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Abstract

We analyze a Jeffreys type model ruling the motion of a viscoelastic polymeric solution with linear memory in a two-
dimensional domain with nonslip boundary conditions. For fixed values of the concentrations, we describe the asymptotic
dynamics and we prove that, when the scaling parameter in the memory kernel (physically, the Weissenberg number of the flow)
tends to zero, the model converges in an appropriate sense to the Navier—Stokes equations.
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1. The equations

Let £2 ¢ R? be a bounded domain with smooth boundasy. For s > 0, we consider the following system
of equations in the unknown variables= u(x, 1) : £2 x [0, 00) — R2, 5 = /(x, 5) : 2 x [0, 00) x (0, 00) — R?
andp = p(x, 1) : £2 x [0, 00) — R:

B,M—wAu—(l—w)/o ke(s)An(s)ds+ (u-V)u+Vp=f

9 = —osn +u, (1.1)
divu =0,
divp =0.
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Here,w € (0, 1) is a fixed parameter. : £2 — R2, whereas the so-calledemory kernel

ke(s) = 8121« (g) . ee(0,1],

is the rescaling of a given smooth functibn (0, co) — [0, co) such that

o
f k(s)ds = a < o0,
0

and subject to the normalization condition

/00 sk(s)ds = 1.
0

The above equations describe the horizontal motion of a fluid of Jeffreys type in an infinite cylinder of cross section
£2 (for simplicity, all the physical constants are set equal to 1). Sygfefr) is supplemented with theonslip
boundary conditiongplus an additional condition ap(which, in fact, is again a boundary condition), namely

u(®) =0 onas2, Vi > 0,
n'(s)=0 onas2, vt >0, Vs > 0, (1.2)
n'(0) = |im0nt(s) =0 inR,ve>0,

s

and the initial conditions

u(Q)=ugp ing2,
i % =no in £2 x (0, 00). (13

Notice thatk, — (ct/€)d0 — —&; in the sense of distributions as— 0 (5o being the Dirac mass at zero). Thus,
from the formal equality);n’(0) = u(z), we recover the classical Navier—Stokes equations

{a,u—Au—l—(u-V)u—i-Vp:f, (1.4)

divu =0,

with nonslip boundary condition. Of course, another way to olthih) from (1.1)is to take the limitw — 1.

2. Introduction

Linear viscoelastic equations approximate the complete motion equations of real viscoelastic materials. They
apply to the study of small deformations of the rest state, that is, when the history of deformation is sufficiently
close to the rest history. Clearly, it is possible to conceive a deformation history with arbitrarily large strain rate
values and, nevertheless, arbitrarily close to the rest history: a simple example is a periodic motion with very small
amplitude but very large frequency. Although linear viscoelasticity is inconsistent with material frame indifference,
many excellent works based on this approach have been written (see, for infga8)d2,20}, leading sometimes
to new ideas and techniques.

In this framework, we consider a linear incompressible viscoelastic fluid of Jeffreys type. Follf\@hdhe
stress-strain rate constitutive relation consists of a Newtonian contribution and a viscoelastic contribution. Precisely,
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at any fixed poink € £2 and any time > 0, the symmetric Cauchy stress ten®as given by
T(t) = —p()I 4+ 2vnD(t) + 2vg /000 k(s)D(t — s) ds, (2.1)
wherep is the pressure,
D= %[Vv + V']
is the strain ratey being the velocity of the fluid, subject to the incompressibility constraint
trD=divv=0,

andx is a smooth positive kernel satisfying the normalization condition

/Oooic(s)ds =1

The positive constantgy and vg represent the Newtonian and the elastic viscosity, respectively. Thevsam
VN + vE is the total viscosity of the model, also calledro shear viscosit{see[13, p. 542). Introducing the
dimensionless parameter= vn/v € (0, 1), equation(2.1) reads

T@) =—p)I + 2voD(t) + 2v(1 — w) /000 k(s)D(t — s) ds. (2.2)

In the limiting situationw = 1, we have Newtonian fluids, whereas= 0 corresponds to elastic fluids. There
are molecular arguments (sgg) suggesting a constitutive equation of this type. Indeed, very dilute solutions of
polymers might exhibit a stress depending both on the deformation history and on the instantaneous value of the
strain rate, where the viscous part of the behavior is contributed by the solvent. Accordingly, the quantity (1
is assumed to represent the concentration of the polymers, which behave as elastic fluids. When no polymers are
presentg = 1), we are left with a pure Newtonian fluid of viscosity (the solvent). This model is also supported
by some recent investigations. For instancdl1bi it is applied to the study of bubbly liquids, whereagid] it is
used to describe, in the linear regime, the hydrodynamic behavior of a 3D lattice Boltzmann model with 32 discrete
velocities.

The Jeffreys model is a tensorial generalization of a simple rheological element given by a dashpot and a Voight
model in series. It is recovered as a particular cag@.@), assuming that

1
= — e—S/)\, S
k(s) ;

wherex is calledrelaxation time In this case, the traceless part of the stiBss T + plI can be formally obtained
as the solution of the following rate-type constitutive equation

T(1) + k%f’(r) =2v |:D(t) + wx%D(t)] ,

for any given past history of the strain ral® The quantitywi is calledretardation time A frame-indifferent
generalization of the above equation has been suggested by OJ#iédytho introduced lower-convected (Oldroyd-
A) and upper-convected (Oldroyd-B) time derivatives in place of the ordinary ones. Itis worth noting that the Jeffreys
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model can be viewed as the unique linearization of both the Oldroyd models A and B3spe39]for the proof).
A more realistic case, callegeneralized Jeffreys model of orderaan be obtained fror{2.2) taking the kernel

n

1
K(s) = e, (2.3)
=1

with A1 > A2 > --- > A, > 0. Then, a straightforward calculation shows tffaibeys the rate-type equation
o “ & . - d/
T()+ ;aij(z) =2v| D@t) + ;ﬁj@D(t) ,

where the coefficients; andg;, for j =1,...,n — 1, are related to theelaxation times ;, and g, = wa;,. As
pointed out in[2], this choice fits very well isothermal stress—relaxation experiments on polymeric materials. In
some cases the following relation can be assumed

