
IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 21, NO. 13, JULY 1, 2009 875

Cross-Polarization Modulation Domain Wall Solitons
for WDM Signals in Birefringent Optical Fibers

Stefan Wabnitz, Member, IEEE

Abstract—Nonlinear cross-polarization modulation between
two wavelength multiplexed channels propagating in an ellipti-
cally birefringent optical fiber leads to polarization domain wall
solitons. These solitons represent a switching of the polarization
of both waves between two stable orthogonal states. The potential
application of polarization domains to nonlinear loss-free polar-
izers is described.

Index Terms—Nonlinear optics, optical fiber polarization, op-
tical propagation in nonlinear media, optical solitons, wavelength-
division multiplexing (WDM).

I. INTRODUCTION

T HE instantaneous change of the state of polarization
of an optical signal due to its cross-interaction with

adjacent wavelength channels may have a significant impact
on wavelength-division-multiplexed (WDM) transmissions.
Indeed, cross-polarization modulation (CPM) degrades the
performance of polarization-multiplexed WDM systems [1],
[2] and polarization-mode dispersion compensators [3]. CPM
was earlier theoretically and experimentally investigated for
two and three continuous-wave (CW) or intensity modulated
channels propagating in randomly birefringent fibers [4], [5].

In this letter, we study CPM among two WDM channels in
fibers with elliptical birefringence, and obtain novel polariza-
tion domain wall soliton solutions [6]. These solitons describe
temporal switching of both waves among orthogonal, stable po-
larization states, in analogy with domain walls along the longi-
tudinal axis of the fiber from counterpropagating waves [7], [8].
An interesting and novel application of these temporal polar-
ization domains is the lossless polarization attraction [9] of an
initially depolarized probe beam to the same polarization state
of a copropagating pump wave.

II. THEORY

Let us express two optical waves at nearby frequencies and
, copropagating in a spun birefringent optical fiber, in terms of

the normal modes and . These linearly polarized modes are
aligned with the local axes of birefringence, and rotate along the
fiber with a rate (rad/m). The mode amplitudes

obey the coupled equations

(1)
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where is the distance along the fiber, is a retarded time
in a reference frame traveling with the average speed

, , and are the group
velocities of pulses at and . We neglect the effect of stim-
ulated Raman scattering, polarization-mode dispersion, and in-
trachannel group-velocity dispersion (GVD); i.e., we suppose
that the walk-off distance between two pulses at frequencies
and is much shorter than the dispersion distance. The total
Hamiltonian in (1) is , where ,

, and describe the action of linear birefringence, non-
linear self-polarization modulation, and CPM, respectively [6],
[10]. The contribution (for and , see [10]) reads as

(2)

where , , ,
, , is the inten-

sity-dependent refractive index, is the fiber mode effective
area, and depends upon the nonlinearity; e.g., for
electrostriction, or for electronic distortion. Since

, henceforth we shall suppose that ,
where and are the linear propagation constants of
the modes and . Let us consider the elliptically po-
larized (with ellipticity ) eigenstates of , i.e.,

and , where

[10], [11]. We assume , so that . One obtains

(3)

where . Typically,
the linear beat length of a birefringent fiber

, where the nonlinear length , and
is the wave power. As a result, nonlinear self-polarization modu-
lation and CPMs lead to that are slowly varying in
with respect to . By expressing in terms of and , one
has since the two elliptical eigenmodes propagate un-
coupled in the absence of nonlinearity. Whereas the terms pro-
portional to in (2) contain the rapidly oscillating factors

. When considering the nonlinear polariza-
tion changes of the beams over the relatively long scale , we
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may set , where brackets denote -average. Addition-
ally, we obtain
and . Let
us express the nonlinear polarization evolution of the two waves
at frequencies and by means of their respective Stokes pa-
rameters, defined as

Substitution in (1) leads to , and

(4)

where , ,
and

are the self-polarization mod-
ulation and CPM tensors (note that a different
is obtained with counterpropagating beams [10]).
Moreover, ,
and we introduced the characteristic coordinates

. Note that for
, or , the

self-induced polarization tensor vanishes [10], [11]. Such a
condition is particularly significant, as it corresponds to the
case of a long, randomly birefringent optical fiber. Indeed,
by setting , where is a uniformly
distributed random angle, one obtains

and , so that (4) reduces to the principal chiral
field equations [6]

(5)

where , and we have set as electronic
distortion is the dominant nonlinear index mechanism in fibers.
Analytical polarization soliton solutions in the special case of
(5) were discussed by Tratnik and Sipe in 1987 [12].

