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Abstract

Using techniques based on decreasing scales, necessary and sufficient conditions are presented for the
existence of a continuous and homogeneous of degree one real-valued function representing a (not necessarily
complete) preorder defined on a cone of a real vector space. Applications to measure theory and expected
utility are given as consequences.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The main purpose of this paper is that of providing a characterization of the existence of a
continuous and order-preserving real-valued function defined on a topological preordered cone
that also preserves the cone operation (i.e., it is homogeneous of degree one on the strictly positive
real numbers).
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The approach followed to obtain this characterization is based on the existence of particular
scales that behave well with respect to the cone operation and that we call homogeneous scales.

The notion of a scale can be understood as a generalization of the Urysohn approach (see
Uryshon, 1925) to get continuous functions on a topological space.

This fruitful idea was already used by Nachbin (see Nachbin, 1965) to provide results about
the existence of continuous order-preserving functions on preordered topological spaces (see also
Burgess and Fitzpatrick, 1977); Herden (1989a).

We go further by extending the previous approach to the algebraical context, a work initiated in
Bosi and Zuanon (2003) where the representability of non-complete preorders by means of
sublinear utility functionals was analyzed, and in which scales are first used in order to obtain a
representation of this kind. Also, for the particular case of semigroups, a pioneer work in this
algebraical setting is Bosi et al. (2005).

Although in the present paper we mainly focus on topological preordered real cones, some links
with the representability problem of totally preordered topological vector spaces and semigroups
(see e.g. Bosi and Zuanon, 2003; Bosi et al., 2005; Candeal et al., 1999; Candeal et al., 2002;
Fuchs, 1963; De Miguel et al., 1996; Hofmann and Lawson, 1996) are also considered. This issue
is of particular importance in mathematical economics related to constant returns to scale
economies (see, e.g., Katzner, 1970, Ch. 2). It should be also noted that all the existing literature
concerning this representability problem deals with totally preordered topological real cones.
Here, we drop the assumption of the preorder being complete.

As some consequences derived from our main theorem we offer, on the one hand, an
application to measure theory that leans on a theorem by Yosida and Hewitt about linear
functionals given by a probability measure. On the other hand, we discuss how an expected utility
result could be provided, by using the techniques of decreasing scales, whenever the space of
lotteries is a totally preordered topological vector space.

2. Notation and preliminaries

A preorder 3 on a nonempty set X is a reflexive and transitive binary relation on X. If, in
addition, X is antisymmetric, then it is said to be an order.

The asymmetric part < of a preorder X is defined as x <y <= (x3IP)A(—(y3x)) (x, yEX)
and the symmetric part ~ is defined by x~y <= (x3)) A (¥ 3x)(x,y EX). A preorder S on Xis
said to be complete or total if for any two elements x, yEX, xJy or y Jx.

A pair (X,3) consisting of a nonempty set X endowed with a preorder < will be referred to as a
preordered set. If in addition X is endowed with a topology 7 then the triple (X,1,3) is said to be a
topological preordered space. In this case, the preorder X is said to be T-continuous if, for every
xEX, the sets L(x)={tEX:t<x} and U(x)={y<EX:x <y} are both t-open and the sets D(x)=
{aEX:a3x} and I(x)={bE X:x 3 b} are both 7-closed. Further, if there is a binary operation +
on X, then we shall use the notation (X, 7, 3, +) (here the binary operation + may or may not be
commutative or associative).

We recall that a topological semigroup (S, T, +) is a semigroup (i.e., a nonempty set S together
with an associative binary operation +) endowed with a topology 7 on S such that the function @:
§%x8§— S defined by &(x,y)=x+y(x,yES) is continuous with respect to the topology 7 on S and
the corresponding product topology 77 on SxS.

A topological real vector space E is a vector space over the field R of real numbers, and
endowed with a topology 7 that makes continuous the inner operation +:£xE—E and the
external operation of product by scalars (g):R*xE—E.
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A nonempty subset KC E of a real vector space E is a cone if L& (0,+o) and xEK imply
A-xE€K. If the real vector space E is topological, we shall consider on K the restriction of the
topology given on E.

A cone K of a real vector space E is said to be additive if it remains stable under the internal
binary operation + of the vector space, that is, for every x, y €K it holds that x+yEK.