KjZ)L_—;, j=1...,n. (2.4)

J

However, the influence of thgh term in the kernel becomes negligible for large valugs &6 that a definite value
for nis not needed provided that it is assumed to be sufficiently large. It is well known that viscoelastic materials
have an intrinsic (often calleelapsedl time scale. Thus, a natural time can be defined in terms of the memory
kernel, which represents in some sense the length of the memory. Although no exact definition is available, following
[2, p. 249]we assume here

Jo* s%k(s) ds

A == OO—'

2 [y sk(s)ds
This choice seems preferable on the basis of the molecular theories of polymers. Indeed, for kernels of the form
(2.3), A = ZA?/Z Aj. This value does not depend ar(if n is sufficiently large), and it is of the order of the
largest relaxation timg1, at least when relatiof2.4) holds.

In order to obtain the equations governing the evolution of the fluid flow, a careful description of the kinematics
is needed. The motiop of a simple fluid at timer is described with respect to the actual configuratan timet,
namely

X 1)=x—¢'(x1), xe =<t

whereq’ is therelative displacement vectoin particular,x’(x, t) = x. The velocityv’ at timet < ¢ of the fluid
particle which occupies the positiorat timet is defined as

v'(x, ) = 3cx'(x, 7) = —0:q' (x, 7).

Often, the superscriptis ignored, as we did in the first part of this section. Since the same fluid particle occupied
the positiony’(x, T) at timet < ¢, introducing theEulerianvelocity u(x, t) of the fluid at positiony and timer,
we have

u(x'(x, 1), v) = V'(x, 7).
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Accordingly, the acceleration is given by
90" (x, ) = deu(x' (x, 7), ) + (u(x' (x, 1), T) - Vdu(x'(x, 7), 7).
In particular, wherr = ¢, we havev'(x, t) = u(x, 1), so that
AV (x, T)jrr = Qpu(x, 1) + (ulx, 1) - V)u(x, 7).
Accounting for linear viscoelasticity (cf2]), we consider
E'(x,7) = —3[Vq'(x.7) + Vq'(x. 1) "],
subject to the linearized incompressibility constraint
trE' = —divg' = 0.

A formal integration by parts transforms the convolution integral appeari(@ ) into
o o
/ k(s)D'(t — s)ds = — / k(s)E'(t — 5) ds,
0 0

where we puk(s) = —«’(s). This new kernel satisfies the normalization condition

/00 sk(s)ds = 1.
0

Hence,(2.2)takes the form
T@) = —p()I + 2voD(t) — 2v(1 — w) /‘00 k(s)E'(t — s) ds. (2.5)
0

Assuming a constant densijtythe motion equations of a Jeffreys type incompressible fluid are derived substituting
(2.5)into the usual balance equations, so obtaining the differential system

o
olus + (u - Vu] — volAu — v(1 — a))/ k(s)Aq'(t —s)ds +Vp = f
0
divu =divg =0,

wheref is the density of driving force per unit volume agidsatisfies the integral equation
t
den)= [ube— g Ny Tt
T

Since we are dealing with small perturbations of the rest state, we can make the approximation

q'(x. 1) = f [uCx, y) = (¢'(x, y) - VIulx, y)]dy, 7<=t (2.6)

In order to rewrite the system in dimensionless variabled)lahdU be the characteristic length and velocity of
the fluid flow, respectively. The ratib/ U is calledkinematic timeof the flow. Thus, considering the dimensionless
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space and time variablés= x/D, ¥ = Ut/D, 6 = Ut/D ando = s/A, and introducing thdReynolds number
Re = pUD/v and theWeissenberg numbé¥e = AU/ D, we are led to

1—w [*. .

R¢n+@.wmyﬂm@——wff k(0)Aeq” (9 — Weo) do + Vep = 7,
e Jo

diveir = diveg = 0,

having set

A 2 A~
a6 0) = Jule ), BEO= A, BEN=ple), FO= . Ko)= 4%0)

For simplicity, we putRe = 1 andWe = ¢. Removing thehats and renaming the space and time variables, we
obtain

l-w [* .
u,+(u-V)u—wAu——/ k(s)Aq'(t —es)ds + Vp = f,
e Jo (2.7)

divu = divg = 0.

By recursion, the integral equati@®.6) yields the following power expansion gf(t — &s) with respect te

s s y
q’(x,t—ss):e/ u(x,t—ey)dy—ezf (/ u(x,t—sw)dw~V)u(x,t—sy)dy—i—es-'-
0 0 0

Itis then convenient to introduce an additional variable[&]f), namely, theéntegrated past history of u, defined
as

nt(x,s)zf‘ u(x,t—y)dy, s>0.
0

It is readily seen thai’(es) is the first order approximation qf (+ — s) in . Besidesy fulfills the system

' (s) = —asn'(s) + u(?),
divn =0,
n'(0) = 0.

Since we are focused on the analysis for small values(of fact, the limite — 0), we are allowed to replaap
with n in (2.7). This, after a change of variable in the integral, leadgltt). It is however worth mentioning that
some authors directly obta{t.1), by simply approximating’(: — s) with n(s) from the very beginning, that is, in
the definition of the tensak (see, e.g.[1,17,21).

