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This paper deals with the analysis of reinforced concrete (RC)
plane frames under monotonic and cyclic loading, including axial,
bending, and shear effects. A force-based two-dimensional (2D)
element based on the Timoshenko beam theory is introduced. The
element formulation is general and yields the exact solution within
the Timoshenko beam theory. A simple, nonlinear, shear force-
shear deformation law is used at the section level, together with a
classical fiber section for the axial and bending effects. Shear
deformations are thus uncoupled from axial and bending effects in
the section stiffness, but shear and bending forces become coupled
at the element level because equilibrium is enforced along the
beam element. The element is validated through comparisons with
experimental data on the shear performance of bridge columns.
The seismic analysis of a viaduct that collapsed during the 1995
Kobe earthquake is presented.
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INTRODUCTION
Recent years have seen important advances in the analysis

of reinforced concrete (RC) frame structures under static and
dynamic loads. These advances have originated from the
development of new, faster, and more accurate nonlinear
frame elements and from the use of refined section models.

Besides classical displacement-based frame elements,
force-based elements have been successfully explored. The
main motivation for using force-based elements stems from
the fact that equilibrium between nodal forces and section
forces can be enforced exactly in a beam or column, whereas
displacement-based formulations become approximate if the
material response is nonlinear. Spacone et al.1 propose a
consistent force-based frame element formulation that
enforces equilibrium in the strong sense and compatibility in
an integral form along the beam element. The main difficulty
of force-based elements is their implementation in a general-
purpose frame analysis or finite element program, because
the nodal forces cannot be computed from the section forces.
An iterative procedure is proposed in Spacone et al.1 to solve
this problem. The procedure produces the element stiffness
and nodal forces corresponding to the nodal deformations.
Neuenhofer and Filippou2 propose a simplified version of
the original iterative procedure. This simplified procedure
basically consists of cutting the iterations to two, relying on
the fact that structural convergence will eventually yield
element compatibility. The proposed state determination
procedures are very robust and work even for elements that
exhibit strain-softening, as is the case of RC columns
experiencing severe concrete crushing.

Force-based elements are computationally more demanding
than displacement-based elements, but they offer the main
advantage of being exact within the beam theory framework
used for the formulation. This leads to the use of one element

per structural member (beam or column) in a frame analysis,
thus requiring a lower number of nodal degrees of freedom.

The original force-based formulation by Spacone et al.1

applies to an Euler-Bernoulli beam type,3 which considers
only bending and axial deformations. Later model develop-
ments have extended the force-based formulations to elements
with bond-slip. Salari and Spacone4 discuss the issues related
to including slip in steel-concrete composite structures, while
Limkatanyu and Spacone5 present the general formulations of
line elements with bond-slip. Finally, Sivaselvan and
Reinhorn6 extend the nonlinearity of the force-based element
to geometric nonlinearities, with a formulation based on a
state-space approach.

Another important deformation mode that should be consid-
ered in the analysis of RC elements is the shear response. Recent
earthquakes have shown that most RC structural failures in
older buildings are related to shear deficiencies in the structural
elements. Accounting for the shear capacity of beams and
columns seems to be the next natural step in the analysis of RC
structures with force-based elements. Force-based formulations
lead to the exact element flexibility matrix for a linear elastic
Timoshenko beam element, that is, an element where the shear
deformation is considered constant across the cross section.3

Torsion is uncoupled from axial, bending, and shear deforma-
tions in the Timoshenko beam theory.

There are two issues related to shear modeling in force-
based elements: the element formulation and the section
model. As for the element formulation, Martino et al.7

present the consistent force-based formulation of the
Timoshenko beam element with nonlinear material
behavior. As for the section model, there can be different
approaches to modeling the shear response. One is to extend
the original fiber section formulation to account for the shear
stresses, deformations, and stiffness. This requires a major
reformulation of the concrete constitutive law that must be
implemented as biaxial and eventually cyclic for dynamic
analyses. Petrangeli et al.8 successfully implemented such a
fiber section model, using a concrete law based on the
microplane theory. The section, however, demands a consid-
erable additional computational cost.

It is important to point out that the shear response of an RC
element is more important in terms of strength, than in terms
of stiffness. Including the shear stiffness of an RC member
does not affect the results of the analyses, as the member
stiffness is typically governed by the flexural response. The
impact of the shear response becomes apparent when a major
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shear crack develops in the frame member, limiting the
capacity of the entire member. Following this reasoning,
Martino et al.7 decided to use a simplified approach to modeling
the shear response of the RC section via a phenomenological
V-γ law. They applied the element to simple pushover analyses
of buildings. The present work generalizes the approach and
extends it to cyclic and dynamic analyses.