We shall consider here the general case of (4), and restrict
our analysis for simplicity to the case of equal power waves;
i.e., we set . To find the stationary (i.e., such
that ) solutions of (4), we set , where

. Based on the symmetries of (4), we find that their
solutions admit the two conserved quantities

(6)

which, in addition to the two conserved wave powers, permit
for the integration of (4) by quadratures. Let us consider the
special case where
and , so that and . The time
evolution of may be expressed in terms of Jacobian elliptic
functions, and is represented on the Poincaré sphere as illus-
trated in Fig. 1, where we show the two extreme cases with ei-
ther , (unspun highly birefringent fiber), or ,

(highly spun fiber). As can be seen in Fig. 1, the non-
linear eigenpolarizations of (4) (i.e., the Stokes vectors such that

Fig. 1. Trajectories of Stokes vector � on the Poincaré sphere representing
stationary solutions for the self-polarization modulation and CPM in a linearly
�� � �� and circularly �� � �� � birefringent fiber. Thick red curves represent
polarization kink solitons.

) are directed along the principal axes of ,
i.e., , , or axis. For , so that , the vectors

are saddle points emanating separatrix trajec-
tories (thick red curves) that represent the kink solitons

(7)

with ,
,

, and is an arbi-
trary time shift.

The polarization domain wall (7) describes a switching
of polarization between the two stable (with respect to
spatio-temporal perturbations) parallel polarization arrange-
ments and . Fig. 1 also shows
that for , so that , the saddles coincide with

. The associated CPM solitons read as

(8)

with ,
, and

.
Note that for [equation (5)], all trajectories reduce to
circles along the parallels and the steady-state solutions may be
expressed in terms of elementary trigonometric functions [12].

III. SIMULATIONS

With reference to a specific example, we demonstrate by nu-
merical integration of (4) the propagation stability of the polar-
ization domain wall solutions (7), whose -invariant time pro-
files are shown in Fig. 2 for the case with negative . We con-
sidered two 1-mW beams at nm spaced by 50 GHz,
copropagating in a linearly birefingent fiber with

mW , m , and the GVD of
ps/(nm km). Note that km, and the walk-off

distance of the hyperbolic secant pulse components in Fig. 2
is km. Fig. 2 shows that full switching between two
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Fig. 2. Time profile of polarization domain wall soliton (7) components in
waves at frequency � and � for a linearly birefringent fiber �� � ��.

Fig. 3. Stable propagation of the cross-polarization soliton of Fig. 2 over
1000 km of linearly birefringent fiber.

pairs of orthogonal polarization arrangements (these are ini-
tially corotating circularly polarized waves, since for
and one has and ) occurs on a
timescale of about 60 ps. Fig. 3, which shows the propagation
the cross-polarization soliton of Fig. 2 over 1000 km, was ob-
tained by numerically solving (4) along the characteristics and

, and it confirms the spatio-temporal stability of the domain
wall solutions (7). Fig. 3 shows that the nonlinear CPM fully
compensates for the GVD induced temporal walk-off between
the two channels. Clearly, at low powers the two pulses walk
away from each other after .

The existence of stable domains of parallel mutual polariza-
tion arrangements for two wavelength channels in birefringent
fibers leads to possibility of implementing a nonlinear, loss-free
polarizer in a copropagating configuration. A numerical proof
of this principle is provided by the result of Fig. 4: in the left
we show the power in the two orthogonal polarization compo-
nents (defined as ) of an initially randomly
polarized in time, 1-mW CW probe wave. This probe copropa-
gates in a short fiber loop (so that resonance effects can be ne-
glected) containing linearly birefringent fiber (with parameters
as given above) along with a 50-GHz-spaced circularly polar-
ized CW pump mW . As shown in Fig. 4, right,
after recirculating for 50 ms, the probe virtually acquires the
same polarization state of the pump.

Fig. 4. Power in the two orthogonal polarization components of an initially
depolarized 1-mW probe, at the fiber input and after copropagation with a po-
larized 3-mW pump.

IV. CONCLUSION

We theoretically described CPM between two WDM chan-
nels in optical fibers with elliptical birefringence. We obtained
analytical domain wall soliton solutions that represent the
locked temporal switching of the state of polarization of both
beams. Lossless polarization attraction in a copropagating
geometry was also predicted.
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