The aim of the present work is to establish convergence results, as the scale paréeneteto 0, of systerfi.1)
to the classical Navier—Stokes equatig¢hst), formally corresponding te = 0. This will allow us to say that, if
the measurek.(s) ds is close to the Dirac mass, then the contribution of the memory is negligibleladids in
fact a good approximation of the original system. Indeed, we prove that single trajectafle$)abnverge to the
corresponding ones ¢f.4)on finite-time intervals as — 0 (see the followindRemark 8.3. But, in particular, we
are interested to the longterm behavior. Hence, we want to “measure" the distance of the two systemsashe
correct way to do that is to see how the final objects describing the asymptotic dynamics (i.e., the attractors) differ
in term ofe. To carry out this program, we first construct for every [0, 1] a dynamical systeri.(¢) in a proper



S. Gatti et al. / Physica D 203 (2005) 55-79 61

phase-space, and we study its asymptotic properties, proving the existence of global atttaatutexponential
attractorsg,, uniform with respect te (at least, ife is small enough, or ifv is sufficiently close to 1). Then,
loosely speaking, we show thdi, — Agp and&, — & ase — 0, so proving the desired stability property. This is
made possible relying on some techniques recently devidddl iand successfully applied to the reaction-diffusion
equation with memory. We point out that, assuming nonslip boundary conditions, the presence of the nonlinear term
(u - V)u introduces some nontrivial difficulties, that need to be treated with a new approach. Finally, we provide a
physical interpretation of the obtained results.

We remark that, throughout the work, we assume &hat(0, 1) is afixedvalue, whereas will be allowed to
move in the interval [01]. Nonetheless, it is also of some interest to see how the result depends on the selected
valuew. Therefore, we will explicitly write down the dependenciessari-or instance, in the limit case = 0 we
do not have the semigroup of solutions. Hence, as it is to be expected, we will find bounds for the solutions that
blow up asw — 0.

3. The mathematical setting

For the mathematical setting of problefdsl)—(1.3) we consider the Hilbert space
H® = {u e [L3(2)]? : divu = 0, u - njpe = 0},

n being the outward normal 2. Naming P : [L2($2)]> — H° the orthogonal projection ont&°, the operator
A = —PA is well known to be positive, with the first eigenvalug > 0, and with compact inverse . Thus,
foranyr € R, we introduce the scale of compactly nested Hilbert spates dom(A’/2), endowed with the norms
and the inner products

lullgr = 1A72ull - and (u, v)pr = (A"2u, A7?0),

where| - || and(-, -) denote the norm and the inner productrf(£2)]2, respectively. Two particular instances are
H'={u e [H}(2)?:divu =0} and H?= H'N[H?*2)]2

Also, H~" = (H")* (dual space). For further use, we recall the Ladyzhenskaya inequality in dimension two
24 < cllulllullgr, Yue H

Defining the trilinear form
b(u, v, w) = {(u-V)v,w), u,we HO v e HY,

and using the Green formula together with the boundary condition, under suitable regularity assumptions on
andf, the term involvingp disappears, and we can rewrite the first two equatiori$.j as the equality irH 1

oiu + wAu + (1 — w) /00 ke(s)An(s)ds + B(u, u) = f,
0
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where the bilinear fornB : H' x H — H~1is given by
(B(u, v), w) = b(u, v, w), Vu,v,we H.

Here, (-, -) stands for the duality pairing betweéht and H~. We shall exploit some important propertiesbin
the sequel, such dgu, v, v) = 0 and the inequality

bu, v, w) < cpllull V2| AY2u |2 AY 20| V2) Av| Y2 w], 3.1)

that holds for some;, > 0 and allu € H!, v € H? andw € H°. For more details concerning the mathematical
setting of the Navier—Stokes equations and related results we address the reader to tfie2b@dks
Next, we turn our attention to the memory kernel. It is convenient to define

u(s) = (1 — w)k(s),
and, accordingly,
pe(s) = (1 — w)ke(s).
Then, we assumg € C1(R*) N LY(R™), with R* = (0, oc), such thaj. > 0 and the dissipation condition

W (s) +du(s) <0 (3.2)

is verified for somé > 0 and alls € R*. Notice that
o o
f we(s)ds = —(1 — w). (3.3)
0 &
Forr € R, we introduce the Lebesgue spaces with respect to the mgaduyels
r_ g2 +. pr+1
M, = LE (RT; H™Y,
endowed with the usual inner product. Then, we consider the opétator M with domain
dom(:) = {n € M7 : 3y € Mg, 1(0) = 0},
defined as
T,n = —0sn, nedom(l,),
95 being the distributional derivative with respectstdue t0(3.2), there holds

)
(Ten, Mg < =5l 0, Vi € dom(T:). (34)
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In view of the boundary conditions, the third equatior(bfl) reads
on=Ten+u.

If u e LY0, T; HY), the (mild) solution inM? of the above equation on the time-interval 1Q has the explicit
representation formula

N
/u(t—y)dy, O<s<t,
t

n'(s) =
UO(S—f)‘i‘/ u(t —y)dy, s>t
0

More details on the memory equation can be founflLBj. Compared to the compact embedditi§ € H1, the
embeddingu} ¢ MUis, in general, not compact. In order to find a space compactly embeddéef,iwe proceed
as follows (se¢4]). Givenn € MS, we introduce théail function

Ti(x) = ¢ / re()IAY 212 ds, x> 1,
(0. 1)u(x,00)

Then, we define the Banach space

L= {n e M!:nedom(l;), supxT:(x) < oo}

x>1

endowed with the norm

2 2 T 2 s T
||’7|| 1= ||77|| 1 8” 577” 0 upx E(x)'
L M M 1 n
& B € >

By [18, Lemma 5.5]£! € MO,

Along this paper, we denote loya generic positive constant depending only on the structural data of the problem;
further dependencies will be declared on occurrence. All the quantities appearing in the sequel (in pajtarelar,
understood to be independentscdnd (unless otherwise specifiedafBesides, we will tacitly use thedtder and
the Young inequalities, as well as the standard Sobolev embeddings. Finally, given a Banack spasgmbol
Bx(R) stands for the closed ball X centered at zero of radil&

We conclude this section reporting a generalized version of the Gronwall lemma, that will be needed later.