RESEARCH SIGNIFICANCE
This paper contains the results of research on the modeling

aspects of the shear behavior, in particular the shear failure of
reinforced concrete structural members. The Timoshenko
beam theory is used for modeling shear. The ultimate response
of reinforced concrete structures, in particular of existing
shear deficient structures designed according to older design
codes, is in many cases governed by shear failure. It is
important to have simple, though efficient, models that
account for the shear strength of reinforced concrete members,
particularly when assessing the nonlinear response of
reinforced concrete frames under pushover or seismic loads.

REINFORCED CONCRETE ELEMENT
WITH SHEAR DEFORMATION

Element formulation
The element formulation follows the force-based formulation

presented in Spacone et al.1 Bold letters indicate vector and

matrixes, whereas normal letters indicate scalars. Uniaxial
bending is considered in this work. The extension to the
biaxial case is straightforward. The element is formulated
without rigid body modes. The nodal forces, shown in Fig. 1,
are the two end moments M1 and M2 and the end axial force
N. The corresponding deformations are the two end rotations
θ1 and θ2 and the axial extension u. Element forces and
deformations are grouped in the following arrays

  (1)

The section forces are the axial load N(x), the bending
moment M(x), and the shear force V(x). The corresponding
section deformations are the axial strain at the reference axis
ε0(x), the curvature κ(x) and the shear deformation γ(x).
Section forces and deformations are shown in Fig. 2. The
resulting strain distributions are also shown. Section forces
and deformations are grouped in the following arrays

  (2)

Force-based elements stem from the weak (or integral)
form of compatibility, expressed through the Principle of
Virtual Forces, which in the case of the beam takes the form

(3)

Using equilibrium, the section forces s(x) are written as
functions of the end forces P through the force interpolation
function NP(x)

s(x) = NP(x)P (4)

where

(5)

Finally, the section constitutive law is written

ε(x) = f(x)s(x) (6)

where f (x) is the section flexibility matrix and depends on
the section model used for the element.

After substitution of Eq. (4) and (6) in Eq. (3), and after
elimination of δPT based on the arbitrariness argument,
the element matrix compatibility equation is written as
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Fig. 1—Frame element forces and deformations.

Fig. 2—Timoshenko element: section forces, deformations,
and strain distributions.
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U = FP (7)

where F is the element flexibility matrix without rigid
body modes

(8)

The aforementioned equations are formally identical to
those of the Euler-Bernoulli beam element, but the element
force interpolation functions, the section forces, and the
section flexibility are different. The implementation of the
aforementioned element in a structural analysis solution
scheme follows the lines of the element state determination
outlined in Spacone et al.1 and later simplified by Neuenhofer
and Filippou.2 In this work, the element is implemented in a
general purpose finite element program.9

The nonlinear nature of the element depends entirely on
the section nonlinear constitutive law, which is described in
detail in the following section.

SECTION CONSTITUTIVE LAWS
There are different ways to formulate the section stiffness

and flexibility, depending on the section model that is used.
Petrangeli et al.8 extend the fiber section model originally
developed for the section of an Euler-Bernoulli beam to the
uniaxial bending section model of a Timoshenko beam. The
new fiber model necessitates the use of a two-dimensional
(2D) law for the concrete and an iterative scheme for each
fiber in the cross section. The result is a full 3 x 3 section
stiffness matrix that couples axial, bending, and shear
responses. Even though the approach by Petrangeli et al.8 is
accurate and rational, it is computationally intensive. A
simpler approach that follows the original idea discussed in
Martino et al.7 is used herein.

At the section level, bending and axial responses are
decoupled from the shear response. The layered section is
used to obtain the bending and axial responses, which remain
coupled. The shear response is modeled via a phenomeno-
logical V-γ nonlinear, cyclic constitutive law. The resulting
expressions for the section forces S(x) and for the section
tangent stiffness matrix k(x) are

(9)

(10)

where n(x) is the number of fibers in the section, σfiber is the
fiber stress, Efiber is the fiber tangent modulus, Afiber is the
fiber area, and yfiber is the distance from the fiber centroid to
the section reference axis. V = V(γ) indicates that the shear
force is computed directly from the shear deformation γ via
the selected shear response law, and dV/dγ indicates that the
shear tangent stiffness is the derivative of the shear law.

It is worth noting that, while bending and shear forces are
not related at the section level, implementation of this
constitutive law in a force-based element couples bending
and shear forces at the element level through equilibrium.
Equation (4) and (5) enforce equilibrium between internal
and nodal forces. Therefore, if shear failure at the section
level occurs before bending failure, the element bending
moments are bound by the element shear forces. This is the
main advantage of using a force-based element for a
nonlinear Timoshenko beam. Even though the shear and
bending responses are not coupled at the constitutive law
level, they must be in equilibrium and thus failure in either
bending or shear affects the force in either shear or bending.

Section shear law
The shear response is modeled using a nonlinear V-γ law.