If (X,3) is a preordered set, a real-valued function u is said to be order-preserving or strictly
isotonic if it satisfies the following two conditions:

(i) xZy=u(x) <u(y) (xy EX).
(if) x <= u(0)<u(y) (xy EX).

In that case the structure (X,X) is said to be representable.

It is clear that if the preorder on X is total, then a real-valued function u on the preordered set
(X,R) is order-preserving if and only if x 3y <= u(x) <u(y) (x,y €X). In this case u is called a
numerical representation, or else a utility function representing the total preorder < on X.

A real-valued function « on a set X endowed with a binary operation + is said to be additive if
u(x+y)=u(x)+u(y) (x,y €X) (here again, we do not ask a priori the binary operation + to be
commutative or associative).

In the case in which K is a cone of a real vector space, a real-valued function u : K—R is said
to be homogeneous of degree one (see Bosi et al., 2000) if u(L x)=u(x) (A € (0,+x),x EK). It is
said to be homogeneous on rationals if u(p x) = pu(x) (peQ N (0,4+0), xK).

When K is an additive cone of a real vector space, and u is an order-preserving function
representing a preorder < defined on K, the function u is said to be /inear if it is both additive and
homogeneous of degree one.

When (X,X) is a preordered set endowed with some binary operation + it is usual to ask the
binary operation to satisfy some additional condition of compatibility with the ordering <. In this
direction, < is said to be translation-invariant if xSy <= x+z3y+z < z+x3z+p(x, 1,z EX).

Also, if K is a cone endowed with a preorder X, we say that the preorder is homothetic (or
compatible with the cone structure) if x Xy <= Lx 3 Ap(AE(0,+0),x,y EK). It is said to be
increasing if for every x&K and A, u € (0,+) with A<u it holds that Ax < px.

Similarly, the preorder < is said to be homothetic on rationals if x S y <= Ax 2 Jy (41eQn
(0,+00) ,x,yEK), and increasing on rationals if for every xeK and 4, ueQ N (0,4 o0 ) with
A<u it holds that Ax < px.

If X is any nonempty set endowed with a binary operation +, and 4 and B are two nonempty
subsets of X', then define A+B={a+b:a=A,b<B}.

Also, if 4 is a nonempty subset of a real vector space, and 1 € R is a real scalar, set A4=
{A-a:a<sA}.

3. Scales

Let X' be a nonempty set endowed with a topology 7. Let 7' be a dense subset of the Euclidean real
line R (respectively: of the set (0, + oo ) CR. A family F = {X; : t=T} of subsets of X'is said to be
ascale (respectively: a positive scale) on the topological space (X, 7) if the following conditions hold:

(i) X, is a T-open subset of X for every 1< T. B
(i) X, C X, for every s, t< T such that s<¢, where Y stands for the 7-closure of a subset Y C X.
(ili) UerX,=X and N, X,=0.
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Following Nachbin (1965), given a preordered set (X, <) a subset A C X is called decreasing if
for every x, zE X it holds that z Sx) A(xEA)=zE A.

Leaning on the concept of a decreasing set, a powerful tool to deal with utility representations
of preordered sets was introduced in 1977 by Burgess and Fitzpatrick (see Burgess and Fitzpatrick
(1977). This is the key concept of a decreasing scale.

Throughout the paper we shall use a particular case of decreasing scales. Thus, we say that a
family G = {G, : r €Q N (0,4 )} is a positive countable decreasing scale on a topological
preordered space (X,1,3) if the following conditions hold:

(i) G, is a decreasing subset of X for every reQ N (0, + o).
(i) 6={G, : r€Q N (0,4 0)} is a positive scale on (X, 7).

In the particular case when 7 is the discrete topology on X, then a positive countable
decreasing scale G = {G, :r€QnN(0,+)} will be referred to as a positive countable
decreasing pseudoscale on the preordered set (X,3).

Remark 1.

