NU, A V ) ~  = (AU, NV)o~ = - ( U ,  N A  V)o~ 
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(Q4) (U, RV)~ = (V, RU)~ + (U, NV)of~ 

DEFINITION 4.1. A function U is called a strict solution of  the 
quasi-static problem 5~3 with source function F ~ L2(R, L2(f2) • 
if U belongs to L2(R, ~ ( f 2 ) )  and satisfies almost everywhere (4.5). 

As to the solvability of (4.5), we recall the existence and uniqueness 
results proved by Nibbi in [11] under more general conditions. 

Here, we prove that the unique solution of (4.5) is a saddle-point 
for a suitable functional, if dissipativity conditions (4.4) hold. To this 
end, for any pair (U, V) of real vectors on f2 • •, we introduce the 
following bilinear form 
(4.6) 

1 1 1 1 
qb(U, V) = -~(U, RV)~---~(U, NV)o~--~(U, PV)o~,--~-(AU, NV)o~2 

By virtue of (QI)-(Q4), ~ is easily seen to be symmetric, namely 

v) = O(v, u) .  

As a consequence of foregoing results we get 

THEOREM 4.1. If  conditions (4.4) hold and 8~2r  then (J E 
L2(R, ~ ( ~ ) )  is a strict solution of  problem 5~3 if and only if  (J is 
a saddle-point on L2(~, dq~(~)) of  the functional 

(4.7) ~ ( U )  = ok(U, U) - I (U, DU)~ - (U, F)Q 
Z 

Proof. By virtue of the simmetry of q~ and (Q3), the first variation 
of ~" is given by 

6,~(U) = 2r U) - (rU, DU + F)~ = 

1 
(4.8) = <rU, R U -  DU - F)~ - -~<rU, N U  + PU)o~,+ 

1 
-- --(3U, N U  - NAU)~2 

2 
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so that it vanishes provided that 0 satisfies (4.5). In particular, since the 
functional ~" takes the form 

~ ( U ) = ~ ( E , H ) = l f ( E . V x H + H . V •  - 

- -  E �9 e r E  - 2 E  �9 J i  - 2 H  �9 Ii)dx + 

+ I f  (E x H ) . n d a +  
2 ~a~ 

+ -~- [(n x H ) .  X(n x H) - (n x E ) - ~ - 1  (/2 x E)]da 
2 

we observe that if the pair 0 = (E , /~ )  solves problem ~ 3  then 

1 f 
J ( E . J i + H . i ) d x .  ~ ( ( 1 )  - -  2 

The second variation of ~ at 0 is given by 

~2, .~(0)  = ( S U ,  RSU)~ - k(SU, DSU)~+ 

(4.10) 1 1 
- pau)o   + 7(au, NASU)a 2. 

As a consequence, if 8U = (BE, 0) we obtain 

(4.11) ~2~.~E(~r ) : -- 3 E . r r S E d x - - f  ( n x 3 E ) . L - l ( n x S E ) d a  < 0 
2 

while, if 8U = (0, 6H) 

(4.12) 32~.q(~ ) _= I f  (n x 8H) �9 X(n x 8H)da > O. 
2 a0~22 

so that 0 is a saddle-point for the functional ~ ( U )  on L2(~, Jg~(f2)). 

Remark 4.1. Previous Theorem 4.1 does not work when 3f22 = {3. 
Indeed, by (4.11)-(4.12) the functional ~ exhibits infinite critical points 
spanning a vector subspace. In such a case, however, existence and uni- 
queness of the solution 0 to problem ~ 3  can be achieved by assuming 
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O" > 0 (see [16]). Therefore, the stationary property of  ~" at (J still holds 

( ~ ( U )  = 0), but U is no longer a saddle point. 

5. A saddle-point principle for dissipative problems. 

In this section, we are dealing with a variational formulation for 
the time-harmonic system (3.1) subject to dissipative boundary conditions 
(2.9) only. Moreover, the tensors e, /x,  or, L are supposed symmetric, be- 

cause the problem is restricted to lossy substances. 

Letting x ~ f2 and 09 ~ R we have 

I V x E(x ,  o9) + i09tz(x)H(x, 09) = I i ( x ,  09) 
(5.1) / V x H(x ,  09) - i09s'(x, 09)E(x, co) = Ji(x,  09) 

We recall that problem (5.1) is well-defined with the customary 
boundary condition n x E = 0 provided that the conductivity is posi- 
tive definite, i.e. o- > 0. In order to obtain existence and uniqueness re- 
sults when tr vanishes, we are forced to use Schelkunoff-Graffi 's boun- 
dary conditions, namely 

(5.2) 
n(x)  x E(x ,  09) = -~ . (x ,  09)n(x) • n(x)  x H ( x ,  09) 

n(x)  • H(x ,  o9)= L - l ( x ,  w)n(x)  • n(x)  • E(x,09) 

where x E 0~2 and o9 ~ R. 

Let R, N, A be the differential operators defined in Section 4. As- 

suming 

M =  ; U =  ; F =  
0 -i09tz Ii 

problem (5.1)-(5.2) takes the form 

(5.3) ( ~ 4 ) { R U = M U + F  in f2 

N U  = N A U  on 0f2 

where A depends on o), as well as M. 

Since U, V are complex vectors, properties (Q1)-(Q4) hold again 
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with respect to the following bilinear symmetric "non degenerate" forms 3) 

( U , V ) ~ = R e f U . V d x ,  (U, V)~f2 = Re f~f2U. Vda .  

The aim of this section is to recover the dissipative time-harmonic 

problem from a variational principle and prove that the (unique) solution 
to (5.3) turns out to be a saddle-point for a suitable functional, provided 
that certain constitutive hypotheses on e,/~, or, and L are satisfied. 