Different envelope curves are shown in Fig. 3. The shear law
has an initial parabolic branch and peaks at VRd, γy, which
represents the section shear capacity. A linear branch
follows, whose initial and final points are VRd, γy and Vu , γu,
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Fig. 3—Section shear law: possible envelope curves.
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respectively. The last point represents the residual shear
capacity. For γ > γu, V= Vu. By alternatively selecting the
residual shear capacity either smaller or larger than the shear
capacity VRd, brittle or slightly ductile shear failures can be
modeled (Fig. 3, Curves (a) and (a′)). This way, the brittle
failure of unreinforced or lightly reinforced concrete beams10 as
well as the more ductile failure of fiber-reinforced concrete
structures11 or jacket-strengthened members can be modeled.

The definition of VRd is a fundamental step in the description
of the shear response. According to Park and Paulay12 and to
several design codes, the section shear capacity VRd is the
sum of the steel stirrups contribution VRds at yielding, and
the concrete contribution VRdc

VRd = VRdc + VRds (11)

where VRdc is

VRdc = VRdc
* +V(N) (12)

where VRdc
* is the contribution of the concrete member

under zero axial load, which is mainly a function of the
concrete maximum strength and of the amount of longitudinal
reinforcement steel, and V(N) is the concrete member
capacity enhancement induced by the axial compression
N.12 In the present implementation

(13)

where c is a coefficient that weighs the effect of the axial
compression. Eurocode 213 suggests c = 0.15. In the
proposed implementation, the shear capacity is updated to
take into account the effect of the section axial compression,
and the V-γ curve is rescaled at each step (Fig. 3, Curves (a′)
and (b′)).

The proposed model also accounts for the damage of the
shear strength expected with the progression of the crack
pattern.12 As the crack width increases, the stud mechanism
as well as the aggregate interlocking resisting effects are
jeopardized, thus causing a significant loss of shear capacity.
Accordingly, the section shear strength is assumed to
decrease linearly

(14)

This results in rescaling the shear law, as shown in Curve (c)
in Fig. 3.

The damage coefficient Cdam is given by

V N( ) cN     compression=

V N( ) 0       tension        =

VRd
damaged CdamVRd=

 (15)

where ε is the tensile strain in the steel farthest from the
compression zone. ε1 and ε2 are two limit strain values.
Damage occurs as the shear distortion exceeds the lower
limit ε1, whose value can be set to the yield strain of the
longitudinal reinforcing bars (thus ε1 = εy). No further
damage occurs when the tensile strain exceeds the limit
value ε2, and the damage coefficient is set to a constant value
Cdam,res.

The hysteretic rules that govern the cyclic response of the
shear law are shown in Fig. 4. Upon unloading, a piecewise
linear path is followed. The stiffness of the first segment,
connecting the two points (Vmax , γmax) and (0, γ0), is set to
the initial stiffness, whereas the stiffness of the second
branch leads the response to the point of maximum deformation
in the opposite direction, (Vmin, γmin) in the case of Fig. 4.
Upon reloading, a similar rule is applied by simply substituting
(Vmin, γmin) with (Vmax, γmax).

Eurocode 213  largely underestimates the shear capacity VRd.
Eurocode 213 poorly accounts for the shear aspect ratio and,
therefore, basically neglects the major contribution played
by the arch mechanism in resisting the shear forces. The
underestimated value of VRd leads to conservative shear failure
predictions. Other more precise criteria than those previously
mentioned can, however, be implemented to estimate the shear
capacity VRd, depending on the purpose of the analysis.

A first set of analyses showed that the structural response
is affected mainly by the shear capacity, whereas it is basically
independent of the shear stiffness. Large variations in the value
of the shear law initial slope, obtained by imposing different
values of γy, produce only negligible changes in the structural
stiffness, which is governed by bending until shear failure (if
this occurs).

It is finally important to point out that any section constitutive
law exhibiting softening is bound to cause localization and
non-uniqueness of the solution. This applies to the section
constitutive laws presented in this paper. A thorough discussion
of localization issues in force-based elements and a solution
of the problem are presented in Coleman and Spacone.14

APPLICATIONS
Cyclic load analysis of University of San Diego 
Column R3

The proposed Timoshenko beam element was validated by
modeling a large-scale reinforced concrete squat column
(Column R3) tested by Xiao et al.15 at the University of
California, San Diego. The column represents a scaled
bridge pier (Fig. 5(a)). In the experimental test, the column
top stub and footing were reinforced to avoid premature
failure in the joint regions. The column was preloaded with
a vertical constant axial load of 114 kips (507.3 kN), then
loaded up to failure with a cyclic lateral displacement applied at
the column top. The lateral loading system displaced the
column in double bending. The early stages were dominated by
flexural cracking occurring at the column end regions. The
flexural cracks inclined and extended into the web of the
columns. With increasing load cycles, the shear cracks
penetrated the column mid-height (Fig. 5(b)). The column

ε ε1<

ε1 ε ε2< <

ε ε2>

Cdam 1=

Cdam 1
ε ε1–

ε2 ε1–
---------------–=

Cdam Cdam res,=

Fig. 4—Section shear law: hysteretic rules.
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suffered brittle shear failure following the degradation of the
truss mechanism induced by yielding of the transverse shear
reinforcement (followed by loss of bond). In the experimental
tests, shear failure of the column top and bottom ends were
prevented by the local shear capacity enhancement induced by
the confinement provided by the loading structure.