Lemma 3.1. Let® be an absolutely continuous function @) 7,) (with ¢z, > 1; possibly 7., = c0) that fulfills,
for almost every € (0, 1), the differential inequality

d

Eqﬁ(t) < f(O)®(t) + g(t) + B
Here g > 0; ff f(y)dy <c—o(t — 1), foro > 0Oandc € R; and g is a positive function such thﬁﬁ+l gy)dy <
y < oo, forall t <t — 1. Then

2y e

—ot Pr=
?(t) < €eP(0) + o 1 + ot vt € [0, ts0).
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4. The dynamical system

In light of the preceding sections, we construct the dynamical system associated with pr(bBrd.3) Let
¢ €[0,1]. Forj =0, 1/2, 1, we introduce the Hilbert spaces

ng{foMg, ife >0,

H/, if e =0,

and the Banach space

zZl =

&

Hlxﬁg, if ¢e>0,
HL, ife=0,

endowed with the standard norms. Notice tBate H?. Whene = 0, we agree to interpret the pair, (7) just asu.
For further convenience, we also introduce liftexg mapL. : Hg — H2, and theprojection map® : H? — 7—[8

andQ; : % — MY, given by

Lsu = (l/l, 0)? P(M, 77) =1u, QF(M’ 77) =7n.

As anticipated in SectioB, we will work with a fixedw € (0, 1), and we will be interested in analyzing the behavior
of the equations in dependencesdimore specifically, as — 0).
Assuming

f e H® independent of time
system(1.1)—(1.3)translates into the following
Problem P;. Given (o, no) € H2, find (u, n) € C([0, 00), H?) solution to

o0
{ ou + wAu + / we(s)An(s)ds + B(u, u) = f,
0
81‘77 = Ta’? + u,

for r > 0, satisfying the initial conditions(0) = ug andn® = .

The adopted notation allows us to include within the above formulation also the limiting Prollecorie-
sponding to the classical Navier—Stokes equat{@), provided that we interpret the terfg>Q e(s)An(s) ds for
e =0 as (1- w)Au(z). All the results given in the sequel will be proved for- 0. The corresponding proofs for
¢ = 0 are already known. In fact, they can be recovered with little effort making the above position.

There holds

Theorem 4.1. For everye € [0, 1], Problem R defines a strongly continuous semigrai@p dynamical systejn
Se(t) on the phase-spack?.
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The proof of this result, based on a standard Galerkin approximation scheme, is omitted (but see, for instance,
[9]). We detail for further scopes the continuous dependence estimate: for,anye ”Hg and anyr > 0

4
1Se(t)z1 = Se()z2ll30 + @IPSe()z1 — PSe()z21172(q sy < €0V Nlz1 — 220150, (4.1)

for somec > 0 depending (increasingly) only on tﬁé’-norms ofzq andzs.

Remark 4.2. We point out that we do not have a well-posedness result wherD, unlesg = 0 either, in which
case we recover the Navier—Stokes equations.

Remark 4.3. Theorem 4.1as well as the results that will follow, hold the same if we adidat@onlinear terna(u),
provided thatp € C1(R?, R?), the (2x 2)-matrix [wAl — ¢’ (x)] is positive whenevelx| is large enough, for some
A > Ay, and

1¢'(x)] < c(L+ 1x1?), Vx e R2

Indeed, in the estimates of higher-order, this term can be controlled by means of the Agmon inequality in dimension
two for the operatoA (see, e.g[23]), that is,

2 2
lullzeo < cllullllAull, Vu e H".

5. Global attractors
We begin to investigate the dissipative featuresg4f). The first result is

Proposition 5.1. There exiskg > 0 andCp > 0 such that

_ Co
I1Se()zllz0 =< llzllz0€ wkor 4 —

for anyr > 0 and anyz € HO.

Proof. Let (u(z), n") = Se(f)z be the solution t®roblem R corresponding to the initial datac #°. Multiplying
the first equation oProblem R by uin H° and the second one hyin M2, on account of3.4), we obtain

1d 2 2 12 02, 8. 2
Ea(llull +||77||M9)+w||A ull +Z”"”M85(ﬁ”)’

due to the equality(u, u, u) = 0. Thus, by standard computations,
d 2 2 whg o 8o 12,2 _ 2 2
E(Ilull + ||77||Mg)+ TIIMII + gllnllMg +ol|AYu||” < mllfll .

Settingkg = min{A 4 /4, §/2}, we get

d ¢
315021150 + 20x0llSe(r)2ll3,0 + wll AY2u(0)) < —,

and the result follows from the Gronwall lemmad
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As a straightforward consequence, we have

Corollary 5.2. There existsRyo = Ro(w) > 0, with Rg ~ 1/w, such that thgboundedl setBS = BHg(Ro) is ab-
sorbing forS,(¢) on Hg, uniformly ine.

Moreover, integrating the last differential inequality in the above proof, we easily obtain

Corollary 5.3. There exist€; > 0 such that

! R? Cy
[ naves.oitey < T4 o)
. 0w o

forallt > t>0andallz BHQ(R).
We are now ready to prove

Theorem 5.4. Foranye € [0, 1], the dynamical systei (¢) onHS possesses(@niqué connected global attractor
Ae € H2.

Proof. For any initial data; = (ug, no) belonging to the absorbing sﬁf we decomposé;(¢)z into the sum
Se(t)z = L(t)z + K:(2)z,

whereL.(t)z = (v(z), &) andK.(t)z = (w(z), ¢') solve the problems

o]

v + wAv + / ne(s)AE(s)ds + B(u, v) =0,
0

0 = Tk +v,
(1(0). £% = (uo. 10).