DEFINITION 5.1. A function U is called a strict solution o f  the time- 
harmonic problem ~ 4  with supply F belonging to L2(~2) x L2(f2) i f  U 
belongs to Jet~ and satisfies almost everywhere (5.3). 

As to the solvability of (5.3), we recall the existence, uniqueness 
and continuous dependence results proved by Fabrizio-Lazzari in [10], 
where the permittivity s and the permeability # are required to be po- 
sitive definite and bounded real tensors. 

With the same scheme used in Section 4, we introduce the symme- 
tric bilinear form 

1 U 1 1 
(5.4) ~ ( U ,  V) = -z-( , RV)s~ -z-(U, NV)as~ - - : - (AU, N V ) a ~  

z 4 4 

and we formulate the following 

THEOREM 5.1. Let ~, tz, cr and )~ be such that 

Re(icos') > O, R e ( i w # )  > 0, ReL > 0 

(9" 

where ~' = e - i ~ .  Then, a function (J ~ ~ ( f 2 )  is a strict solution o f  
O9 

problem ~4 i f  and only i f  (J is a saddle-point o f  the functional  

(5.5) 
1 

fC(U) = ~ ( U ,  U) - -z'(U, M U ) ~  ---.(U, F)f2. 
z 

3) The bilinear form (., -) : X x Y -+ ~ is called "non degenerate" if (x, y) = 0 u ~ Y 
implies x = 0 6 X. 
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Proof. In a routine matter it is easy to check that t~fC(L)) = 0 if and 
only if U satisfies (5.3). In fact 

(5.6) 

(5.7) 

SlY(U) = (6U, RU)f~ - (~U, MU)f~ - (~U, F ) ~  

1 1 
-- -~-(3U, N U ) o ~  q- ~ ( ~ U ,  NAU)an  

1 
= (6U, R U  - M U  - F)f2 - -~--(~U, N U  - NAU)af2  

Moreover, since the functional f# takes the form 

fg(U) = ~g(E, H )  = Re  l l f u ( E  . V x H + H . V • E +  

+ H �9 i w t z H  - E �9 i w s ' E  - 2E  �9 Ji - 2 H  �9 l i ) d x +  

} + ~ -  [(n x H) �9 ~.(n x H)  - (n • E) �9 ~.-l(n • E)]da 

if / ) =  (/~,/-)) solves problem J~4, then 

~(0) = - R e  7 (E" J~ + I-)- I~)dx I . 

Besides, if we calculate the second variation 52fr at U, we obtain 

1 
(5.8) ~2fr  = (6U, R 3 U ) ~  - (*U, M~U)f2 + --~(3U, NA6U)of2  

Since E and H are complex vectors, namely 

U = = + i  = U1 + i U 2 ,  
H~ H2 

we can represent the space ~ as 9fr = ~ @ 9ffb so that U = Ua + Ub 
and Ua E 9ffa, Ub ~ ~ are as follows 

[ ] [ i E 2 ]  E1 U b =  
Ua = i l l2  ' [. HI .J 

and [0] [0] [, 21 
, + i  . 

SUa = + i ~H2 6Ub ---- ~H1 0 J 
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Although tensors 6, # ,  a are usually real, they are considered here 
as general as possible, namely they are assumed to belong to Sym(C), 
as well as )~ 

6=81 q-i62, /x = / Z l  q-i/~2, r =o '1  q- ior2, ~. = ~.1 -1- i)~2. 

Thus, taking advantage of the field splitting and using the identity 
Re(L - l )  = Re0~*)[ZL*] -1, we obtain 

62ff(Ua) = fa [3E1 �9 ( 0 9 6 2  - al)3E1 + 3H2" 

(5.9) 

(5.1o) 

tolz2S H2]dx-q- 

2 [(n x ~E1) �9 )~l(~.L*)-l(n x ~El)-t- 

+ (n x 6H2) �9 ;kl(n x ~H2)]da 

~ 2 ( ~ ( U b )  = --f~ [/~E2 �9 ( 0 9 6 2  - -  o'I)SE2 -k- 8E2 q- SHI �9 ootx2~Hl]dx+ 

-t- ~ [(n x ~Ea) �9 ~.l(~.~.*)-l(n x ~E2)+ 

+ (n x ~HI) �9 )~l(n x ~H1)]da. 

Since [~.~.,]-1 is a real, positive semi-definite tensor, we conclude 

COROLLARY 5.1. When e, Iz, a ~ Sym(l~), functional fY(U) exhibits 
a saddle-point at the solution ffJ of  5Y~4 if and only if one of  the fol- 
lowing conditions alternatively holds 

(5.12) a > 0, ReX > 0 

OF 

(5.13) a > O, ReL > O. 

that a saddle-point characterizes a t ime-harmonic solution if and only if 
the following constitutive conditions are satisfied 

(5.11) Re(ioge') > O, Re(iogtz) > O, ReL > O. 
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Condition (5.12) includes the case cr > 0, ~. = 0 yielding classical 
existence and uniqueness results (for instance, see [16,17]), while (5.13) 
includes the case cr = 0, ~. > 0 yielding [10,18]. 

Remark 5.1. In electromagnetic materials with linear hereditary con- 
stitutive equations conditions (5.11) hold as a consequence of  the Second 
Law of Thermodynamics [8,19]. In this case, Fourier's transforms of the 
tensor-valued memory kernels e, /z,  cr belong to S y m ( C ) ,  so that (5.3) 
is exactly the transformed form of  the original system in the frequency 
domain. 

Remark 5.2. We observe that if the behaviour of  the boundary is 
described by the constitutive hereditary relation (2.10), then (5.2) cor- 
respond to the Fourier transforms of  (2.10), and the above condition 
Re)~ > 0 is equivalent to the thermodynamic restriction (2.12). 
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