In the finite element (FE) analyses, the column was modeled
by a single force-based frame element, with five Gauss-Lobatto
integration points (or monitored sections), whose geometric and
mechanical characteristics are listed in Table 1. Experimental
and numerical lateral force versus lateral deflection curves are
plotted in Fig. 6(a) and (b). Curve A refers to the case without
shear failure, which was obtained by assuming a very large
shear strength. The case of Curve A is basically equivalent to
using a Bernoulli type element. The structure capacity is
reached once the ultimate flexural capacity is exceeded in
the extreme sections. Curve B was obtained by adopting the
shear capacity model suggested by Eurocode 213 (Table 1).
By introducing a limited shear capacity, the FE analysis
correctly predicts the shear failure of the pier (Fig. 6(b)). The
shear capacity is slightly underestimated (Fig. 6(b)). This is
due to the limitations of the formula given by Eurocode 2,13

which neglects the increased shear strength due to the arch
effect in squat columns.

Shear failure initiation is observed at the column top and
bottom regions (Fig. 7(a), Section 5), and propagates toward
but never reaches the column mid-height (Fig. 7(b), Section 4).
Column mid-height Section 3 behaves similarly to Section 4.
The localized shear failure at the column end region is due to
the proposed damage model, for which the shear capacity
decreases as the section maximum axial strain increases
(Eq. (14) and (15)). Given the boundary conditions, the
maximum bending moment and, therefore, the maximum
axial strain occurs at the supports, thus inducing the highest
shear damage at the column ends. The FE shear distortion
distribution disagrees with the experimental results, for
which shear distortion increases at the column midheight.
The different results are due partly to the proposed damage
model, and partly to the fact that the numerical analyses
cannot take into account the shear capacity enhancement due
to the confinement applied to the column ends by the loading
structure during the experimental study. While Sections 1
and 5 evolve toward the shear law softening branch and
govern the column shear capacity (Fig. 7(a)), Sections 2, 3,

and 4 follow the unloading branches (Fig. 7(b)). It is worth
noting that it is damage that induces initiation of the shear
failure at the column end sections. If damage was neglected,
all sections would behave identically and would fail in shear
at the same time (unless round-off errors in the calculations
lead to slight differences in the section shear responses). It is
worth pointing out that the proposed model allowed the
previous analyses to be run in few minutes, while the

Fig. 5—UC San Diego Column R3: (a) vertical and cross
sections; and (b) experimental crack pattern at failure.15

Fig. 6—Lateral force versus applied lateral displacement
for Column R3: (a) infinite shear strength; and (b) limited
shear strength.

Fig. 7—Section shear distortion versus shear force for
Column R3: (a) Section 5; and (b) Section 4.
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nonlinear FE analysis of the monotonic response of the same
column discretized with a 2D mesh lasted for over a week.16

Push-over and dynamic analysis of Hansui Viaduct 
When the Hyogoken Nanbu earthquake struck Kobe,

Japan, in January 1995, a significant number of reinforced
concrete structures either collapsed or were severely damaged.
The Hansui Viaduct, a single bay, two-level elevated railroad,

collapsed during that earthquake. The Hansui Viaduct static
and dynamic responses to seismic actions are analyzed in
this section.

Figure 8(a) shows longitudinal and transverse sections of
the structure. The height of the frame is 12 m and the overall
width of the deck is 11.5 m. The viaduct consists of several
identical, independent 30 m long segments. Each segment is
supported by two rows of four piers, having 0.9 m square
cross sections. Four beams tie together the sets of four piers
at their midheight.

The most commonly observed failure mode was either
shear or flexure-shear failure of the piers in the transverse
direction.17,18 The piers failed just below or above the joint
with the midheight beams (Fig. 9(a) and (b)). Figure 9(c)
shows the failure sequence proposed by Nishimura,19 which
is based on the surveyed damage. Shear cracks developed in
the piers close to their joint with the midheight beam. The
cracks opened until the spalled concrete fell off and the
structure above the cracks slipped sideways.

Because the viaduct consists of a series of identical portal
frames in the longitudinal direction, only a single portal
frame is studied using the frame element presented in this
paper. Both piers and beams were modeled with a single
force-based frame element, as shown in Fig. 8(b). It is worth
noting that only six elements, with five Gauss-Lobatto
integration points each, were necessary to model the entire
structure and to run the nonlinear analyses.

