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a b s t r a c t

The state of d and l-dimethyl tartrate confined within dry sodium bis(2-ethylhexyl) sulfosuccinate
(AOT) reverse micelles dispersed in CCl4 has been investigated by FT-IR spectroscopy, polarimetry, and
vibrational circular dichroism (VCD). Measurements have been performed at 25 ◦C as a function of the
solubilizate-to-surfactant molar ratio (R) at a fixed AOT concentration (0.158 M). The analysis of exper-
imental data is consistent with the hypothesis that both enantiomers of dimethyl tartrate are mainly
entrapped in the reverse micelles and located in proximity to the surfactant head-group region. The
formation of this interesting self-organized chiral nanostructure involves some changes of the typical
H-bonding of dimethyl tartrates in the pure solid state or as monomers dispersed in CCl4 attributable to
the establishment of specific solubilizate/surfactant head-group interactions and confinement effects.
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. Introduction

It is well known that solutions of reverse micelles can sol-
bilize many kinds of molecules. This is because these systems
re characterized by the coexistence of a multiplicity of domains:
he bulk apolar solvent, the so-called palisade layer constituted
y the surfactant alkyl chains, the hydrophilic region formed
y the surfactant polar head groups and the internal micellar
ore. Hydrophobic molecules are largely dispersed in the apolar
edium and micellar palisade layer, ionic and polar substances

re entrapped within the hydrophilic micellar core and/or among
he surfactant head groups while amphiphilic solutes are parti-
ioned between bulk solvent and reverse micelles where they are
referentially located, opportunely oriented, between the head-
roup domain and the micellar palisade layer. However, the specific

ite of the solubilizate does not depend only from its nature but
lso from its size and shape as well as on the structural and
ynamic properties of reverse micelles. In addition, type and sur-

actant concentration, nature of the counterion and apolar solvent
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trongly influence the hosting capability of the micellar aggregates
1–4].

Further investigations on this subject have emphasized that
ew small-size hydrophilic molecules distributed among several
everse micelles do not cause significant changes of micellar struc-
ural and dynamic properties. On the other hand, marked changes
n the size, shape and molecular organization of micellar aggregate
an be expected when a big molecule or many small-size molecules
re entrapped within the reverse micelle. In the latter case, the
olubilization of finite amounts of amphiphilic substances leads
o mixed aggregates of oriented solubilizate/surfactant molecules;
hile polar and ionic substances can form a separate internal

ydrophilic core or a mixed cluster composed by the solute and
he surfactant head groups [5,6].

Indeed, it has been found that the solubilization of increasing
mounts of vitamin E in lecithin reverse micelles causes a pro-
ressive decrease of the micellar size and the formation of mixed
itamin E/lecithin aggregates while the addition of cyanamide
etermines an unidimensional growth of AOT and lecithin reverse

icelles and the formation in the micellar core of a mixed cluster

onstituted by cyanamide molecules and surfactant head groups
7,8].

It is worth to mention that the properties of molecules con-
ned within reverse micelles are different from those of isolated

https://core.ac.uk/display/53592887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/09277757
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the frequency range 900–4000 cm is shown in Fig. 1. For compar-
ison, the spectra of dimethyl-d-tartrate/CCl4 and AOT/CCl4 systems
are also shown. All the observed bands can be attributed to
the functional groups of dimethyl-d-tartrate (DDT) and AOT and
their assignments, made according to the literature, are collected
S. Abbate et al. / Colloids and Surfaces A:

olecules or in the pure bulk state and these properties can be
pportunely modulated by changing some external parameters
uch as the solubilizate-to-surfactant molar ratio, temperature and
ature of the system components [9].

Taking into account the steeply increasing theoretical and
ractical interest devoted to self-assembled nanostructures, the
valuation of the real potentialities of solutions of reverse micelles
o produce and stabilize organized nanoclusters of hydrophilic sub-
tances could be of utmost importance to open the door to new and
nteresting technological applications of solute/surfactant/apolar
olvent systems [5,8].

Moreover, from a theoretical point of view, these systems are
lso interesting because they give the opportunity to study solubi-
ization and structural arrangement of finite amounts of hydrophilic
olid substances within the reverse micellar core or the surfac-
ant head-group nanodomain, size and shape control of molecular
lusters in confined space and adsorption effects on the cluster
roperties.