(5.1)

and

ow + wAw + / we(s)AZ(s)ds + B(u, w) = f;
0

8¢ = Tl + w, (5.2)

(w(0), ¢%) = (0, 0).
By the previous results, we know that

c 4 c
IS:(r)zll,0 < — and 1AY2u(y)IPdy < — (L +1 — 7). (5.3)
¢ w . w3

Here and in the sequad,is independent of the particulare BS Arguing like in the proof ofProposition 5.1it is
easily seen that
ILe(t)zllz0 < Roe™ ", (5.4)

Next, we focus our attention oki.(¢). Let us set

E(r) = 31Ke(0213,, = 3UAY 2wl + 1213 0)-
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Multiplying the first equation of5.2) by Aw in H° and the second byin M}, we obtain

dE

o T ol Aw||? + (T At AQ) o = —blu, w, Aw) + (£, Aw). (5.5)
By (3.1), (3.4) and (5.3)we deduce

dE 8
o Felawl®+ - NElR < collul 2 AY 2 VAV 202 Aw] ¥ 4 ) £l Aw]

w C C
< SlAwl® + — A7 2u) 2 A 2w)? +
w w
thus we end up with the differential inequality

9 ) Aw)? <
dt2w_

In light of (5.3), the Gronwall lemma furnishes

[ C
— | AY2u|E + —. (5.6)
w w

IKe(@)zllyg < €& vi =0, (5.7)

Using now a general argument (Sde Section 3.1), we obtain an analogous bound for tB&-norm of K. (¢)z.
Hence, for every fixed" > 0 we have found a compact s ¢ H? such that

U K.()z C Ky, Viel[0,T).

zeB?

This fact, together with the exponential decay estinfaté), imply the existence of the global attractor, by means
of standard methods of the theory of dynamical systems (see, for insfahpe, O

Remark 5.5. For the sake of simplicity, we chose at the beginning to set the Reynolds niRabed. However,
observe that ifv/ Re is large enough, we also obtain a regularity result for the attractor. Indeed, if itis so, in the proof
of Theorem 5.4ve can applemma 3.1in place of the usual Gronwall lemma, so getting a bound independent of
t. This in turn yields the existence of an attracting set boundeltin

6. Regular exponentially attracting sets

Our next task is to prove that the evolution system under consideration enjoys a stronger dissipativity property.
Namely, there exists a regular (exponentially) attracting set which, in addition, absorbs itself under the action of
Se(r). As a byproduct, we obtain a regularity result for the global attractor. This occurs eithas $ufficiently
close to 1, or ife is small enough (in dependencew)f. More precisely, the main result of this section is

Theorem 6.1. There existg = eo(w) € (0, 1] and Ry = R1(w) > 0 such that, denoting,, = [0, o] and B =
Bzg(Rl), the inequality

disty,o(S:(1)B2, BY) < Roe™ ! (6.1)

holds forevery € 7, and any > 0,wheredistis the usual Hausdorff semidistance. In particutais an increasing
function ofw, and there existay < 1 such thatso(w) = 1 for everyw > wq. Besidesgo(w) ~ 8. Finally, there
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existst; > 0 such that

S.()BLc B, Vi>n. (6.2)

The quantitieRg > 0 andkg > 0 appearing in the above formula are the radius of the absorbinﬁﬁbaﬂd the
exponential decay rate of syst€m1), respectively (cf. Sectioh). Recall thatRg ~ 1/w. ConcerningRy, as it will

be clear from the proof, the dependencewn of the form &/ Thus, the above picture is perfectly coherent with
the physical interpretation. Indeed, wheis sufficiently close to 1 the contribution of the memory is negligible, and
the system is close to the classical Navier—Stokes equations, which are well known to possess a regular absorbin
set (see, e.g[24]). Conversely, it is small we (formally) recover the classical situation letting- 0. In this latter
case, however, the bounds will blow upas- 0.

Before going to the proof (which is postponed to the next section), let us see some interesting consequences o
Theorem 6.1First, since the global attractor is the smallest attracting set, there holds

Corollary 6.2. Foreverys € T, the global attractotA, is a bounded subset 8, with a(uniform ass € Z,,) bound

of the forme/®°. Moreover, A, has finite fractal dimension, with an upper bound for the dimension independent of
e €1,.

The last assertion is actually an immediate consequendhedrem 8.1(see Sectior8). Due to this extra
regularity, we are also able to show that tackwards uniqueness propehglds on the global attractor, that is

Proposition 6.3. For everye € Z,, the semigrougs.(¢) uniquely extends to a strongly continuous group of operators
onA..

Finally, the family of global attractor§A.} is upper semicontinuous at= 0, with respect to the Hausdorff
semidistance if?.

Proposition 6.4. There holds
Iimo[distHo(Ag, L¢Ag)] =0.
e— &

Equivalently,

lim [disto(PA,, Ao) + sup||Qzll 0] = 0.
e—0 ze A ¢

The proofs of the above two propositions do not differ too much from the proofs of the analogous results for the

reaction-diffusion equation with memory (sig), and are therefore omitted.

7. Proof of Theorem 6.1

It seems convenient to break the proof into some lemmas. Throughout this section, we will keep the notation of
the proof ofTheorem 5.4

Lemma 7.1. There exists gsmal)) constant. > 0 such thatsettinge; = A0%(1 — w),

Sup[[Ke(N)zllpa < &7, Vi =0,

zeB?

foranye € [0, ¢1] and some: > 0.
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Proof. We repeat the proof ofFheorem 5.41p to formula(5.5). Recall that, by(5.3) and (5.4)there hold

o

sup[llu(@®)| + lw@®I] < —, Vt=0, (7.1)
zeB? w
and
t C2
sup | [AY2u()Pdy < G +1-1), Vi>7=0, (7.2)
zeBd VT w

for someco > 0 (independent of andw). A further multiplication of the first equation ¢6.2) by AZ'(s) in H°
and an integration ip.(s) ds give
00 00 0 2
- [ mae aconas = o [ wean acond+ | [ noaco |

+ /0 e($)b(1t, w, AZ(s)) ds — /0 se(s)f: AL(s)) ds.