A preliminary pushover analysis was performed by
applying a monotonically increasing lateral displacement to the
deck only. This pushover analysis follows an FE investigation
previously performed by Spencer and Shing,20 who used a
2D FE mesh with four-point plane stress elements. Some
analyses considered smeared cracks only, whereas others
included both smeared and discrete cracks in the concrete.
The analyses were quite slow because of the complexity of
the material laws and of the refined mesh adopted. The material
mechanical properties used in the analyses of this paper are
those used by Spencer and Shing20 (Table 2).

Two constant point loads representing the Viaduct self-
weight were applied to the top nodes of the two upper piers.

Table 1—Geometry and mechanical properties for 
FE modeling of UC San Diego Column R3

Cross section Ac = b x h = 16 x 24 in.2 (406 x 610 mm2)

Height 96 in. (2.35 m)

Longitudinal
reinforcing bars

22 No. 6 (22φ19.05 mm) uniformly spaced along 
perimeter; ρs = As /Ac = 2.5%; concrete cover:

cc = 1.5 in. (37.5 mm)

Steel stirrups 1 No. 2/5 in. (1φ6.35/107 mm); fyw = 47.0 ksi

Concrete fc = 4.95 ksi; εc = 3 × 10–3; εcu = 1 × 10–2

Steel fy = 68.1 ksi; εs = 2.3 × 10–3; Es = 29,000 ksi

Shear law

VRd = 133 kips*, γy = 2.3 × 10–3;

Vu
† = 22 kips, γu = 1.5 × 10–2; c = 0.15

Damage‡: ε1 = 2.3 × 10–3, ε2 = 1.15 × 10–2,
Cdam, res = 0.9

*By rearranging Eq. (11), (12), and (13), the section shear capacity reads as follows:

VRd = VRdc + VRds = VRdc* + V(N) + VRds

where VRdc* is the concrete shear capacity, as suggested by Eurocode 8: VRdc* =

τrdck(1.2 + 40ρs)bd; τrdc = 0.25fctk,005 /γc; fctk,005 = 0.7fctm; fctm = 0.3f 2/3 is the mean
value of the tensile resistance; d = h – cc; k = (1.6 – d), where d is expressed in
meters; ρs = As/Ac = 2.5%; As is area of anchored tensile reinforcement that extends
(lb + d) beyond the section (lb being anchorage length).
To predict the concrete shear strength, the following assumptions are made: γc = 1;
tensile strength mean value fctm is used instead of fctk,005 in the calculation of τrdc .
This yields to τrdc = 0.25fctm. Therefore, VRdc* ≅ 94 kips.
V(N) = cN = 0.15 × 114 ≅ 17 kips.
Vsd = fywAsw0.9d/Δz ≅ 22 kips, where fyw is stirrup yield strength; Asw is the stirrup
cross section area; and Δz is stirrup spacing.
†Vu = Vsd (residual strength = strength of yielded shear reinforcement).
‡To account for shear capacity reduction caused by larger crack openings, the
assumption is made that damage is triggered by yielding of longitudinal reinforce-
ment. Accordingly, the shear law is scaled once maximum axial strain exceeds yield
strain of longitudinal reinforcing bars (ε1 = εs). Also, ε2 = 5εs and Cdam,res = 0.9.
Note: 1 ksi = 6.895 MPa; 1 kip = 4.448 kN; and 1 in. = 25.4 mm.

Fig. 8—Hansui Viaduct: (a) geometry; and (b) finite element model.
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For every structural element, all fiber sections were configured
to reproduce the exact position of the reinforcing bars in the
concrete cross section. The shear capacity VRd

* of every
integration point was evaluated using the Eurocode 213 formula
previously discussed. The changes in the spacing of the steel
stirrups along the element axis were taken into account by
changing the shear capacity of the relevant integration point.

The pushover load-displacement response of the Hansui
Viaduct is shown in Fig. 10. Model A assumes infinite shear
strength, whereas Model B considers the shear strength of
the elements. The Model A response shows a ductile structural
response, whereas in the Model B response, the limited shear
strength of the piers causes structural failure before the ultimate
flexural capacity is reached. The plastic hinge formation
history is shown for both analyses in Fig. 11. In the response
of Model A in Fig. 10, Point 1a corresponds to the formation
of two plastic hinges at the intermediate beam ends (Points 1
and 2 in Fig. 11, Model A). At a higher applied displacement,
two plastic hinges developed at the pier supports (Points 3
and 4 in Fig. 11, Model A). The corresponding point in Fig. 10
is Point 2a. Later, the flexural capacity of the upper left pier
top is reached (Point 5 in Fig. 11, Model A). This happens for
unrealistically high lateral displacements, thus the point is
not indicated in Fig. 10.