(1) Our definition of a countable decreasing scale slightly differs from the definition that
appears in Burgess and Fitzpatrick (1977). Indeed, in that pioneer paper, in order to study the
satisfaction of separation axioms on certain kinds of partially ordered topological space, the
authors defined a scale G = {G, : r=S} on a set X endowed with a topology 7 and a partial
order 3, as a family of T-open decreasing subsets of X indexed in S as a dense subset of [0,1]
containing 1, and G, =X, and further G, < G, whenever p<g(p, g S). With this original
definition (but dealing with preorders instead of partial orders) we would get order-
preserving functions with values in [0,1]. Also, our definition of a countable decreasing
scale may also be interpreted as a particular case of the definition of a linear separable system
in Herden’s terminology (see Herden, 1989a, b), where a linear separable system is a family
£ of open decreasing subsets of X which is linearly ordered by set inclusion and such that
there exist sets £, E,=& such that E, C E, and for all sets £y, E,=€ such that E, C E,
there exists some set Es=& such that E; € Ey € E; C E,. In Lemma 2.2 of Herden
(1995) it has been proved that from every linear separable system it is possible to extract a
countable decreasing scale.

(i1) The use of scales in utility theory features many nuances that should be clarified to explain
exactly which is the approach that we will follow in the present paper. Thus, if X is a
nonempty set endowed with a topology , then the set C(X, R) of all continuous real-valued
functions f* : X —R is of interest. As shown later in Lemma 4, that set is equivalent to the set
of scales defined on X. A scale may be directly interpreted as a continuous real-valued map
ge C(X,R), and conversely, an element g& C(X,R) has associated a scale. If we are
looking for continuous maps of the set C(X, R) that satisfy additional properties, i.e., if we
are interested on a particular subset S of the set C(X, R), it seems natural to explore and
characterize the corresponding subset of scales that appears associated to S. To put an
example, Lemma 6 in the next section shows that if X is endowed with a preorder < then the
subset S € C(X,R) of real-valued maps that preserve < and take values on (0,+0) is
equivalent to the subset of separating positive countable decreasing scales on (X, 1,3).
Focusing in the continuous representability of preordered sets with additional properties of
algebraical stuff, in the present paper we characterize the family of scales that is equivalent
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to the subset 7 < C(X,R) of continuous order-preserving real-valued maps that are
homogeneous of degree one on a structure of a real cone (in other words, they also preserve
the cone structure). As far as we now, this algebraical setting has recently been introduced in
the literature in papers as Bosi and Zuanon (2003) and Bosi et al. (2005).

(i) It is well known in utility theory that if X is a nonempty set, and = is a complete preorder on
X, then X is representable if and only if there exists a countable subset F of increasing
functions /' : X—R such that for every pair (x,y) EXxX with x<y there exists some
function /' & F such that f(x)<f(»).

This is besides the Debreu approach, a crucial idea behind utility representation
theorems for preordered sets. Of course, this central idea can be put in relation to
pseudoscales, so that the existence of a countable family of pseudoscales of a certain
type would characterize the representability of (X,3) (see e.g. Herden, 1989a,b for more
details).

When continuity is also involved, one could explore whether or not the existence of a
countable family of scales of a certain type would characterize the continuous
representability of (X,<) (see Herden and Pallack, 2002).

Nevertheless, among the different alternative and complementary ways to deal with the
concept of a scale, this is not the path we have chosen in the present paper.

Observe that that choice would force us to deal with a countable family of scales to
characterize the continuous representability of a given preordered set. As mentioned
before, here we will follow a path in which we will characterize that representability by
means of only one scale (of a certain type). Then, we will extend that kind of results to
the algebraical context of cones, finding scales (but only one in each case!) that
characterize the continuous representability of preordered algebraical structures (e.g.,
semigroups, cones) through order-preserving maps that are algebraical homomorphisms
as well.

A positive countable decreasing scale G={G, : re QN (0,+)} on a topological
preordered space (X, 1,X) is said to be separating if for every x, yEX with x <y, there exist
ri,r2 € QN (0,4 ) such that 1 <r, and x € G,, y & G,,.

Moreover, if X is endowed with a binary operation +, G is said to be additive if it satisfies the
following two conditions:

l. - G+ G.CGyyr (q,7,€QN(0,40)).
2. = (XN\Gy) + X NG) (X \Gysr) (g:7,€QN(0,+0)).