In order to extend our knowledge on this field and to better
nderstand the molecular details responsible of the solubilization
ower of reverse micellar systems, in the present work it has been

nvestigated the confinement of two model chiral molecules, d and
-dimethyl tartrate as a function of the solubilizate-to-surfactant
olar ratio (R). The study has been performed using as surfactant

odium bis(2-ethylhexyl) sulfosuccinate (AOT), and CCl4 as solvent.
The state of confined dimethyl tartrates has been investigated

y FT-IR, vibrational circular dichroism (VCD) spectroscopies and
olarimetry. It has been amply proved that FT-IR is well suited to
ain information simultaneously on the environments of spatially
eparated moieties of both solubilizate and surfactant molecules
nd consequently on the structural arrangement of solubilizate
ontaining reverse micelles. VCD is quite sensitive to confor-
ational changes of chiral molecules, induced for example by

ifferent solvents. In the case of chiral molecules in direct micelles
r vesicles VCD has been used for peptides [10] and proteins
11].

. Experimental

(−)-(2S,3S)-Dimethyl tartrate (dimethyl-d-tartrate or DDT) and
+)-(2R,3R)-dimethyl tartrate (dimethyl-l-tartrate or DLT) were
luka products (optical purity >99%) and used without further
urification. Sodium bis(2-ethylhexyl) sulfosuccinate (AOT, Sigma,
9%, racemic mixture) was dried under vacuum for several days
efore use. To remove residual traces of water, solutions of AOT in
Cl4 (Riedel-de Haën, 99.8%) were gently stirred for several days in
he presence of activated type 4A molecular sieves (Fluka, beads of
Å pore size). Solutions at various solubilizate-to-surfactant molar

atios (R) were prepared by adding the appropriate amounts of
OT/CCl4 solutions to a weighed quantity of DDT or DLT.

While d and l-dimethyl tartrate have low solubility in CCl4
0.040 M for both enantiomers at 25 ◦C), the highest R value which
an be reached in 0.158 M AOT/CCl4 solutions in the presence of sol-
bilizate crystals is R = 1.9 for DDT and R = 1.4 for DLT. This evidence
f a different behavior of d and l enantiomers is somewhat at odds
ith all other findings of this work: in particular no difference has

een seen by chiroptical techniques.
On the other hand, in absence of solubilizate crystals, dimethyl

artrates can be solubilized up to R = 4 in 0.158 M AOT/CCl4 solutions
t 25 ◦C giving samples sufficiently stable to allow their FT-IR and

CD investigation. This interesting supersaturation effect indicates

hat confinement of hydrophilic substances within reverse micelles
ffectively influences the homogeneous nucleation process inhibit-
ng the crystal growth and precipitation of thermodynamically
nstable samples.

F
t
s
s

ig. 1. Infrared spectra of (a) DDT/AOT/CCl4 ([AOT] = 0.158 M, R = 1.0; (b) DDT/CCl4
[DDT] = 0.04M); (c) AOT/CCl4 ([AOT] = 0.158 M) systems in the 900–4000 cm−1 fre-
uency range. The inset shows the enlarged OH band of DDT in AOT/CCl4 solution.

FT-IR spectra of all liquid samples were recorded with sol-
ent compensation in the spectral region 900–4000 cm−1 using
PerkinElmer (Spectrum BX) spectrometer and a cell with CaF2
indows. The FT-IR spectra of solid d and l-dimethyl tartrate were

ecorded using a pressed disk of the compound mixed with KBr
owder. All measurements were collected at 25 ◦C with a spectral
esolution of 2 cm−1.

VCD spectra in the mid-IR region were taken in 0.05 and 0.2 mm
ath length BaF2 cells using a JASCO FVS4000 FTIR instrument
quipped with an MCT detector; 4000 scans were taken, with
cm−1 resolution. The spectra were recorded for both enantiomers,
nd mirror image appearance was obtained for them.

Optical rotation measurements have been performed at 25 ◦C
n a JASCO P-1010 polarimeter at sodium D line and using a 1 dm
ptical path cell.