Introducing the functional

[e¢)
L0 == [ neo)w). A s,
exploiting (3.3) and the representation formula

w(t—s),0<s <t

0, s>t

ti(s) = {

we deduce the equality

o0 t
-~ / 11e(s) (3w, AL(s)) ds = %—I; + %(1—w)||A1/2w||2— / fe(s)(Aw, w(r — s)) ds,
0 0

which in turn yields

dL
=+ 201 - w)| Y22
dr e

_ f e(s)(Aw, w(t — ) ds + o / " 1e(5) (Aw, Ac(s)) ds
0 0

o]

2 00
+ / e (s)blun, w, AZ(s)) ds — / () f: AL(s)) ds. (7.3)
0 0

+ fo " e AL(s) ds

For K > 0 to be specified later, we consider the functional

E@) = E(r) + %L(r).
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In view of (7.1), there holds

Ke J— K?acke 1 5
Bl—w) L) = ——F— \/— ||||§||Mgfm+zllillM%,

which provides the comparison
1 ce ce

<E<2E+

2E i) S (7.4)

Addition of (5.5) and (7.31imesKe/w8(1 — w), on account of3.4), entails
dg 12, 02, 0 2
5 Helawl? 4 Ko 3 SIAYZw)? 4+ 5115

<t = o [T adn s+ g ] [T oo a]

8(1
7(1 > / we(s){Aw, AZ(s)) ds + ) / we(s)(Aw, w(t — s)) ds
bl )+ s [ bl . A .
w8(1—w) Jo
We now proceed to control the terms of the right-hand side of the above inequality. We have

Ke o 1) K2ae
(f Aw) — m/(; pe(s)( £ AL(s)) ds §||Aw|| + ﬁ”fﬂMl + w||f||2,

Al f, momsos] < i,

Ke foo O Aw, Ac)ds = w2+ —2K 2
_ s){(Aw, Az(s)) ds —|Aw - ,
A=) Jo M ¢ 5 A0S — ) * M

(A s < A 5K2a2c(2)
m/ pe(s)(Aw, w(t — s)) ds —|| w||® + 20,19

Thanks to(3.1) and (7.1)

w 125:%¢2
—b(u, w, Aw) < £l Awl® + =22 AV Zu| 2| AV 22,
and, by the same token,

__Ke [7 it 2, 1/2 1/2 2
a)8(1 — w) /C.) IU'S(S)b(M, w, AC(S)) ds < g”Aw” 64(1)3 “A ” A w|| + m”CHM}

At this point, we set the value & to be

_ 8005:;c]
= =g
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Collecting the above inequalities, we find

d¢ Ko 4 ) Ka 13Ke
= 2 AY 202 2o (e 2 2
— + AV 2w+ [ = - =5 (14 8(1_60))]”;”%_

IAY 2u) 2| AY 2w + —5

82 5 19’

wherec > 0 depends only on the structural data of the problem and is independeandé. Properly choosing a
(small) positive constarit, independent of andw, and setting1 = 10®(1 — w), the coefficient of|;“||f\/l:L satisfies

8 Ka( 13Ke

Ko
2% o +4w8(1—w)>25’ Ve € (0 edl.

This yields the differential inequality

d¢ 2K«
E <

-+ — AY2y E+ —5
dr ' B 4c2 5| I”

which, by(7.4), transforms into

d¢ Ko -
dr 8 2¢ g

||Al/2 ||25+ -l AY2u)? + 55
Since, by the choice &,

K
u@)Pdy < —=(1+1—1), Vi>71>0,
208

Lemma 3.1gives
&) < e/°, Vi >0.
Using again(7.4), the desired inequality follows. (]
Lemma 7.2. There existgg € (0, 1) such that, ifw € [wp, 1), there holds

SUp|IKe(D)zllp < ¢, V1 =0,

zeB?

for anye € [e1, 1] and some constat> 0.

Proof. To simplify the argument, let us work with greater than or equal to a fixed positive value, say, 1/2.
Consequently, in the considered range—(d)/s < A, having setA = 256/. Notice first that, by virtue of5.7),

IAY2w@)1? + 1815 <. Veel0.1]. (7.5)

Thus, integrating5.6), and taking into accouri@orollary 5.3 we obtain the further bound

1
/0 lAw()[2dy < c. (7.6)
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We now multiply the first equation ¢b.2) by Aw in H?. This leads to

d 12 2 2 >

E”A w||® + 2w||Aw||* = -2 we(8)(AL(s), Aw) ds — 2b(u, w, Aw) + 2(f, Aw).

0
Since
> 1 2 2
-2 pe(s)(AL(s), Aw) ds < ~[|Aw||® + 6 AlIZ]% 41,
0 6 Mz

and estimating as before the remaining two terms of the right-hand side of the above equality, we end up with

< c+ c|AY2u)? | AY 2w,

%uA”Zwu2 + %nAwu2 — 6o AL
In view of (7.5), we select a constant > 0, independent of, w and of the initial data, such that

F(i) = —6aA[¢l5, +C >0, Vie[0,1].
Accordingly, we rewrite the above inequality as

%nAl/zwn2 + %nAwn2 +F < e+ cl| AY2ul P AY?w)%, (7.7)

Relying on the representation formula forit is immediate to check that the functidhis (Holder) continuous on
[0, 00). Therefore,

too =SUP? >0:F(t) >0,Vr €[0,7]} > 1.

Of course ¢, may depend ow, ¢ andz. Recalling that (cfCorollary 5.3 which clearly holds fow, and thus for
w as well)

+1
sup | [IIAY2u)I? + 1AY2w(») (2] dy < c,

t>0Jt

we are in a position to apply the uniform Gronwall lemf@4, Lemma Ill.1.1{o (7.7), which, together wit{7.5),
entail

IAY2w(@)| < c, Vi €0, too).