If K is a real cone, a positive countable decreasing scale G defined on K is said to be
homogeneous if it satisfies the following two conditions:

1. — 4G, CGyy (1,9, €QN(0,+00)).
2. - Q'(X\Gp)Q(X\qu) (p,g=Q N (0,+00)).

We now provide two simple results that establish some natural relations among the concepts
introduced above.

Lemma 2. Let K be a real cone endowed with a preorder 3, and let G = {G, : peQN (0,+00)}
be a positive countable decreasing pseudoscale defined on K.
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Then the following conditions are equivalent:

(i) G is homogeneous.

(ii) ¢G,<G,, for every p,qeQ N (0,+x).
(iii) G4, CqG, for every p,qeQ N (0,+o0).
(iv) Ggp CqG, for every p,q=Q N (0,4 00).

Proof.

1) = (ii):
This is obvious.
(ii) = (iii):
Given x € G, let us consider y = —x It is clear that ye ‘Gyp- By hypothe51s -Gy C Gé =

G,=y € G,. Therefore x= quqG
(iii) = (iv):
This is immediate.
(iv) = (i):
To prove that ¢(X \G,) S(X \G,) (p.q€QN(0,4)), let xEq-(X\G,). Then
there exists y & G, such that x=qy. It follows that x& G,, since otherwise xG,,=~y =

% xXE % G,p- By hypothesis G, € ¢G,,.. Thus y = (é ~q) G, = G, which is a contradiction.

To prove that ¢ -G, £ Gy,  (p,g=Q N (0,4 0)), lethq G,. Take z& G, such that x=gz.
If x#G,, it would follow, as just proved, that z = - «x GE G, Lgp = G But this is a
contradiction. Therefore x € G, and we are done.  []

Lemma 3. Let K be an additive cone of a real vector space E. Suppose that K is endowed with a
preorder X, and let G={G,: peQ N (0,4+)} be a positive countable decreasing pseu-
doscale defined on (K,+). Then the following properties hold.:

(i) If G is additive, then it is homogeneous.
(ii) If X is total and translation-invariant, and G is homogeneous, then G is additive.

Proof.

(i) Let p,g € QN (0,+)}. Take xEG,,. Let q:% where a,beN. Set z:%'x. Since z+...
b times) .+z=x& G,, by additivity of G it follows that z&G; 1, Consequently, by additivity
again, gx = a-z€a- Gu cG, 1p = = G,p. Therefore, by Lemma 2, G is a homogeneous
positive countable decreasmg pseudoscale

(ii) Let x€G, and y € G,, where p,q=Q N (0,4 o). By homogeneity of G, there exist z,
te Gy such that x=pz and y=gqt. Since 3 is total we can assume, without loss of
generality, that z ¢ Being p=¢ with h€N, by translation-invariance of 3 it follows
that%«z < L. (otherwise (%t) + (,l?t) =< (%z) + (%t) =< (})Z) + (%'z), and similarly
t (1) + ... (b times)...+ (L-1) < (3 z) + ... (b times)... + (+-z) =z, which is a
contradiction). Therefore, by translation-invariance again we get that a- (b z) = a (1 ~t).
Thus pz 2 pt. Once more by translation-invariance, we have that x+y=pz+qt I pt+qt=(p+q)
tE(p+q)- Gy. Butby homogeneity of G we have that (p+¢) - G, =G, Therefore x+y € G,
Now let x#G, and y&G,, where p,g € QN (0,+ ). By homogeneity of G, there exist u,
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V& G such that x=pu and y=qv. Since = is total we can assume, without loss of generality, that
u3v. As above, by translation- invariance of 3 it follows that pu S pv. Again by translation-
invariance, we obtain that x+y=pu+qv3pv+qv=_(p+qv<(p+q)- (K\ G,). But by
homogeneity of G we have that (p+q) - (K\ G;)=(K\ G,.,). Hence x+y&G,,, and the
proofis finished. [

To conclude this section we furnish the following useful lemma that, roughly speaking, makes
a “translation”, interpreting scales as continuous real-valued functions, and viceversa. Such
concepts become equivalent.

Lemma 4. Let X be a nonempty set endowed with a topology .

