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Abstract. In this paper we investigate the asymptotic behavior, as time
tends to infinity, of the solutions of an integro-differential equation describ-
ing the heat flow in a rigid heat conductor with memory. This model arises
matching the energy balance, in presence of a nonlinear time-dependent heat
source, with a linearized heat flux law of the Gurtin-Pipkin type. Existence
and uniqueness of solutions for the corresponding semilinear system (subject
to initial history and Dirichlet boundary conditions) is provided. Moreover,
under proper assumptions on the heat flux memory kernel and the magni-
tude of nonlinearity, the existence of a uniform absorbing set is achieved.
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1 Introduction

We consider the following semilinear integro-differential equation in a bounded
domain Q C R?:

ug(z, t) — /0Oo k(o)Au(x,t — o) do + g(u(z,t)) = f(x,t) in Q x R
u(z,t) =0 z€9Q teR
u(z,t) =up(z,t) z€Q ¢t<0 (1.1)

where k is a positive kernel decreasing to zero, whose properties will be specified
later.
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Hyperbolic Equations”.
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Problem (1.1) models temperature evolution of a rigid, isotropic, homoge-
neous heat conductor with linear memory, which occupies a fixed domain Q c R3.
Indeed, let ¥ : @ x RT — R be the absolute temperature of the conductor, 9y € R
the uniform equilibrium temperature and

ﬁ(m,t) — 190
Jo

the temperature variation field relative to the equilibrium reference value. Accor-
ding to the well-established theory due to Gurtin and Pipkin [9], we consider only
small variations of the absolute temperature and the temperature gradient from
equilibrium, namely,

u(x,t) =

1
lul < 1 and 19—|V19| =|Vul <« 1
0

and we suppose that the internal energy e : 2 x R — R and the heat flux vector
q: QxR — R? are described by the following linear constitutive equations:

(JL‘ t) = eo—|—coux t)

/ k(t — s)Vu(z,s)ds

where the heat fluz memory kernel k : RT — R is a sufficiently smooth, positive,
summable function decreasing to zero at infinity. The positive constants ey and
co denote the internal energy at equilibrium and the specific heat, respectively. As
usual, temperature evolution in a rigid heat conductor is governed by the energy
balance equation. Here, assuming that the heat supply consists of a nonlinear
temperature-dependent term, —g(u) (accounting for certain types of laser induced
radiative phenomena [10]), and a time-varying source f, the energy equation takes
the form
ez, t) + V- q(z,t) = f(z,t) — g(u(z,1)).

Taking cp = 1 and assuming the isothermal condition ¢ = ¥y at the boundary
0%, we obtain (1.1), where ug represents the prescribed initial past history of w,
which is assumed to vanish on 012, as well as .

Finally, we mention that (1.1) is suitable to describe other physical pheno-
mena: for instance, the motion of a viscoelastic fluid in a tube, and the Olmstead
model for reaction-diffusion processes in media with memory (see [13]).

At first glance, the hyperbolic nature of problem (1.1) in not apparent.

Indeed, calling
8= / o)do >0

we may rewrite our equation as

ug — BAuU + /000 k(o) Alu(t) — u(t — o)} do + g(u) = f. (1.2)
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So, if we neglect the hereditary term, we obtain a semilinear parabolic equation
whose longtime behavior has been studied by many authors (see, for instance,
[1, 16]).

On the other hand, by differentiation with respect to time, equation (1.1)
can be transformed into the second order integro-differential equation

u — k(0) Au — /000 K (o)Au(t — o) do + ¢’ (u)us = f; (1.3)

which reduces to a hyperbolic equation with nonlinear damping when the memory
term is neglected and k(0) is assumed to be positive. As a particular case, when
the heat flux memory kernel takes the form

k(s) = ko exp {—Us]

0

(1.3) yields the following (hyperbolic) differential equation
oous + [1+ 0o g'(w)] ur — ookoAu + g(u) = f + oo fi. (1.4)

The hyperbolicity of (1.1) when k(0) > 0 is properly expressed by the fact
that the energy of a perturbation, initially given in a compact subset of €2, pro-
pagates with a finite speed ¢ > 1/k(0) (cf. [3]).