. Results and discussion

A typical spectrum of dimethyl-d-tartrate/AOT/CCl4 system in
−1
ig. 2. Comparison between the normalized OH stretching bands of solid DDT and
hose of DDT/AOT/CCl4 system at various R values. The inset shows the difference
pectra obtained by subtracting spectrum at R = 0.5 to that of the other DDT/AOT/CCl4
amples.
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Table 1
Infrared frequencies of the functional groups of dimethyl-d-tartrate and AOT in the 1000–4000 cm−1 frequency range and their assignments

DDT in CCl4 Solid DDT DDT in DDT/AOT/CCl4 AOT in DDT/AOT/CCl4 Assignment

3539, 3592 sh �(OH) intramolecularly H-bonded
3600–3000 3600–3000 �(OH) intra and intermolecularly H-bonded

3006 2961 �as(CH3)
2932 �as(CH2)

2956 �(C*H)
2874 �s(CH3)
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n Table 1 together with the band assignments of dimethyl-d-
artrate in the pure solid state [8,12]. Similar data concerning
imethyl-l-tartrate (DLT) have not been reported because they are

ndistinguishable from those of DDT.
From the spectra of Fig. 1 it can be seen that the DDT and

OT bands are more or less affected when both are present in
he solution, unveiling direct interaction between DDT and reverse

icelles. The most significant bands, which will be analyzed here
n detail, are those due to the stretchings of OH, CO and SO3

−.

.1. OH stretching band

It is noteworthy that dimethyl-d-tartrate in a dilute CCl4 solu-
ion, i.e., in the monomeric state, gives a sharp absorption at
539 cm−1 with a shoulder at 3592 cm−1 assigned to the stretching
ibrations of intramolecularly H–bonded OH groups. In particular,
hese absorptions are due to the stretching vibration of OH groups
hat are hydrogen bonded to either C O or O–CH3 groups attached
o the vicinal chiral carbon [12,13].
On the other hand, when dimethyl-d-tartrate is solubilized in
.158 M AOT/CCl4 solutions, the OH band appears broadened and
ed-shifted suggesting extensive intermolecular H-bonding which,
eing unconstrained by intramolecular tensions and enhanced by
ooperative effects, allows to establish stronger H-bonds as well as

o
h
t

s

ig. 3. Normalized OH stretching bands of DDT/AOT/CCl4 at the R values shown in each pa
2861 �s(CH2)
1736 �(CO)
1130–1310 �as(SO3

−) + stretch of ester linkage
1050 �s(SO3

−)

o widen the spectrum of differently hydrogen bonded DDT popula-
ions [14]. This finding can be taken as a clear indication that DDT is
ntrapped in the polar domain of the AOT reverse micelles leading
o strong DDT/DDT and DDT/AOT interactions. The same behav-
or has been observed by analyzing the spectra of DLT in AOT/CCl4
olutions.

However, a closer inspection of the OH band of the confined DDT
see inset of Fig. 1) reveals the occurrence of a spectral feature at
539 cm−1 which can be taken as a clue that part of DDT is dis-
ersed as monomers in the bulk solvent. In order to estimate the
raction of these molecules, we have evaluated the area (Af) of the
H contribution at 3539 cm−1 in terms of Gaussian component of

he entire OH band. Then, the fraction of DDT or DLT monomers (Xf)
ispersed in the bulk solvent was calculated by

f = 0.02Af

0.158RAm
(1)

here Am is the area of the OH component at 3539 cm−1 of 0.02 M
DT or DLT in CCl4 and 0.158R is the overall molar concentration

f the solubilizate. For all R values and for both enantiomers we
ave found that Xf ≈ 0.08 indicating that only a small fraction of
he chiral molecules are dispersed in the bulk solvent.