(i) Given a continuous function u:X— R, the family F = {u~'(—0,q): ¢ € Q} is a scale on
X 1)

(ii) Givenascale F = {X;, :t & T} definedon (X, t), where Tis a dense subset of R, it holds
that the map u : X =R defined by u(x) =inf{tE T:x € X,} (x €X), is a continuous function.

Proof. Sce Gillman and Jerison (1960), pp. 43—44. See also Kelley 1955, Lemma 3 on Ch. 4, as
well as Nachbin (1965). Similar ideas had already been introduced in the seminal work due to
Urysohn, 1925). [J

Remark 5. An obvious modification in the statement and proof of Lemma 4 would furnish the
equivalence between the concept of a positive scale and that of a continuous real-valued function
taking values in (0,+o0).

4. Isotonies on ordered cones through the concept of a decreasing scale

The concept of a decreasing scale allows us to obtain in a straightforward manner a char-
acterization of the existence of a continuous order-preserving function on a preordered topo-
logical space (see also Burgess and Fitzpatrick, 1977; Herden, 1989a,b). This result will be used
in the sequel.

Lemma 6. Let (X, 1) be a nonempty topological space, endowed with a pre-order 3 (not
necessarily complete). The following conditions are equivalent:

(i) There exists a continuous order-preserving function u : (X, 7, =)—(0,+0).
(ii) There exists a separating positive countable decreasing scaleG = {G, : r e Qn
(0,+)} on (X, 1, 2).

Proof. See Theorem 3.1 in Bosi et al. (2005) and Remark 5 above. Alternatively, see Theorem
4.1 in Herden (1989a) that is more general. []

Remark 7. It is important to observe now that, in the statement of Lemma 6, the preorder < has
not a priori been compelled to satisfy any restriction, not even t-continuity. However, the mere
existence of a continuous order-preserving function u:(X,1,3)— (0,+0), or, equivalently, of a
separating positive countable decreasing scale G = {G, : r e QN (0,+)} on (X, 1,3),
immediately forces the preorder 3 to be indeed 7-continuous. In other words, Lemma 6
establishes an equivalence between continuous order-preserving functions and separating positive
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countable decreasing scales, but at this point it says nothing about what preorders admit such
representations. This complementary problem of looking for conditions (as, e.g., separability in the
sense of Debreu case of complete preorders, see Ch. 3 in Bridges and Mehta, 1995), is a horse of a
different colour and, at this very stage, it has nothing to do with Lemma 6.

In what follows K will design a nonempty cone of a real topological vector space £, and < will
denote a preorder defined on K. Following Candeal and Indurain (1995), we shall also assume that,
unless otherwise stated, the origin 0 € £ does not belong to K. This will allow us to deal with
situations, involving continuity of representations, that are much more general than those in which
the origin must belong to the cone, as studied in Dow and Werlang (1992) or Section 1.2 in Keimel
and Roth (1992) (For a complete account about this situation, see Candeal and Indurain, 1995;
Bosi et al., 2000). Moreover, we generalize the results stated in all these papers to the case of non-
complete preorders.

The following theorem improves Lemma 6, now working on a real cone, and considering
continuous and homogeneous of degree one real-valued order-preserving functions.

Theorem 8. Let K be a nonempty real cone of a topological real vector space (E, t), and
suppose that K is endowed with a preorder 3 (not necessarily complete). Assume also that the
origin 0 does not belong to K. Then the following conditions are equivalent:

(i) There exists a continuous order-preserving function u on (K, 3) that takes values in (0,+x)
and is homogeneous on rationals.
(ii) There exists a continuous and homogeneous of degree one order-preserving function u on
(K, X) that takes values in (0,+x).
(iii) There exists a homogeneous separating positive countable decreasing scale G =
{G, reQn(0,+x)} on (K, =).

Proof.

(i) = (i):

First let us prove that X must in fact be increasing: Observe that X is already increasing on
rationals, because, by hypothesis, u is homogeneous on rationals and strictly positive. Now let
xEK and o, B (0,+00) with a<f. Take ¢, r, s, =Q such that a<g<r<s<p. Let us prove that
ax<rx<px. Since the set L(gx)={yEKy<gx}=u '(0,u(gx)) is, by continuity of u, open
as regards the topology on K, the binary operation P:(0,+o0)xK—K given by P(4,x)=
A xEK is continuous, and for every pe@Q N (0, + o ) with p<gq it happens that px < gx because
< is increasing on rationals, we have that there exists an interval (p—¢,, p+e,) S (0,+0) such
that €, € Q N (0,4+00) and yxEL(gx) for every 7 in (p—¢,, pte,).