In the sequel we shall require the nonlinear term g in (1.1) to comply some
dissipativeness condition. Nevertheless an antidissipative behavior for small values
of its argument will be allowed. For instance, if g is a cubic-like function of the
form g(u) = u3 — yu and the product yoy is large enough, then the coefficient of
ug in (1.4) is negative for |u| small. When this is the case, it is not necessarily
true that bounded solutions converge to equilibria, and the dynamical behavior
of the system is expected to be more complicated.

Concerning the heat flux memory kernel, we assume that there exists o > 0
such that, defining the kernel

p(s) = —k'(s) — ak(s)

the following hold:

(h1) p € CHRT)N LY RT)

(h2) w(s) >0 VseRt

(h3) W(s) <0 VseRT

(h4) w(s)+du(s) <0 VseR" andsome §>0
(hb) k(s) < Mu(s) Vse€RT andsome M > 0.

It is readily seen that a kernel of the form k(s) = ko exp[—aps] fulfills (h1)—(h5),
for every a < «ap. In this case M = 1/(ap — ) and § = .
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We remark that condition (h4), which is not actually needed in the
existence and uniqueness results that follow, implies the exponential decay of
w(s). Nonetheless, it allows p(s) to have a singularity at s = 0, whose order is
less than 1.

The aim of this paper is the analysis of the asymptotic behavior of the
solution of (1.1) together with its past history. For this reason, along the line of
[2], we introduce a new variable which embodies the past history of the equation,

namely
n'(z,8) = u(w,t) — u(z,t —s), seRt. (1.5)

As a consequence, (1.2) reads

uy — BAu + -/000 k(o)An(o)do + g(u) = f (1.6)

In order to focus on the dissipative and antidissipative terms of the problem, we
need to handle a second order version of (1.6). This is achieved by substituting
(1.5) into (1.3). Indeed, recalling that k(0) = — [;° k/(c) do, we have

(o)

o —l—/ K'(o)An(o)do + ¢ (u)us = f;. (1.7)
0
Then, addition of (1.7) and a-times (1.6) leads to the system

Uy = QAU — auy

+/ wu(o)An(o)do — ag(u) — g’ (u)u; + of + fi (1.8)
0
N = —Ns + Ut

The second equation, needed to close the above system, is obtained differen-
tiating (1.5).
Boundary and initial conditions are then translated into

{u(:c,t)zo z€, t>0
U]

tH(x,5) =0 (x,5) €A x R, >0 (1.9)

and

where we set
uo(x) = ug(x,0)
vo(w) = Opuo(z,t)1—0
no(x, 8) = ug(x,0) — up(x, —s).
Existence, uniqueness and asymptotic behavior for the linear problem
associated to (1.1), subject to initial-boundary conditions, have been investi-
gated by several authors (e.g., [7, 8, 11, 12]). In particular, in [7], we proved the
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exponential stability of the system along with the past summed history via semi-
group techniques. The parabolic analogue to (1.1), obtained when k has a Dirac
delta distribution at the origin, has been considered in [5, 6], where we proved
also the existence of a uniform attractor for the solutions.

The plan of the paper is as follows. In Section 2 we describe the func-
tional setting. Section 3 is devoted to existence and uniqueness results. Finally,
in Section 4, we prove the existence of a uniform absorbing set for the solutions.

2 The functional setting

Let © C R® be a bounded domain with smooth boundary. With usual notation,
we introduce the spaces LP, W*P H* = W*2 and H} acting on 2. Throughout
the paper, we denote by ¢ a generic positive constant (which may vary even in the
same line). Given a space X, we denote its norm by | - |, and its inner product
by (-,-)x (summation on the components is understood when we have vectorial
quantities). When X = L? we omit the subscript. The symbol (-,-) will be also
used to denote the duality map between H ' and H} or between LP and L?. We
will also consider spaces of X-valued functions defined on an (possibly infinite)
interval I such as C(I,X), LP(I,X) and W*P(I, X), with the usual norms. In
force of Poincaré inequality

Jul* < XolVul®  Vue H; (2.1)
(for some Ag > 0) the inner product in H} will be chosen to be
(s '>Hé =(V,, V).