In the pushover response obtained with Model B, the shear
capacity is first reached in the upper left pier (Point 1 in Fig. 11,
Model B, Point 1b in Fig. 10). Note that shear failure is
reached simultaneously in the upper and lower section of the
upper left pier, provided that the steel detailing is identical in
the two locations. Simultaneous shear failure of the lower
left pier end sections follows (Point 2 in Fig. 11, Model B,
Point 2b in Fig. 10). The left piers show early shear failure.
The axial tension keeps the left pier shear capacity below
that of the right piers, which benefit from the shear capacity
enhancement due to axial compression (Eq. (12)). Upon
further increase of the lateral displacement, two more plastic

hinges develop, the first one (Point 3 in Fig. 11, Model B,
Point 3b in Fig. 10) at the right end of the intermediate beam,
and the second one (Plastic Hinge 4 in Fig. 11, Model B,
Point 4b in Fig. 10) at the bottom of the bottom right pier.
When the last plastic hinge forms, the frame becomes a
mechanism. Structural failure is basically reached when
shear failure takes place in Column 1 (Point 2b). After Point 2b,
as the lateral displacement increases, Columns 1 and 2 soften
and Columns 4 and 5 absorb the shear force lost in the left
columns. Softening of Column 2 causes a temporary drop in the
response between Points 1b and 2b in Fig. 10. Therefore, from
Point 2b onward, the curve has a mere numerical meaning.

Spencer and Shing,20 using a model with both discrete and
smeared cracks, predicted the shear failure of the Hansui

Fig. 9—Hansui Viaduct: (a) close-up view of pier shear
failures;17,18 (b) most common failures observed along
viaduct; and (c) collapse sequence.19

Table 2—Mechanical properties used in analysis of 
Hansui Viaduct

Columns Upper beam Midheight beam

Element no. in FE 
mesh (Fig. 8(b)) 1, 2, 4, 5 3 6

Geometry

Cross section 0.9 x 0.9 m 1.1 x 1.1 m 1.1 x 1.1 m

Length 6.0 m 5.6 m 5.6 m

Longitudinal
reinforcing bars 22φ32 mm Top 10φ32 mm

Bottom 10φ32 mm
Top 2φ32 mm

Bottom 6φ32 mm

Steel stirrups (refer to 
Fig. 8(a)) φ16/200 mm φ16/175 mm

Material properties

Concrete fc = 26.49 MPa; εc = 0.025%; εcu = 0.5%

Steel fy = 440 MPa; εy = 0.01%; Es = 210,000 MPa

Shear laws

Model A Infinite shear capacity

Model B

VRd = 0.62 MN
γy = 0.115%

Vu = 0.63 MN
γu = 0.3%

VRd = 1.34 MN
γy = 0.25%

Vu = 1.35 MN
γu = 0.6%

VRd = 1.25 MN
γy = 0.23%

Vu = 1.25 MN
γu = 0.6%

Model C

VRd = 0.62 MN
γy = 0.115%

Vu = 0.30 MN
γu = 0.3%

VRd = 1.34 MN
γy = 0.25%

Vu = 0.7 MN
γu = 0.6%

VRd = 1.25 MN
γy = 0.23%

Vu = 0.60 MN
γu = 0.6%

Damage ε1 = 0.0023%; εu = 0.023%; and Cdam,res = 0.9

Fig. 10—Pushover response of Hansui Viaduct.

Fig. 11—Failure history in pushover analysis of Hansui
Viaduct.
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Viaduct for a base shear force of approximately 1.3 kN,
corresponding to a lateral deck displacement of 0.066 m. The
results obtained with the beam element presented in this
paper compare well, in terms of ultimate load, with those
obtained by Spencer and Shing20 (Fig. 10). The plane stress
model by Spencer and Shing20 is more accurate in predicting
a reasonable crack pattern, which cannot be obtained using
the beam element proposed herein. On the other hand, the
beam element model, requiring six elements only, is less
demanding in terms of computational effort, than the 2D model
by Spencer and Shing.20 The computational effort prevented
them from further investigating the viaduct response under
earthquake induced dynamic loads, for which they developed
a simplified single degree of freedom system.

Using the mesh of Fig. 8(b), the Hansui Viaduct was then
studied under earthquake loads. An input ground motion
registered in the Kobe area on January 17, 1995, was applied
to the structure. The ground motion has a peak acceleration
of 6.7 m/s2 (0.68 g) at time t = 1.66 seconds. The deck mass
was obtained from the viaduct original drawings. No live
load was assumed to contribute to the mass. Rayleigh
damping was used with damping ratios ζ = 3% in the first
two modes of vibration.