But, by construction, it is clear that (0, ¢) is a subset of the closure of

A= U — €, ,p + €).
p<g PeON0.4 ) (p p s P p)

Given any element in LEA4 we know that A-xEL(gx). Thus P(4x {x})< L(gx). Then, by
continuity of P (see e.g. Dugundji, 1966, p.80), P(4 * {x}) S L(gx). Since U(gx)={zEK : gx <z} =
u” "(u(gx),+o0) is an open set that does not meet L(gx), it is plain that L (gx) € {tEK:tSqx}. As a
consequence, we finally get that ox S gx because o€ (0, g). Therefore ox<rx, once again
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because =X is increasing on rationals. In a completely analogous way we would also obtain that

rx < Bx. Therefore 3 is indeed increasing.

Let us prove now that u is homogeneous of degree one: To this task, consider x €K and 4 € (0,+

0). We have just proved that = is increasing, so that for every ¢ & Q with A<gq it follows that u

(Ax)<u(gx)=qu(x). Since A =inf{g € QN (0,4+0) :Ii<g},itis plain that u(Ax) < Au(x).

Suppose now, by contradlctlon that u(Ax)<Au(x). Let r,reQ N (0,4+0c) be such that
LI (x) and “) . < ;. We have that u(Ax)<r, -r. Also since 3 is 1ncreasmg and r;<A4, it

follows that rx < J.x. Therefore ry - u(x)=u(rix)<u(Ax)<r -r. Since r, >0, this implies u(x)<r.

But this is a contradiction.

(i) = (iii):

The collection G = {G, = u'(0,q) : g = QN (0,+c)} is actually a separating

positive countable decreasing scale by Lemma 6. To prove that G is also homogeneous, notice

that for any p € Q N (0,+) with xE G, it holds that u(x)<p. Thus for every ¢ € ON
(0,4 00) we get qu(x)<gp. But K is a cone and u is homogeneous on rationals, so we have u

(gx)=qu(x)<gp or equivalently gx € G,,. Hence ¢ -G, CG,, (p,g€ Q N (0,+)).

We finally observe that, by Lemma 2, this is equivalent to the homogeneity of G.

(iii) = (i):

Define u(x) =inf{g € QN (0,+x) : x € G,}. It follows again by Lemma 6 that u is a

continuous real-valued order-preserving function that takes values in (0,+ ). Let us see that u

is homogeneous on rationals: To this task, let ¢ € QN (0,+) and xEK. Given any

p € QnN(0,+) such that x€G,, by homogeneity of G we have that gx&Eg-G,< G,

Thus, by definition of u, it is u(g x) <q u(x).

Now suppose, by contradiction, that u(g x)< q u(x). Let » € QN (0,4 00) be such that
U)o u(x). By definition of u it follows that x & G,., so that by homogenelty of G, gx Gy,

Afain by definition of u we get gr <u(gx). Thus »<"“#), But this is a contradiction.

This finishes the proof. [ !

Remark 9.

(i) Along Theorem § the preorder 3 considered on K € E is not, a priori, forced to satisfy any
restriction. In particular, it may or may not be a natural preorder in the cone structure, as
defined, for instance, in Keimel and Roth (1992), p. 10 (Remember that a preorder < on a
cone K is said to be natural if for every x, yE K it holds that x 3y <= x+z=y for some
z€K).

(i) From Lemma 3 it follows that if X is total and translation-invariant, and the cone K is additive,
the following condition is also equivalent to the ones given in the statement of Theorem 8:
(iv) There exists an additive separating positive countable decreasing scale G = {G,: r €
Q N(0,4+)} on(K, =).
Actually, if X is not translation invariant we still have that the implication (iv) = (i) holds
true.