In view of (h1)-(h2), let M = L2(R™, Hy) be the Hilbert space of Hg-valued
functions on R™, endowed with the inner product

(pthaa= [ o) (Vls). V(o) do,
Finally we introduce the Hilbert space
H = Hi x L? x M.
To describe the asymptotic behavior of the solutions of our system we need

also to introduce the Banach space 7 of I/Vli)cl -translation bounded L?-valued func-
tions on RT, namely

1,1 e
T- {f W RS L) s ISy =suwp [ 1@+ 17 W) dy < oo} .
£20J¢

We conclude the section with a slight generalization of Lemma A.3 in [14].
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Lemma 2.1 Let h € C(R) satisfy |h(u)| < c(1 + |ulP), for some ¢ > 0 and some
p >0, and let X be a bounded Lebesque measurable subset of R™. Then for every
q > max{1,2p}, and every r > 0 h is a continuous mapping from L1 2" (X) to
L7 (X).

3 Existence and uniqueness

We assume that the nonlinear term g is a continuously differentiable function on
R. Moreover, there exist ¢1, co2 > 0 and 0 < p < 2 such that

(g1) g (y) > —a
(82) 19" ()] < e2(1+ |ylP).

Remark 3.1 Let us rewrite the first equation in (1.8) as follows:

wi+ (0 g ()~ abdu= [ u(o)An(o)do — aglu) +af + f (31)

If the constant ¢; in (gl) satisfies
a <a (3.2)

then it is apparent that

. f /
;gR(a +4'(y) >0

and the damping term in the left-hand side of (3.1) furnishes a significant (and
non-degenerate) contribution to energy dissipation. Notice that condition (3.2) is
not used to prove existence and uniqueness results. Nevertheless, it plays a crucial
role in the proof of the existence of uniform absorbing sets.

Definition 3.2 Let (h1)-(h2) hold. Set I = [0,7], for T > 0, and let f €
WH1(1, L?). We say a function (u,us,n) € C(I,H) is a solution to problem (1.8)-
(1.9) in the time interval I, with initial data (ug,vo,n0) € H, provided

(ugg, wy = —af{(Vu, Vw) — alug, w) — /OOO w(o)(Vn(o), Vw) do
—a(g(u),w) — (¢ (w)ue, w) + alf, w) + (f¢, w)

(e + s, 0)n = {ue, Pl (3.2)

for allw € H}, ¢ € N, and a.e. t € I, where we set N = LZ(RJF,LQ). Here, —7; is
interpreted as the infinitesimal generator of the right-translation semigroup on M.

We now state and prove existence and uniqueness results.

Theorem 3.3 (Existence). Let (h1)-(h3) and (gl)—(g2) hold. Then, given any
T > 0, problem (1.8)—(1.9) has a solution (u,u;,n) in the time interval I = [0,T],
with initial data (ug, vo,No)-
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Proof. The theorem is proved re-casting exactly the Faedo-Galerkin scheme used
in [5]. Uniform estimates for the approximate solutions are obtained as in the
proof of the following Theorem 4.2. Actually the situation here is much simpler,
since the nonlinear terms are controlled observing that, for every u € H{} and
veL?,

(g (w)v,v) = —erfo]?

and

[{g(w), v)] < lg(@)llo] < e+ [Vul* + o)

in force of (gl)—(g2) and Young inequality. Thus, for a sequence of approximate
solutions (uy,7n,), one gets the uniform bound

Hun”L‘x(LH&)QWL‘X’(I,LQ) <ec.

Notice that, since f € Wh1(I, L?), a generalized Gronwall lemma in the dif-
ferential form is required (see, e.g., Lemma A.1 in [14]). Concerning passage to
limit, the only problem is the nonlinear term ag(u) — ¢’(u)u;. Exploiting classical
compact embeddings (recall that p < 2) we conclude that, up to a subsequence,

Up — U strongly in L2P+D (I x Q). (3.4)

Moreover,
Oy, — uy  weakly in L*(I x Q). (3.5)

Therefore, in virtue of (g2) and (3.4), applying Lemma 2.1 we get the convergences
g(un) — g(u) strongly in L*(I x Q) (3.6)

and
9 (un) — ¢'(u) strongly in L3(I x ). (3.7)

Let now w € H}. From (3.6) it is apparent that
(g(un), w) — (g(un), w).
Convergence (3.7) entails
g (up)w — ¢'(up)w  strongly in L*(I x Q)
which, together with (3.5), gives
(¢ (un)Opun, w) — (g’ (w)us, w).