The R dependence of the OH stretching bands of DDT dis-
olved in AOT/CCl4 solutions, obtained by subtracting the spectrum

nel. In the insets, the difference spectra (DDT/AOT/CCl4 − DLT/AOT/CCl4) are shown.
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ig. 4. Normalized CO stretching bands of solid DDT, DDT/CCl4 ([DDT] = 0.04M) and
DT/AOT/CCl4 system at various R values ([AOT] = 0.158 M; R = 0.5 solid line; R = 1.0
ashed line; R = 2.1 dashed–dotted line; R = 4.0 dashed–dotted–dotted line).

f AOT/CCl4 solution and normalized to the same height of the
and maximum is shown in Fig. 2. For comparison, the spectra
f dimethyl-d-tartrate in the pure solid state are also shown. It
an be noted that the OH bands are progressively blue-shifted
y increasing R and that, notwithstanding this shift, appreciable
pectral differences with respect to the band of pure DDT can
e observed. This behavior can be rationalized by hypothesizing
hat the first DDT molecules are accommodated in the micellar
ead-group domain so that they form strong H-bonds with the
urrounding hydrophilic groups of AOT. Further addition of DDT
olecules involves their location in less comfortable sites where
DT/AOT head groups and/or DDT/DDT interactions characterized
y less strong intermolecular H-bonds are established. However,

aking into account that the OH band of pure DDT is not approached
ven at the higher R value, the formation of a well-defined internal
ore composed by DDT molecules can be ruled out. This picture is
urther circumstantiated by the difference spectra reported in the

d
d
s
o

ig. 5. Normalized CO stretching bands of DDT in DDT/AOT/CCl4 at the R values shown i
re shown.
ochem. Eng. Aspects 327 (2008) 44–50 47

nset of Fig. 2 obtained by subtracting the normalized OH band at
= 0.5 from those of DDT/AOT/CCl4 samples at larger R values. It can
e noted that by increasing the R value the contribution occurring
t about 3500 cm−1 increases at the expenses of the contribution
ccurring at about 3200 cm−1. Similar conclusions can be drawn
y analyzing the normalized OH stretching bands of DLT in CCl4,
OT/CCl4 solutions and in the pure state.

In order to closely compare the OH stretching bands of DDT
nd DLT in AOT/CCl4 solutions, we have reported in each panel of
ig. 3 the normalized bands of DDT at various R values and in the
nsets the difference spectra (DDT/AOT/CCl4 − DLT/AOT/CCl4) at the
ame R values. An inspection of the insets shows the occurrence of
nly very small and uncorrelated departures from zero which could
e reasonably attributed to minute differences of the water traces
resent in each pair of enantiomers.

.2. CO stretching band of d and l-dimethyl tartrate

The DDT CO stretching bands, obtained by subtracting the spec-
rum of AOT/CCl4 solution from those of DDT/AOT/CCl4 samples
nd normalized to the same height of the CO band maximum, are
hown in Fig. 4. For comparison, the normalized CO bands of DDT
n CCl4 and in the pure solid state are also reported. Apart small
ifferences occurring at about 1715 cm−1, it is noteworthy that, by

ncreasing R, no significant variation of the band position and shape
ccurs. This implies that the environment probed by CO groups of
DT confined in the reverse micelles does not change significantly
ith R. On the other hand, the small spectral changes observed at

bout 1715 cm−1 can be reasonably attributed to minor perturba-
ion of the environment of the CO group of the AOT � chain induced
y the presence of increasing amount of DDT in the reverse micelles
15,16]. Moreover, it can be noted that the frequency at the band
imethyl-d-tartrate confined in AOT reverse micelles are interme-
iate between that in CCl4 (1754 and 15 cm−1) and in the pure solid
tate (1748 and 39 cm−1). This finding emphasizes the peculiar state
f DDT confined in reverse micelles confirming that the largest

n each panel. In the insets, the difference spectra (DDT/AOT/CCl4 − DLT/AOT/CCl4)
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ig. 6. AOT SO3
− stretching bands in DDT/AOT/CCl4 system at various R values.

mount of DDT is entrapped in the reverse micelles and that its
O groups are engaged in interactions with the OH groups of sur-
ounding DDT molecules and/or with the hydrophilic head groups
f AOT. The similar behavior has been observed by analyzing the
O stretching band of DLT in AOT/CCl4 solutions. Moreover, as it is
hown in the insets of Fig. 5, apart minor changes observed at about
715 cm−1 no significant difference between the CO band of the two
nantiomers has been detected implying that the CO groups of both
ompounds experience the same local environment.