As a remarkable fact, notice that this condition (iv) implies that the utility function u:K — (0,+0)
defined in the usual way asu(x) =inf{p € QN (0,+x) :x < G,} (x € K)iscontinuous
and additive. But, by Lemma 3, the countable decreasing scale G is also homogeneous, and
consequently u is homogenous of degree one, hence linear, by Theorem 8. In particular, from
Lemma 3 and Theorem 8 we obtain the following easy corollary (that could also be proved using a
direct straightforward argument):
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Corollary 10. Let K be a nonempty additive real cone of a topological real vector space (E, T),
and suppose that K is endowed with a total preorder 3 that is representable by a continuous
utility function u:K— (0,+w). Then u is additive if and only if u is linear.

5. Applications

We conclude with a construction of additive scales on totally ordered topological vector
spaces based on the additive representability of ordered semigroups, an application to
measure theory, based on a theorem by Yosida and Hewitt (see Yosida and Hewitt, 1952),
and, finally, an application to the study of the representability of lotteries over a totally
ordered topological vector space, by means of a particular class of real-valued order-pre-
serving functions.

5.1. A decreasing scale on the positive cone of a real topological vector space

Observe that the existence of a continuous and linear utility function to represent a translation-
invariant total order X defined on a real topological vector space E, is equivalent to the existence
of a continuous and linear utility function on its positive cone E* = {x € E: x < x+x}, which is in
particular a totally ordered topological semigroup.

By Remark 9 (ii) this is equivalent to the existence of an additive separating positive countable
decreasing scale on E .

If we are able to give a construction of a decreasing scale of such kind on £, we would have at
hand a continuous and additive (hence linear by Corollary 10) utility function on E*, that can be
easily extended to the whole E.

Let us give now a direct construction of an additive separating positive countable decreasing
scale on £

We recall that if (S,+,3) is a totally ordered semigroup with 3 translation-invariant, and S is
positive (i.e. x<x+x, for every x€.S) then the existence of a continuous and additive utility
function u : (S,+, 3)—(R,+<), taking values in (0,+o) is indeed equivalent to the
satisfaction of the super-Archimedean property (i.e. whenever x, y< S are such that x <y, there
exists # € N, n>1 such that (n+1)-x <ny, where nz means z+...(n—times)...+z(zES) (see e.g.
De Miguel et al., 1996; Candeal et al., 1997).

To construct the required decreasing scale, fix an element x, €E ", and for every p = ¢ < qn
(0, + o), where a, b are positive natural numbers, set G, = {x € E":bx < axo}. It is straightforward
to see that G = {G, : p e QnN(0,+c)} is an additive separating positive countable
decreasing scale, that is also homogeneous by Lemma 3.

5.2. An application to measure theory

Consider the space L™(Q, F, ) of all bounded u-measurable real-valued functions on
the measurable space (Q, F, 1), where F is a g-algebra of subsets of the nonempty set 2, and u is
a o-finite measure on F. Assume that L*(Q, F, u) is endowed with the essential supremum norm
topology T (i.e., 7y is the topology induced by the norm |Jx||=esssup {|x(w)|:0 € Q}(x EL™(Q,
Fp)), where “esssup” stands for the essential supremum) (For standard definitions concerning
Measure Theory related to Functional Analysis see e.g. Rudin (1991)).

A preorder 2 on L7(Q, F, ) is said to be monotonic if x Sy for all functions x, y € L™(Q,F, )
such that x(w) <y(w) for almost all w EQ (i.e.: u-almost everywhere). We recall that a finitely
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additive probability p on (2, F) is a function from F into [0, 1] such that p(0)=0, p(2)=1, and p
(AUB)=p(A)+p(B) for all sets A, BE F such that A N B=0. Denote by 1 the indicator function
of any set AEF (i.e,, 14(z) =1 if z € 4, and 14(z) = 0 if z& A).

Proposition 11. Let S be a monotonic translation invariant total preorder on the space L (Q, F, u),
and assume that 1y < lg. Then the following conditions are equivalent:

(i) There exists a finitely additive probability p on (Q, F), absolutely continuous with respect to
u, such that E,(x) = [x(w)dp(w) (x € L*(Q,F,p)) is a utility function for 3.

