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Abstract

I introduce the concept of a weakly tc-upper semicontinuous acyclic
binary relation ≺ on a topological space (X, τ), which appears as slightly
more general than other concepts of continuity which have been intro-
duced in the literature in connection with the problem concerning the
existence of maximal elements. By using such a notion, I show that if
an acyclic binary relation ≺ on a compact topological space is weakly
tc-upper semicontinuous, then there exists a maximal element relative
to ≺. In this way I generalize existing results concerning the existence
of maximal elements on compact topological spaces.

1 Introduction

A classical and very nice theorem of Bergstrom [3] states that an acyclic
binary relation ≺ on a compact topological space (X, τ) has a maximal ele-
ment provided that ≺ is upper semicontinuous (i.e., L≺(x) = {z ∈ X : z ≺ x}
is an open subset of X for every x ∈ X).

Several authors presented generalizations of the aforementioned result of
Bergstrom by using different suitable notions of semicontinuity such as weak
lower continuity (see Campbell and Walker [5]), transfer lower continuity (see
e.g. Mehta [7] and Subiza and Peris [8]) and tc-upper semicontinuity (see
Alcantud [1, 2]).

More recently, Kukushkin [6] was concerned with the existence of maximal
elements for an interval order on a compact metric space.

In this paper we present the notion of a weakly tc-upper semicontinuous
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acyclic binary relation, which generalizes the notion of a tc -upper semicontin-
uous acyclic binary relation.

We recall that an acyclic binary relation ≺ on a topological space (X, τ) is
said to be tc-upper semicontinuous if the transitive closure ≺≺ of ≺ is upper
semicontinuous. The concept of weak tc-upper semicontinuity which is pre-
sented in this paper resembles the notion of weak upper semicontinuity which
is found in Bosi and Herden [4] in connection with the existence of a linear
and upper semicontinuous extension of a partial order.

We show that if an acyclic binary relation ≺ on a compact topological
space is weakly tc-upper semicontinuous, then there exists a maximal element
relative to ≺.

As a corollary of our main result, we prove that an acyclic binary relation
≺ on a compact topological space (X, τ) has a maximal element provided that
≺ is tc-upper semicontinuous (see Alcantud [1, Proposition 2]).

2 Notation and definitions

We first recall that a binary relation ≺ on a nonempty set X is said to
be acyclic if the following condition holds for every integer n ≥ 2 and for all
x1, ..., xn ∈ X:

(x1 ≺ x2) ∧ (x2 ≺ x3) ∧ ... ∧ (xn−1 ≺ xn) ⇒ x1 �= xn.

Denote by ≺≺ the transitive closure associated to an acyclic binary relation
≺ on a set X (namely, for every x, y ∈ X, x ≺≺ y if and only if there exists an
integer n ≥ 2 and x1, ..., xn ∈ X such that x = x1 ≺ x2 ≺ ... ≺ xn−1 ≺ xn = y).

We say that a subset D of X is ≺≺-decreasing if the following condition
holds for every w, z ∈ X:

(w ≺≺ z) and (z ∈ D) ⇒ w ∈ D.

An acyclic binary relation ≺ on a topological space (X, τ) is said to be
tc-upper semicontinuous (see Alcantud [1]) if L≺≺(x) = {z ∈ X : z ≺≺ x} is
an open subset of X for every x ∈ X.

Let us now present the most important definition in this paper.

Definition 2.1 If ≺ is an acyclic binary relation on a set X and τ is a
topology on X, then we say that ≺ is weakly tc-upper semicontinuous if we
may associate to every pair (x, y) ∈ X ×X such that x ≺ y a subset Oxy of X
so that the following conditions hold:

(i) Oxy is open;
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(ii) Oxy is ≺≺-decreasing;

(iii) x ∈ Oxy, y �∈ Oxy;

(iv) Oxy � Ozw for every x, y, z, w ∈ X such that x ≺ y, z ≺ w, y ∈ Ozw.

The reader may recall that an acyclic binary relation ≺ on a topological
space (X, τ) is said to be weakly upper semicontinuous (see e.g. Alcantud [2]) if
we may associate to every pair (x, y) ∈ X×X such that x ≺ y a neighborhood
Oxy of x such that y ≺ z is false for all z ∈ Oxy. It is not hard to check
that weak tc-upper semicontinuity implies weak upper semicontinuity. Indeed,
if Oxy is ≺≺-decreasing, then y ≺ z ∈ Oxy implies y ∈ Oxy and this would
contradict condition (iii) in Definition 2.1.

We recall that a real-valued function u on a set X is a weak utility for
an acyclic binary relation ≺ on X if the following condition holds for every
x, y ∈ X:

x ≺ y ⇒ u(x) < u(y).

is an almost weak utility for an acyclic binary relation ≺ on X if the fol-
lowing condition holds for every x, y ∈ X:

x ≺≺ y ⇒ u(x) ≤ u(y).

In the following proposition we show that the existence of an upper semi-
continuous weak utility implies weak tc-upper semicontinuity.

Proposition 2.2 Let ≺ be an acyclic binary relation on a topological space
(X, τ). If there exists an upper semicontinuous weak utility u for ≺, then ≺ is
weakly tc-upper semicontinuous.