.3. AOT SO3
− stretching band

−
The band maxima of the AOT SO3 symmetric stretching absorp-
ion in DDT/AOT/CCl4 samples display a progressive shift to lower
requency as R increases together with an intensity enhancement
nly at the higher R values (see Fig. 6). The observed trend indi-
ates a progressive increase of the fraction of AOT SO3

− groups

s
b
h
[

ig. 7. Normalized AOT SO3
− stretching bands in DDT/AOT/CCl4 system at the R shown i

re shown.
ig. 8. f* values of the AOT SO3
− head-group stretching band for the DDT/AOT/CCl4

�) and DLT/AOT/CCl4 (�) systems as a function of R.

ngaged in tartrate–surfactant head-group interactions whereas
he behavior of the band intensity reveals that these interactions
o not affect significantly the dipole moment of the SO3

− oscil-
ators, except for the supersaturated samples. Moreover, as it is
hown in the insets of Fig. 7, no significant difference between
he normalized AOT SO3

− bands of samples containing the two
nantiomers at the same R is observed, implying that the AOT
O3

− group does not distinguish between the enantiomer type.
he dependence of the frequency (f*) at the band maximum with
for both solubilizates is depicted in Fig. 8. It can be noted that,

fter an initial rapid decrease, the f* value trends to a plateau.
his behavior is similar to that shown by cyanamide when it is
ible to state that solubilizate/surfactant interactions mainly occur
etween the OH group of DDT or DLT and the SO3

− surfactant ionic
ead groups tending to the complete saturation at the higher R
8,17].

n each panel. In the insets, the difference spectra (DDT/AOT/CCl4 − DLT/AOT/CCl4)
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Fig. 9. VCD and absorption spectra of (a) DDT/CCl4 [0.04 M] 200 �m cell; (b)
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DT/AOT/CCl4 ([AOT] = 0.158M, R = 0.7) 50 �m cell compared to AOT/CCl4; (c)
DT/AOT/CCl4 ([AOT] = 0.158 M, R = 2) 50 �m cell, compared to AOT/CCl4; (d)
DT/DMSO [0.41 M] 50 �m cell.

.4. 1050–1300 cm−1 VCD signals of dimethyl-d-tartrate

As already reported in the literature [12,18], two strong posi-
ive VCD couplets (the positive components of positive doublets
eing at lower wavenumbers than the negative ones) are observed

n CCl4 solutions, the first one at 1095–1126 cm−1 in correspon-
ence with two absorption peaks, the second at 1257–1290 cm−1

n correspondence with a large structured absorption peak, cen-
red at 1257 cm−1. If we consider the spectra of DDT in AOT/CCl4
Fig. 9), we see that the first couplet is not much perturbed both
n absorption and VCD spectra with just a blue shift of the higher
requency component of about 10 cm−1. The second VCD couplet
nstead changes quite dramatically. This fact can be appreciated
lready from absorption data, especially considering the difference
pectra with respect to AOT, where the two shoulders observed on
he two sides of the peak at 1257 cm−1 in CCl4 solutions increase in
ntensity in AOT micelles (Fig. 9b and c).
Considering VCD, in correspondence with the couplet obtained
n CCl4, one observes a broadened negative feature at about
300 cm−1 and a positive band at 1212 cm−1. A detailed normal
ode analysis is quite a hard task since it should take into account

(
i
e
n

ig. 10. Observed optical rotation (˛D) at sodium D line of DDT/AOT/CCl4
[AOT] = 0.158 M (�) and DLT/AOT/CCl4 ([AOT] = 0.158 M (�) as a function of dimethyl
artrate concentration (c) measured in a 1 dm cell.

uite a few conformations: nine of these had been considered by
uffeteau et al. [12] and give a good prediction of the IR and VCD
pectra of dimethyl tartrate (in their case DLT) in CCl4, where one
ingle conformation, among the nine examined, is found to be pop-
lated 70%, and thus it grossly accounts for the observed bands. The
ormal modes originating the first couplet commented here are due
o C–O stretchings of the two HC*OH groups plus little contributions
rom deformation modes of C*H and OH. The higher frequency band
f the second couplet is due to bending of C*H and OH of the two
C*OH groups, the lower frequency one is quite delocalised and is
ue to C–C/C–O stretchings of the COOCH3 groups plus deforma-
ions of C*H and OH of the two central groups HC*OH. To mimic
ll possible geometries of DDT in interaction with AOT is beyond
he scope of this work. However it has already been reported in the
iterature [18] that the couplet at 1257–1290 cm−1, observed also
n CDCl3, changes in case of DMSO solutions, while the lower fre-
uency couplet is less affected by changing the solvent. For sake of
omparison we report our own spectra recorded in DMSO. The band
t 1126 cm−1 of the first couplet is blue shifted by 20 wavenumbers
hanging from CCl4 to DMSO and the couplet at 1250–1300 cm−1 is
early lost, while a band at 1204 cm−1 is recorded. We conclude that
CD spectral data suggest that in presence of AOT and DMSO the
ydroxyls are strongly perturbed: we infer that both the SO3