Continuity in time of u and w, follows from usual arguments (cf. [4]). Continuity
of n follows consequently, as in the proof of Theorem 3.2 in [15]. O
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Theorem 3.4 (Uniqueness). Let (hl)-(h3) and (gl)—(g2) hold. Then, given
any T > 0, the solution (u,ut,n) to (1.8)—(1.9) in the time interval I = [0,T],
with initial data (ug,vo,No) s unique.

Proof. Fori=1,2,let z; = (u;, Opu;, m; ) be two solutions of (1.8)—(1.9) with initial

data zo = (uo,vo,70), and denote z = (u,us,n) = 21 — 22, with z(0) = (0,0,0).
Adding and subtracting in (1.8) we obtain

w = aBAu - aus + / " w(0)An(o) do — alg(ur) — gluz)]

—0lg(u1) — g(u2)] (3-8)
N = —Ns + U (3.9)

Fix then 7 € (0,7}, and define

Moreover, let
t t
a(t) :/ u(y) dy and it :/ nY dy.
0 0
Notice that, for every t € I, v(t) € H}, a(t) € HE, 7t € M, and v(7) = 4(0) =
7Y = 0. Finally, v, = —u, i; = u, and 7}, = 1. Take the duality product of (3.8)

with v(t), and integrate in time from 0 to 7. Thanks to the above conditions,
repeated integrations by parts lead to

31 +apITa) +a [ Juto) as

== [t u@hande = a [ lgtur(e) — glua(0).o(0) d
0 0

- [ (gt (®) - gua(),u(o) . (3.10)
0
In force of (g2), and the fact that u; € L>(I, Hy), we get

lg(ur) — g(ua)lpors < llea(l + |ua]” + Jua|P)| s ul < cful.

Also, observe that

/O IVo(t)|? dt = / [Va(r) — Va(t)|? dt

IN

27| Via(r)|? + 2/ Iva)|? dt.
0
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Therefore, the continuous embedding L%/° < H~! Hélder inequality, and Young
inequality, entail

~a [ ol (0) - lua(e), (o)
Sa/WﬂM@D-ﬂW@mmaﬁmﬁwﬁ
0
<e / [u(®) IV o(t)] dt
af,_ . 2 T2 T 2
S—ZWVuum +c£ WM@Wcﬁ+CA [u(t)|” dt. (3.11)
Concerning the last term of (3.10), condition (gl) yields

- [ o) - g uwy dr < e [ a3
0 0
We now integrate equality (3.9) from 0 to ¢, to get

n' + 7k = u(t).

Taking the inner product in M of the above equation and 7*, and integrating in
time from 0 to 7, we have

/ "t it ) dt = / " ut), 7 d. (3.13)
0 0

Exploiting (h3), integration by parts, and an approximation argument (cf. [5,15])
the integrand of the left-hand side of (3.13) is seen to satisfy

O+ A = G+ D 2 5
and (3.13) turns into
R O e (3.14)
Finally, addition of (3.10) and (3.14), with the aid of (3.11)—(3.13), entails

[u()2 + VA + 1715, < ¢ / Ju(t)|? dt + ¢ / Va2 dt

and Gronwall lemma in the integral form implies that u(7) = 7 = 0. Since 7 is
arbitrary, we conclude that (u(t),v(t),n*) = (0,0,0) for every t € I. O
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Remark 3.5 For the solution z = (u,u:,n) with initial data zy of (1.8)—(1.9)
define

U=(t) = ua(t) — But) + / ™ k(o)A (o) dor + g(au(t)) — £(0)

When (h5) holds too, by Lemma 2.1 we get the continuity Uz € C(I, H~!). In
particular, Uz(0) = Uzy. Since by definition

OUz+aldz=0

we conclude that
Uz(t) =Uzpe .