(ii) There exists an additive separating positive countable decreasing scaleG = {G, : re
QN (0,+00)} on the positive cone of (L”(Q, F w), 1), ).
Proof.
(i) = (ii):

Assume that there exists a finitely additive probability p on (€2, F), absolutely continuous with
respect to u, such that E,(x) = [ x(w)dp(w)(x € L™ (Q,F, w)) is a utility function for 3.
Then it is clear that themap E, : L~ (Q,F, u)—R is a 7 -continuous, homogeneous of degree
one and additive real-valued function, and therefore condition (ii) is verified by Theorem 7
(Observe that the collection G = {G, = Ep’l(O,r) :re QN (0,+)} is actually an
additive separating positive countable decreasing scale on the positive cone (L“(Q,Fu))" =
{xEL”(QEp):x<x+x} since E, is an additive functional that represents ).

(i) = (i):

Let G = {G, : r€QnN(0,+)} be an additive separating positive countable decreasing
scale on the positive cone (L™(@, F, )" of (L™(Q, F, p), 7, 3). From Lemma 2, we have that G
is also homogeneous. Further, from the Proof of Theorem 7, we have that the map u:(L™(€2,
FEu))"— (0,+0) defined by u(x) =inf {r € QN (0,+x) : x € G,} is continuous,
order-preserving and linear. Moreover, we can extend u to the whole space L™(Q, F, u) by
declaring that u(0):=0, where 0 stands for the null element in L*(Q, F, u), u(z):=0, for every
zEL™(Q, F, p) such that z~ 0, and u(x):=—u(—x) whenever —x € (L*(Q,Eu))". It is important to
notice that this extension is also continuous, order-preserving and linear on the whole L™(Q, F, )
(For instance, to check that u is a utility function on L*(Q, F, u), observe that, due to the
translation-invariance and completeness of <, ifx, y € (L“(Q,Fu))" are elements such that x 3y,
we get XXy <= x (—x)=03y+(—x) = N+03 (=) +F—x)=—%x).

Without loss of generality, we may assume that u(llg) = 1. Therefore, from Theorem 2.3 in
Yosida and Hewitt (1952), there exists a finite, finitely additive signed measure 7 on (€2, F) such
thatu(x) = [ x(w)dn(w) forallxEL™(Q, F p) (see also Clark, 2000). Since from the proof of
the aforementioned theorem it holds that n(4) = u(1l4) for all A EF, m:=p is actually a finitely
additive probability (observe that0 = 7(f) = u(lg)<n(4) = u(l4)<n(Q) = u(lg) =1
for all A € F by monotonicity of <), absolutely continuous with respect to u.

This consideration completes the proof. [

5.3. Numerical representability of a lottery space over a totally ordered topological vector space

Let X be a nonempty set. We define the lottery space L(X) as the set of all probability
distributions on the family Pr(X) of all finite subsets of X. In the particular case in which Xis a
real topological vector space, the elements of L(X) can be reinterpreted as elements of X, in the
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following way: Suppose, for instance, that (p, x, y) represents the element in L(X) that assigns
probability p €[0,1] to the singleton {x} C X, and probability 1 —p to the singleton {y} S X. Then
we would identify (p, x, y) to the element px+(1 —p)y EX.

If X is also endowed with a translation invariant total preorder <, the existence of a continuous
and linear utility function on X, is, by previous results, equivalent to the existence of a continuous
and additive utility function on the positive cone X .

It is straightforward to see that the existence of such utility functions is also equivalent to the
existence of a continuous utility function # : L(X)—R, where L(X) is understood of a subset of
X so that it inherits the topology T and preorder 3 defined on X, satisfying the following
additional property: u(p,x,y)=pu(x)+(1—p)u(y) for every p&[0,1] and x, yEX.

This kind of utility functions on a lottery space L(X) is usually encountered in expected utility
contexts (see Fishburn, 1982 for a complete account). Moreover, some relationship between the
existence of such utility functions on a lottery space and additive functions on a suitable ordered
semigroup associated to it, was studied in Candeal et al. (2002).

In this direction observe that, by Remark 9 (ii), the existence of such particular class of utility
functions on L(X) is equivalent to the existence of a continuous and additive scale on the positive
cone X, that is in particular a topological semigroup. Finally, notice that by the application 1
given before, we know how to construct such scales.
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