Proof. Let u be an upper semicontinuous weak utility for an acyclic binary
relation ≺ on a topological space (X, τ). Define Oxy = u−1(] − ∞, u(y)[)
for every x, y ∈ X such that x ≺ y. It is almost immediate to verify that the
family {Oxy : x ≺ y, x, y ∈ X} satisfies conditions (i), (ii) and (iii) in Definition
2.1. In order to show that also condition (iv) in Definition 2.1 holds, consider
x, y, z, w ∈ X such that x ≺ y, z ≺ w, u(y) < u(w) (⇔ y ∈ Ozw). If a is
any element of X such that u(a) < u(y) (⇔ a ∈ Oxy), then we have that
u(a) < u(y) < u(w) implies that u(a) < u(w) (⇔ a ∈ Ozw). If we further
observe that y ∈ Ozw \ Oxy, then we immediately realize that Oxy � Ozw. �

The concept of weak tc-upper semicontinuity generalizes the concept of
tc-upper semicontinuity. Indeed the following proposition holds.
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Proposition 2.3 Let ≺ be an acyclic binary relation on a topological space
(X, τ). If ≺ is tc-upper semicontinuous, then ≺ is also weakly tc-upper semi-
continuous.

Proof. If ≺ is tc-upper semicontinuous then we can define Oxy = L≺≺(y)
for every x, y ∈ X such that x ≺ y. It is immediate to verify that the family
{Oxy : x ≺ y, x, y ∈ X} satisfies conditions (i), (ii) and (iii) in Definition
2.1. In order to show that also condition (iv) in Definition 2.1 holds, consider
x, y, z, w ∈ X such that x ≺ y, z ≺ w, y ≺≺ w (⇔ y ∈ Ozw). If a is any
element of X such that a ≺≺ y (⇔ a ∈ Oxy), then we have that a ≺≺ y ≺≺ w
implies that a ≺≺ w (⇔ a ∈ Ozw). Since it is clear that y ∈ Ozw \ Oxy, we
have that actually Oxy � Ozw. �

3 The result

Let us now present the main result in this paper, which guarantees the
existence of a maximal element for a weak tc-upper semicontinuous acyclic
binary relation on a compact topological space.

Theorem 3.1 Let ≺ be a weakly tc-upper semicontinuous acyclic binary
relation on a compact topological space (X, τ). Then there exists a maximal
element relative to ≺.

Proof. Let ≺ be a weakly tc-upper semicontinuous acyclic binary relation
on a compact topological space (X, τ). Assume by contraposition that there
exists no maximal element relative to ≺. Since ≺ is weakly tc-upper semi-
continuous we have that for every x ∈ X there exist some element y(x) ∈ X
such that x ≺ y(x) and an open ≺≺-decreasing subset Oxy(x) of X such that
x ∈ Oxy(x), y(x) �∈ Oxy(x). It is clear that O = {Oxy(x) : x ∈ X} is an open
covering of X. Since (X, τ) is compact there exist elements x1, ..., xn of X
(n ∈ IN \ {0, 1}) such that {Oxhy(xh) : h = 1, ..., n} is also a covering of X
(xh ≺ y(xh) for h ∈ {1, ..., n}). Without loss of generality, let us assume that
y(xh−1) ∈ Oxhy(xh) for h = 2, ..., n (observe that y(xh−1) �∈ Oxh−1y(xh−1)).
By condition (iv) in the definition of a weakly tc-upper semicontinuous acyclic
binary relation (see Definition 2.1), we have that Oxh−1y(xh−1) � Oxhy(xh) for
h ∈ 2, ..., n . Clearly, it should be y(xn) ∈ Oxh∗y(xh∗) \ Oxny(xn) for some
h∗ ∈ {2, ..., n − 1}. But this is contradictory from the considerations above,
since y(xn) �∈ Oxny(xn). So the proof is complete. �

Remark 3.2 It is clear from the proof of Theorem 3.1 and from the defini-
tion of weak tc-upper semicontinuity that Theorem 3.1 remains true if instead
of requiring compactness of the topological space (X, τ) we only require upper-
compactness of the topological related space (X, τ,≺). We recall that if ≺ is
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an acyclic binary relation a topological space (X, τ), then the topological re-
lated space (X, τ,≺) is said to be upper-compact if every open covering of X
by ≺≺-decreasing sets admits a finite subcovering. (see e.g, Alcantud [1]).

As an application of Theorem 3.1, Proposition 2.3 and Remark 3.2 we can
easily obtain Proposition 2 in Alcantud [2] as a corollary.

Corollary 3.3 Let ≺ be a tc-upper semicontinuous acyclic binary relation
on a topological space (X, τ) and assume that (X, τ,≺) is upper-compact. Then
there exists a maximal element relative to ≺.

Proof. Since ≺ is tc-upper semicontinuous, we have that ≺ is also weakly
tc-upper semicontinuous by Proposition 2.3. Therefore Remark 3.2 and the
proof of Theorem 3.1 guarantee the existence of a maximal element relative to
≺ since we have assumed upper-compactness of the topological related space
(X, τ,≺). �
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