Thus z solves (1.6) provided that Uzy = 0. This condition is not really a constraint
on the initial data; indeed equation (1.6) is of the first order in time, and the
initial value of u; is automatically determined by the equation. Conversely, every
z € C(I,’H) which solves (1.6) is a solution of (1.8)—(1.9). Hence, given ug € H{
and 19 € M there is a unique solution z € C(I,H) of (1.6) if and only if the
vector vy determined by the equation U(ug, vo,no) = 0 belongs to L2

In the sequel, we agree to denote the solution z(t) of (1.8)—(1.9) with initial
data zp by S(t)zo. In force of the existence and continuous dependence results,
the one-parameter family of operators S(t) enjoys the following properties:

(i) S(0) is the identity map on H
(i) S(t)z € C([0,00), H) for any z € H.
When the system is autonomous (f independent of time) S(¢) fulfills also
(i) S(t)S(r) = S(t+ 7) for any ¢, 7 > 0.

We remark that S(¢) might not be a Cp-semigroup of continuous (nonlinear)
operators on H, since the continuity S(t) € C(H,H) for any ¢ > 0, in general,
does not hold, unless we are in the simpler situation when ¢ is Lipschitz.

Theorem 3.6 Let (h1)—(h3) and (g1)—(g2) with p = 0 hold (that is, g is Lipschitz).
Then S(t) € C(H,H) for any t > 0. In particular, if f is independent of time,
S(t) is a Co-semigroup.

Proof. Let zy, € H be a sequence converging in H to zgso € H. Denote by
Zn = (Un, Optin,Mn) and zeo = (Ueo, Oplioo, Noo) the corresponding solutions to
(1.8)—(1.9). Finally, let Zo,, = 20n — 2000 a0d Zp, = 25, — 2o = (Un, O¢lin, Tn). Again,
we add and subtract in (1.8), and we multiply the two resulting equation by 0;ay,
in L?, and by %,, in M, respectively. Clearly, the multiplications make sense for
Faedo-Galerkin approximants. However, due to the uniqueness result, the final
estimates hold to the limit. Adding the results, and exploiting the inequality

<g/(un)at“n - QI(UOO)atuom Optip) < C”atun”2 + ¢ (gl(un) - QI(UOO))atUOOHQ
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we easily obtain

d, _ o 2 2
%”ZHHH < C”ZnHH + c||(g/(un) - QI(UOO))atUOOH .

An immediate generalization of Theorem 3.4 (i.e., taking different initial data)
shows that, as zp, — 2000 in M, the convergence u, — s holds in L2(I x ).
Hence, there exists a subsequence u,, — ts a.e. in I xQ. Setting ¥ = (¢'(un, ) —
9 (Ueo))Ottieo, We have that

T
€k:/ /|wk|2dxdt—>0 (k — 00)
0 Q

by virtue of the Lebesgue dominated convergence theorem. Thus Gronwall lemma
applied to the subsequence Zz,, yields

120 (D12, < €T\ Zon, |2, + ceTen
H H

for any t € I. We conclude that, whenever zp, — 29 in H, there exists a
subsequence zgp,, such that S(t)zon, — S(t)z00o for all t € I. Using an immediate
contradiction argument, this implies that S(t)zo, — S(t)20c0 for any ¢ € I. Being
T arbitrary, we proved that S(t) € C(H,H) for any ¢ > 0. O

4 Existence of uniform absorbing sets

An absorbing set for S(t) is a bounded set By C H such that for any bounded set
B C 'H there exists a time t* = t*(B) such that

SHBCBy Vit

To stress the dependence of S(t) on the given external term f, we shall write
S¢(t). The aim of this section is to prove the existence of an absorbing set for
S¢(t), which is uniform as f is allowed to run in a certain functional set. In order to
accomplish that, we are required to ask stronger conditions both on the nonlinear
term and on the memory kernel.

Concerning the nonlinear term, setting

we assume that the following hold (cf. [4]):

.. Gy)
3 lim inf >0
(g3) iminf =2 >
Y9 *263G(y) >0

4 lim in
(84) ly]—o0 Y
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for some c3 > 0. There is no loss of generality if we assume c¢3 < «/3/2. These
conditions are fulfilled by many classical examples, such as g(u) = |u|?u — yu or
g(u) = sinu (see [16]). For u € H}, denote

G(u) = / Gu(x)) da.
Q
The easy proof of next lemma is left to the reader.