− group
n AOT and the SO group in DMSO break intramolecular H-bonds
nd give rise to intermolecular H-bonds, as suggested also from the
H stretching spectroscopic region previously commented on. This

act inevitably changes the OH orientation of DDT, thus particularly
ffecting the bands originated by their deformation modes, and
ossibly influences the population of conformers and even their
ype, due to the diminished presence of stabilizing intramolecular
-bonds.

.5. Optical rotation of dimethyl-tartrates in AOT reverse micelles

The observed optical rotation (˛D) at sodium D line of
DT/AOT/CCl4 and DLT/AOT/CCl4 solutions as a function
f dimethyl tartrate concentration (c) is shown in Fig. 10.
he linear trends indicate that effects due to dimethyl tar-
rate concentration are negligible. Thus, by least square
nalysis of these experimental data, the specific rota-
ion values of DDT (+15.2 ± 0.4 deg ml g−1 dm−1) and DLT

−15.8 ± 0.6 deg ml g−1 dm−1) were calculated. Apart the sign,
t is worth to note the concordance of these quantities within the
xperimental errors, confirming that the AOT reverse micelles do
ot discriminate the two enantiomers.
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Moreover, since the specific rotation ([˛D]) of chiral compound
n different media is influenced by the dielectric constant of the
olvent and reflects solvent-induced effects on its preferential con-
ormation(s), it is of interest to compare the [˛D] value of DDT in
OT reverse micelles (+15.2 deg ml g−1 dm−1) with that in some
onventional solvents such as CCl4 (+43.0 deg ml g−1 dm−1), DMSO
−3.1 deg ml g−1 dm−1) and water (−20.8 deg ml g−1 dm−1) [19,20].
rom the comparison of these values and according to literature,
t can be argued that the polarity probed by DDT in the micel-
ar environment is intermediate between that in CCl4 and DMSO
21]. Further contributions could arise from specific effects on the
imethyl tartrate conformations due to its confinement in the AOT
everse micelles.

. Conclusions

Through a FT-IR investigation, detailed information on the state
f d and l-dimethyl tartrate confined within dry sodium bis(2-
thylhexyl) sulfosuccinate (AOT) reverse micelles dispersed in CCl4
as been obtained. The analysis of the spectral features of the most
ignificant IR active groups (OH, CO and SO3

−) allows to hypothesize
hat both enantiomers are mainly confined in the reverse micelles
nd located in proximity to the surfactant head-group region. Also
CD spectroscopy is here demonstrated to be highly sensitive to

he interactions of the chiral molecules with solvent or with sur-
actant agents, revealing very evident modifications of the signals
nd confirming the hypothesis of interactions of dimethyl tartrate
ith polar head of AOT.

The entrapment of dimethyl tartrates within reverse micelles
nvolves marked changes of the typical H-bonding of dimethyl
artrate in the pure solid state and as monomers attributable to
he establishment of system-specific solubilizate/surfactant head-
roup interactions and confinement effects. Experimental data
llow also to rule out the formation of a well-defined internal core
ormed by the chiral molecules even at the higher R investigated
ncluding supersaturated samples. By an accurate comparison of

he spectral behavior of the two enantiomers, the occurrence of
ignificant differences in these interactions has been excluded,
eaving without a direct experimental evidence able to explain
heir different solubility in AOT micellar solution. Unless one wants
to speculate about minute energy differences between the two

[
[
[
[

cochem. Eng. Aspects 327 (2008) 44–50

nantiomers [22], one needs to consider the possibility of differ-
nt amounts of water or chiral contaminant traces in the micellar
olutions and/or recognition of a single AOT configuration.
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