In the first set of analyses, the contribution of the axial
compression to the shear capacity was neglected. The bridge
dynamic structural response is shown in Fig. 12 in terms of
deck displacement versus time. Three different responses,
corresponding to different shear models, are shown. Curve a
was obtained using a linear elastic shear law with unlimited
shear capacity (Model A). Curve b was obtained using an

elastic perfectly plastic shear law (Model B), Curve c used an
elastic strain-softening shear response (Model C). The three
models remain basically elastic up to t =1.5 seconds. At this
time, a plastic hinge forms at the upper beam left end.
Afterwards, at time t = 2.2 seconds, the bending capacity is
also reached at the beam right end, and another plastic
hinge develops. Until t = 2.6 seconds, the response curves
are identical, being the nonlinear behavior fully governed
by bending (the shear response is still elastic). At time t =
2.6 seconds and time t = 2.7 seconds, shear failures of the
lower columns take place in Models B and C (Fig. 13). A
peak displacement of –0.08 m is reached at 2.7 seconds
(corresponding to a drift of approximately 0.7% the height of
the viaduct). At time t = 2.7 seconds, Model A develops a
third plastic hinge at the midheight beam left end (Fig. 13).

After t = 4 seconds, the shear capacity in the opposite
direction is reached in the right lower columns both in
Models B and C. Model C softens; accordingly, Curve c
drifts away from the other two curves, which remain very
similar as the earthquake action continues. Note that the
response in terms of top displacement does not show a major
difference between Curves a and b (Fig. 12). After a peak
displacement of –0.2 m recorded at time t = 5.3 seconds, a
residual displacement of –10 mm is observed for Curve c. Note
that the shear failure mode predicted by Model C, accounting
for a softening behavior in shear, agrees with the failure
mechanism observed on the actual structure (Fig. 9(a)), and
with the collapse progress described by Nishimura.19

The Hansui Viaduct response in terms of deck displacement
versus lateral force at the base is shown in Fig. 14(a), (b), and
(c) for Models A, B, and C, respectively. The analysis of the
single section internal force versus deformation curves
highlights the formation of a plastic hinge at the upper beam
ends (Fig. 13) at time t = 1.5 seconds. Maximum section
deformation demand occurs at time t = 5.3 seconds, when all
models reach the peak displacements.

Figure 15(a), (b), and (c) show the response in terms of
shear force versus shear distortion for the single section of
the left lower columns closer to the midheight beam. In
Model C, the shear capacity quickly drops to its residual
value upon reaching the shear capacity because of the great
demand for shear deformation in the following load cycles.
The structure collapses at this point and the rest of the
response has little physical meaning. The section shear
failure occurs for a deck displacement of approximately
–0.08 m (Fig. 14(c)) at time t = 2.7 seconds (Fig. 12). Note
that the damage, as well as the softening behavior of a few
sections along the elements result in a progressive shrinking
of the original section shear law, thus causing the irregular
shape of the curve plotted in Fig. 14(c). 

The second set of analyses accounts for the enhancement
of the shear capacity induced by the element axial compression.
The behavior of Model A is left unchanged as the increase in
shear capacity only affects the shear stiffness. The structural
response in terms of time versus deck displacement remains
basically the same for both Models A and B (Fig. 16, Curves (a)
and (b)), whereas a noteworthy reduction of the maximum deck
displacement is recorded in Model C (Fig. 16, Curve (c)).
Plastic hinges in the upper beams still form at time t = 1.5
seconds in all models, but the enhanced shear capacity delays
the left lower column shear failure in Models B and C
until time t = 5.29 seconds, corresponding to a deck
displacement of –86.2 mm. In Model C, the peak displace-
ment is reduced to –0.1 m at time t = 6.7 seconds, and the

Fig. 12—Hansui Viaduct dynamic response to Kobe earth-
quake for different V-γ curves, obtained neglecting influence
of axial compression on section shear capacity.

Fig. 13—Failure modes for different V-γ curves, obtained
neglecting influence of axial compression section shear
capacity.
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deck residual drift drops to –0.03 m, compared with the cases
with no increase in shear capacity.

The structural response in terms of base shear versus deck
displacement is shown in Fig. 17 for Models B and C. With
the axial compression contribution, the shear capacity
enhancement is approximately equal to 20%.

Figure 18 shows the failure mode for the three models.
The axial compression does not modify the plastic hinge
distribution of Model A, nor the collapse mechanism for
Model C. Conversely, Model B develops shear failure in the
left lower and right upper columns, preventing the formation
of a mechanism and thus avoiding structural collapse. The
failure mode predicted for Model C agrees with the failure
mode of the actual structure (Fig. 9(a)).

Figure 19(a) and (b) show the single section response for
Models B and C obtained by alternatively considering or
neglecting the term V(N) in Eq. (11) and (12). The section
shear capacity enhancement is approximately equal to 20%.
When accounting for the V(N) term, the maximum section

Fig. 14—Base shear force versus deck displacement for
different V-γ curves, obtained neglecting the influence of
axial compression on section shear capacity.