Lemma 4.1 Assume (g3)—(g4). Then for every v > 0 there exist c¢(v) > 0 such
that

G(u) = —v|Vul* = c(v) (4.1)
{g(w)u) = —v|Vul* - c(v)
(9(u),u) = 3G (u) = —v|Vul* - c(v)

for allu € H}.

Theorem 4.2 Assume (hl)-(h4), (gl)—(g4), and (3.2) (¢f. Remark 3.1). Let
F C T be a bounded set. Then there exists an absorbing set for Sy(t) which is
uniform as f € F.

Proof. For every r > 0, let B(r) be the ball of H of radius r centered in the origin.
Moreover, denote
My = sup |h].
heF

Fix then R > 0, and let f € F and zy € B(R). For any 0 < ¢ < a/2, introduce
the new variable w = u; + eu; then multiply the first equation of (1.8) by w in
H, and the second one by n in M, where (u(t),u:(t),n') = Sf(t)zo. Clearly, the

multiplication makes sense in a Faedo-Galerkin scheme. So we get
1d
2 dt
+eaf|Vul® + (a — &) |uw]” = —/ (o) (Vn(o), Vuy) do — &

0

(@Bl Vul® + [w]* +2(a — £)G(u) +2¢(g(u), u)

/0 " o) (Vi(0), V) do — a{g(u), u)

g/ ), ) + (o — <) o) -l ) + (o) (1.4
and
gl + 3l < [ w(o) (o). V) do (45

The above inequality (4.5) is obtained integrating by parts the term

| no o) e do =5 [ uio) L1vato) do
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and using (h4) (see [5] for more details). Setting c4 = |u] ;1 (g+)/d, Young inequality
entails

— [ o) V(o). V) do < Pl Vul’ + 5 Il (4:6)
0
Denote o
T=7(e) = —.
a—¢e+ecy

Notice that 0 < 7 < 2. In particular we see that a8 > Tc3. Making use of (4.3),
with v = 3/4,

—calg(u)u) = —er(a— £){g(u),u) — c>res(g(u), )
—eres(o—2)G(u) — reslg(u)v) + 0| VulP 45 (4.7

IN

with ¢5 = a?¢(3/4). Condition (gl), (2.1), and Young inequality, entail

—(g' (w)ug, ue) + e(a — &) (u, w)
2
< cpfue]” + eaful |w]
< crfw]? + e ful® + e(2e1 + a)ul|w]
2c1 + o 2c1 + o+ a2«
< ( . ”)) Juwl? + E\f)\()(le) IVul®.  (48)

Finally,
alf,w) + (fr,w) < (e + D(F]+ [ feD]w]. (4.9)
Due to (4.1)—(4.2) it is apparent that there exist ¢g > 0 such that, defining

0% = af|Vu|? + |wl® + |13, + 2(a — )G (u) + 2¢(g(u), u) + co
the relation
2 > 7| S5 ()20 (4.10)

holds for some ¢; > 0 and every e small enough. Moreover, from (g2), there exists
A(r) > 0 such that

®2(0) < A(r) whenever Hz0||§{ <r. (4.11)

Choose now ¢ < a/2 small enough such that (4.10) and the following inequalities
hold:

> eTcs (4.12)

6
2=
3a3 VY (201 —|—a—|—o¢xﬁ>

A > (4.13)

)
4 2
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and
2
a—e e YECatQ)  eres (4.14)
2 2
Hence, setting
€0 = €TC3 and cg = 2¢5 + €0Cp

adding (4.4)—(4.5), and collecting (4.6)—(4.9) and (4.12)—(4.14), we are led to

d

& T2 <cs + (a+ D(If] + [ fil)2. (4.15)

Applying a generalization of Gronwall lemma to (4.15) (see, for instance, [14, 15]),
we get the inequality

P2(t) < 20%(0)e f + C(My) VteRT (4.16)
where ) o 02 2
_2cg | e My(a+1
C(My) = - + = ey
Therefore from (4.10)—(4.11) and (4.16),
2A(R? C (M,
15020l < 2D g, CUB) gy ¢ e

7 7

and this relation holds for every zp € B(R) and f € F. Setting

B() = B(\/ 2C(M())/C7)

and

1 C(Mo)
* = = —1
t* =t*(R) max{go Og[2A(R2)]’O}
we conclude that
U Sr®BR)cBy Vit
fer
as desired. O
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