Then, integrating7.7)and exploiting the boun(¥.6), we also get the integral estimate

t+1 5
sup lAw(y)[I*dy < c.
t€[0,t00—1) J1

It is important to observe that the constardppearing in the last two inequalitiesiiglependenbf the valuery
(as well as ofw, ¢, 2). At this point, multiplying the second equation @&.2) by ¢ in M2, we get the differential
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inequality
g3 + 5, 16050 = 51— o)lAw].
Hence, applying.emma 3.1 we conclude that

1 gz < cQ— ), V1 €0, 1)

To finish the proof, we are left to show thgt = oo for every initial dataz. Indeed, the above bound also furnishes
the estimate

F(t) > —c(l—w)+C, Vte[0, ).
Itis then clear that, up to possibly redefiniag to be closer to 17(r) > C/2 for all¢ € [0, t~,), which, due to the
continuity of 7, forces the equality,o = co. [
Definingep(w) as
kws(l —w), if o< wo,

fo(w) = 1, if w> wp,

and collecting_emma 7.1 and 7,2ve have proved

Lemma 7.3. For anye € 7, there holds

SUp|Ke(f)zllzz < e/ v >0,
zeB?

As we already pointed out, the above lemma does not suffice to entail the required compactness. However, using
verbatimthe results of4, Section 3.1]we find an analogous estimate for the remaining part of the norki @jz
in Z1. Namely,

Lemma 7.4. For anye € Z, there holds

(9||Ts§’||i/10 + supTs (x) < & vi>0.
€ x>1

Finally, collecting(5.4), Lemma 7.3andLemma 7.4 we have proved formulgb.1).

The steps to prove formul®.2) are basically the same, and are left to the interested reader. Possibly, one has to
increase the quantitie®; andwg and decreasey, obtained from the proof af6.1) (nonetheless, the dependence
of R1 andeg onw does not change). Clearly, the redefined@eis a fortiori exponentially attracting. Incidentally,
n~ a)8.

Remark 7.5. Sincel%’;l absorbs itself after a finite timg, it is straightforward to see that there exigts = Q1(w) >
0, with 01 ~ ec/“’s, such that, for every € 7, and every > 0,

+1
sup[5.(0clz + [ 14PS.0)2120y] < 0. 78)
t

zeBl
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8. A robust family of exponential attractors

The main result of the paper is the existence of a family of exponential attrégtdos all ¢ small enough, which
is robust(that is, continuous in a proper sense) with respect to the singulaelinitd. Clearly, besides robustness,
the novelty here is the existence&ffor ¢ > 0. Indeed, the existence 8§, corresponding to the classical case, is
well-known since many years (d6] and references therein).

Theorem 8.1. For everye € 7, there exists a s&, compact ir{? and bounded iersL, which satisfies the following
conditions.

i) S:(n&: C &, for everyt > 0.
(i) There exist > 0 and a positive increasing function both independent of € Z,,) such that for every
bounded seB C BHS(R)’ there holds

dist,o(Se(1)B, &) < M(R)e™ ™, Vt>0.

(i) The fractal dimension &f; in ’Hg is uniformly bounded with respect ¢oc Z,,.
(iv) There exis®® > 0and® € (0, 1/8] such that

distjjgm(sg, L.&) < O¢”.

Here, distY™ denotes the usual symmetric Hausdorff distance. The quantiti#s @ and® depend on the
particular value oo € (0, 1).
In order to prove the theorem, let us introduce the spaces

;L HY2 x WY2 ife > 0,
| HY2, if e = 0,

where

W2 = {ne ME?: ny € M1, supxT; (x) < oo}
x>1
is a Banach space endowed with the norm
112 172 = Inl% 172 + €llnslI 1 + SUPT ().
Wg/z M;L/Z st 1 n

By [18, Lemma 5.5]H., € H?.

Lemma 8.2. There existA; > 0, A € [0, 1/2) and * > 1 (all independent ot € Z,,) such that the following
conditions hold

(H1) The mapS; = S.(r*) : B — B! satisfiesS.z = L.z + K.z, where

[Lez1 — Lez2llg0 < Alza — z2l50,
[Kez1 — Kezallng, < Axllzs — z2ll50,

for everyzy, z2 € BL.
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(H2) There holds
IS8z — LeSgPzllp0 < A5¥e, ¥z e By, VneN.
(H3) There holds
I1Se()z — LeSo(t)Pzll0 < AsVe, Vze B vr e [r*, 2].
(H4) The map
7 Se(r)z: B - B!
is Lipschitz continuous, with a Lipschitz constant independentdt*, 2+*] and ofe. Here, Bal is endowed
with the metric topology o#C.
(H5) The map
(t,2) — Se(r)z : [r*, 2] x B — B!

is 1/2-Holder continuougwith a constant that may depend ep Again B is endowed with the metric
topology ofH?.

Lemma 8.2whose proof will be given in the next section, allows to apply the abstract fdsdlheorem A.2]
which yields the thesis dfFheorem 8.1with (ii) replaced by the weaker statement

dist,o(Se(1)B3, &) < Moe™, V1> 0,

for someMp > 0. Finally, by means of4.1), (6.1) and the above inequality, exploiting the transitivity of the
exponential attraction properfy, Theorem 5.1jve recover (ii). The proof ofheorem 8.1s then complete.

Remark 8.3. A closer look to the proof of (H2)—-(H3) (see the next section) provides in fact a result that has an

independent interest. Namely, for evefy- 0 and everyR > 0 there existCr g > 0 andCr > 0 such that, for
everyz = (ug, no) € BH%(R), there hold

s[gp] IPSe(r)z — So()Pzll o + IPSe()z — So(t)Pzl 20, 7:11) < CT.RVE »
te[0,T

and
Qe Se(1)zll pgo < Imoll 08 */* + Crv/e, Vi = 0.

These inequalities give a measure of the closeness (in termob8.(r) andSp(¢) on finite-time intervals.