Fig. 15—Section shear force versus shear distortion for
different V-γ curves, obtained neglecting the influence of
axial compression on section shear capacity.

Fig. 16—Hansui Viaduct dynamic response to Kobe earth-
quake for different V-γ curves, obtained accounting for the
effect of axial compression on section shear capacity.
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shear distortion of Model C is significantly reduced, and the
deck drift decreases accordingly.

The aforementioned results show that accounting for the
increase in shear capacity due to axial compression leads to
qualitatively reasonable results in terms of failure mechanism
and displacements. Only the few elements undergoing
compression benefit from the shear capacity increase. Plastic
hinges and shear failures develop at the weak points in the
structure. Furthermore, the adoption of a softening branch
following the peak shear point results in large residual
displacements. Conversely, assuming a perfectly plastic
behavior in shear still allows triggering the shear failure of
the structure, but produces unrealistically small deck drifts
throughout the analyses.

CONCLUSIONS
A force-based element based on the Timoshenko beam

theory is presented in this paper. The element formulation

can be regarded as general and is exact within the Timoshenko
beam theory. A phenomenological shear force-shear
deformation law is used at the section level, together with a
fiber section model for the axial and bending effects. Shear
and bending are decoupled in the section constitutive law,
but equilibrium between them is enforced, thus bending and
shear are coupled at the element level. The proposed shear
constitutive law accounts for the increase in shear capacity
due to axial compression, as well as for the damage caused
by excessive crack opening. The element is implemented in
a general purpose FE program, and validated by means of FE
analyses of RC columns and frames subjected to cyclic push-
over and earthquake loads.

The results of a first set of correlation studies with the
experimental results on a bridge pier show that the model is
able to capture the shear failure of the squat column and
provides qualitatively reasonable results both in terms of
maximum lateral base force and column top displacement.
The shear capacity of the pier was slightly underestimated,
due to the conservative evaluation of the pier shear capacity
based on Eurocode 2,13 which poorly accounts for the arch
mechanism contribution that becomes more important in
shorter members.

A second set of analyses focuses on modeling the response
of the Hansui Viaduct under both pushover and earthquake
loads. The results highlight the importance of accounting for
the limited shear capacity of the piers in predicting the
failure mechanism of the structure. The results of the push-
over analysis are in good agreement with a previous
nonlinear FE analysis of the viaduct. Softening or perfectly
plastic branches of the shear law can be alternatively selected
to describe the behavior of ordinary or high performance
concrete structures. When softening is selected, the energy

Fig. 17—Base shear force versus deck displacement for
different V-γ curves, obtained accounting for the effect of
axial compression on section shear capacity.

Fig. 18—Failure modes for different V-γ curves, obtained
accounting for the effect of axial compression on section
shear capacity.

Fig. 19—Section shear force versus distortion for different
V-γ curves, obtained accounting for the effect of axial
compression on section shear capacity.
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dissipation capacity of the structure changes considerably
and the results show large residual displacements at the end
of the seismic event. Besides, the predicted shear failure
mechanism agrees with the failure mode of the real structure.
On the other hand, assuming a perfectly plastic behavior in
shear produces unrealistically small deck drifts throughout
the analyses.

Future studies will concentrate on the selection of more
accurate formulas for the prediction of the shear capacity of
beams and columns. In particular, such laws should account
for the effects of the shear span ratio on the shear capacity.
Another extension of the element formulation should
explore the development of a fiber law that also accounts for
the shear deformations. It is, however, worth underlining
that the proposed element allows accounting for the shear
failure of RC members in a simple and computationally
efficient way. Considering the shear deformations at the fiber
level would incorporate other phenomena, such as aggregate
interlock and possibly dowel actions, but it would make the
element computationally very expensive, and thus slow.
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NOTATION
Afiber, Efiber, yfiber= fiber area, modulus and distance from reference axis,

respectively
Cdam = damage coefficient
D = element nodal deformation array
F, f = element and section flexibility matrixes
k = section stiffness matrixes, respectively
M1, M2, N = element nodal forces
M(x), N(x), V(x) = section forces
NP(x) = force interpolation functions
P = element nodal force array
s(x), ε(x) = section force and deformation arrays, respectively
V(N ) = shear capacity provided by element axial com-

pression
VRd, γy = maximum shear capacity and shear distortion,

respectively
= damaged shear capacity

VRdc,VRdc
* = shear capacity provided by concrete by either considering

or neglecting axial load contribution, respectively
VRds = shear capacity provided by steel stirrups
Vu, γu = residual shear capacity and shear distortion,

respectively
κ(x), ε(x), γ(x) = section deformations
θ1, θ2, u = element nodal deformations
σfiber = fiber stress
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