9. Proof of Lemma 8.2

For the sake of simplicity, we set= 1/2.
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9.1. Proof of (H1)
For anyz e Bg, we decompose the solution map as
(). ') = Se(t)z = Le(t)z + Ko(t)z,

whereL.(¢t) andK.(¢) are defined as in Sectidn It is apparent that, upon choosiriglarge enoughl, = L.(t*)
is a contraction, with a constant independent.a€oncerning the other map, fer, z2 € Bg we set

(w(®). &) = Ke(t)z1 — Ke(t)z2-

Then W, ¢) solves

9]

dw + %Aw +/ pe(s)AZ(s) ds + Blu, u") + B(u?, u) =0,
0

06 =Te¢ +w,

supplemented with null initial data. Hete = u — u? andu’(r) = PS,(r)z;. Multiplying the first equation byA%/%w
in H° and the second byin MY/?, we have

d 8
5 ATl 4 01815 02) + NAY w2 4 2 11E0T v < —2D(u, ut, AV2w) = 2b(u®, 1, AY2w).

SinceHY2 < L3, and due tq7.8), there holds
—2b(u, ut, AY?w) — 2b(u?, u, AY?w) < cllull | Aut| | A% 4w + cll AY2u?| || AY2u|| AY 4w
< L1a%4w|? + el Aut| 2 ull? + cl| AYZu) 2.

Therefore,
d .14 2 2 1 434 12 112y, 112 /2,2
E(IIA w| +|I§IIM1/2)+§IIA w(® < cll Au”l|"flull® + cll A7 ull.
Integrating on (0¢*), in view of (4.1) and (7.8)it follows that

[Kez1 — Kez2ll, 02 = cllza — zally0,

having setk, = K.(r*). Arguing exactly as ifi4], we get the same estimate wiktj in place ong/Z. To this aim,

notice that the above integration also bears an integral contiiol ¥fw||2.

9.2. Proof of (H2)—(H3)

These are straightforward consequence of the estimate

sup1S:(1)z — LeSo()Pzllp0 < €% + &' Ye, V1> 0. (9.1)

zeBl
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To prove(9.1), we introduce the paiu( n), whereu(t) = So(¢)Pz, andn is the solution to the problem

o =Ten +u,
n° = no.

Next, setting (), ) = Se(r)z, the pair ¢, n) = (& — u,  — n) solves
o

_ 1 1
it + 5 Al + / He(s)Ail(s) ds = S Au — B(@, @) + Blu, u),
0

(9.2)
8t77= T877+ u,
with null initial data. Reasoning as [4, Lemma 5.4] we see that
max([17 I3 0. 171340 < llmoll% 082 +ce, 9.3)

foranyz e Bg. Moreover, multiplying the first equation {{®.2) by u in H° and the second byin Mg, we obtain
d o
g (1% + 1% o) + A2 < —2b(u, &, ) — 2 f 1e(s)(AY2n(s), AY?u) ds + (AY2u, AY2u),
¢ 0
The last two terms on the right-hand side can be controlled by a positive functatisfying (cf[4, Lemma 5.5)

t
/O w(o)dy < c&" ¥z

Thus, we focus our attention on the trilinear form. From the Ladyzhenskaya inequality, there holds
—2b(ie, &, u) < cllul 74l AY?al < F1AY2i)2 4 cl| AYZa )2 ]|,

We conclude that
S 02+ 112 ) + SN AY2a]2 < A2l +
dr M2 = '

In view of Corollary 5.3and the Gronwall lemma, and thankg(#03), we obtain(9.1).

9.3. Proof of (H4)—(H5)

Notice that (H4) follows immediately frortd.1). Hence, calling«(z), n') = Se(r)z, we are left to show that

2
sup [ (18I + 137 13,0) dy < Qe

zeBlJr*

for some Q. > 0 (notice thatQ. may depend omr). The control of the first term in this inequality is a direct
consequence of the first equatiorRybblem R and(7.8). Concerning the second term, notice that, from the second
equation ofProblem R, (7.8)and the representation formula fgrwe obtain

2 20 c
2 2 2 £2 « 122 _ €
13m0 = 21TenlZ 0 + 21l 0 < =l + =AY 2u)? < =,

and the result follows integrating ort ( 2r*).
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10. Conclusions

We are now in a position to interpret from a physical viewpoint the results obtained in the previous sections. We
provide a comparison between the asymptotic behavior of a polymeric solution, modelled by a Jeffreys type fluid,
and a Newtonian fluid, assuming a fixed value of the Reynolds number of the flow (for simplicity, ie pufl).

When the polymeric solution is sufficiently dilute (say> wp), then the contribution of the solvent prevails, and

the longterm dynamics is close to a Newtonian flow, provided that the Weissenberg number is not taodatge (
Otherwise, for higher values of the polymeric concentratior(wg), the non-Newtonian solution asymptotically
behaves as a Newtonian fluid only if its Weissenberg number is small enough. In other words, the natutal time
of the polymeric components must be smaller than the kinematic time of the flow and, accordingly, their elastic
response must be less important than the viscous one. In particular, for any fixeg, there exists a limit valuey
(decreasing a®® when the solvent concentratienvanishes) such that, in the long time, the Newtonian dynamics

is attained when the Weissenberg number of the flow is smallersthan

This result can be viewed as a contribution to give a rigorous statement of the following se2temc226]

“...one may also think (as we are inclined to do) that any real material behaving as a Newtonian fluid is simply a
material with an extremely short natural tithén this connection, Renardy first proved[t9] that some general
theorems on the longtime behavior of a Newtonian fluid still hold for a viscoelastic fluid of Jeffreys type at low
Weissenberg numbers. He analyzed the asymptotic stability of steady state solutions of the fully nonlinear model
(2.7) with an exponential memory kernel proving, in particular, that linear stability implies nonlinear stability,
provided that the Weissenberg number is sufficiently small, with a bound depending on the norm of the basic steady
flow. It is worth noting that the results §f9], as well as the ones of the present paper, are validrigReynolds

number, but they cannot be extended to the limibdsends to zero.

Finally, we stress thd®emark 5.5efers to a situation where the Reynolds number differs from 1. Precisely, for
any fixedw ande, the Jeffreys type fluid asymptotically behaves as a Newtonian one provideRktisagufficiently
small or, equivalently, if the total viscosityis sufficiently large compared U D.
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