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Università di Brescia, I-25133 Brescia, Italy

Alfredo Marzocchi
Dipartimento di Matematica, Università Cattolica
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Abstract. In this paper we investigate the asymptotic behavior,
as time tends to infinity, of the solutions of an non-autonomous
integro-partial differential equation describing the heat flow in a
rigid heat conductor with memory. Existence and uniqueness of
solutions is provided. Moreover, under proper assumptions on
the heat flux memory kernel and on the magnitude of nonlin-
earity, the existence of uniform absorbing sets and of a global
uniform attractor is achieved. In case of quasiperiodic depen-
dence of time of the external heat supply, the above attractor is
shown to have finite Hausdorff dimension.

0. Introduction

Let Ω ⊂ IR3 be a fixed bounded domain occupied by a rigid, isotropic, homogeneous
heat conductor with linear memory. We consider the following integro-partial differential
equation, which is derived in the framework of the well-established theory of heat flow
with memory due to Coleman & Gurtin [8]:

c0
∂

∂t
θ − k0∆θ −

∫ t

−∞
k(t− s)∆θ(s) ds+ g(θ) = h on Ω× (τ,+∞)

θ(x, t) = 0 x ∈ ∂Ω t > τ

θ(x, τ) = θ0(x) x ∈ Ω

(0.1)
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where θ : Ω × IR → IR is the temperature variation field relative to the equilibrium
reference value, k : IR+ → IR is the heat flux memory kernel, and the constants c0 and
k0 denote the specific heat and the instantaneous conductivity, respectively. The function
h : Ω × [τ,+∞) → IR is a time-dependent external heat source, whereas g : IR → IR is
a nonlinear heat supply.

System (0.1) was studied in [14], assuming a time-independent external heat source h
and a polynomial nonlinearity g. Along the line of the procedure suggested by Dafermos
in his pioneer work [11], we introduce the new variables

θt(x, s) = θ(x, t− s) s ≥ 0

and

ηt(x, s) =
∫ s

0

θt(x, y) dy =
∫ t

t−s

θ(x, y) dy s ≥ 0.

Assuming k(∞) = 0, performing a change of variable, and setting

µ(s) = −k′(s)

formal integration by parts transforms the above system (0.1) into

c0
∂

∂t
θ − k0∆θ −

∫ ∞

0

µ(s)∆ηt(s) ds+ g(θ) = h on Ω× (τ,+∞)

∂

∂t
ηt(x, s) = θ(x, t)− ∂

∂s
ηt(x, s) x ∈ Ω t > τ s > 0

θ(x, t) = 0 x ∈ ∂Ω t > τ

θ(x, τ) = θ0(x) x ∈ Ω
ητ (x, s) = η0(x, s) x ∈ Ω s > 0

(0.2)

where the term

ητ (x, s) =
∫ s

0

θτ (x, y) dy =
∫ τ

τ−s

θ(x, y) dy s ≥ 0

is the prescribed initial integrated past history of θ(x, t), which does not depend on
θ0(x), and is assumed to vanish on ∂Ω, as well as θ(x, t). As a consequence it follows
that

ηt(x, s) = 0 x ∈ ∂Ω t > τ s > 0.

Indeed, the above assertion is obvious if τ ≤ t− s, and if τ > t− s we can write

ηt(x, s) = η0(x, τ + s− t) +
∫ t

τ

θ(x, y) dy.

In the sequel we agree to denote by ∂t or more simply by t derivation with respect to t,
and by the prime derivation with respect to s.
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The constitutive quantities c0, k0 and µ are required to verify the following set of
hypotheses:

(h1) c0 > 0 k0 > 0

(h2) µ ∈ C1(IR+) ∩ L1(IR+) µ(s) ≥ 0 µ′(s) ≤ 0 ∀ s ∈ IR+

(h3) µ′(s) + δµ(s) ≤ 0 ∀ s ∈ IR+ and some δ > 0.

Notice that (h3) implies the exponential decay of µ(s). Nevertheless, it allows µ(s) to
have a singularity at s = 0, whose order is less than 1, since µ(s) is a non-negative
L1-function.

Now, taking for simplicity c0 = 1, and denoting z(t) = (θ(t), ηt), z0 = (θ0, η0), and
setting

Lz = (k0∆θ +
∫ ∞

0

µ(s)∆η(s) ds, θ − η′)

and
G(z) = (h− g(θ), 0)

problem (0.2) assumes the compact form

zt = Lz +G(z)
z(x, t) = 0 x ∈ ∂Ω t > τ

z(x, τ) = z0.

(0.3)

We recall that existence, uniqueness and stability of the linear problem correspond-
ing to (0.1) (i.e., with g ≡ 0) have been investigated by several authors (see, e.g.,
[13,15,18,19]). Related results which include phase transition phenomena are in [3,9].
On the other hand, when no memory effect occur, long-time behavior of semilinear
parabolic problems like (0.1) with k ≡ 0 have been widely studied, both for autonomous
and non-autonomous equations (see, e.g., [5,6,7,22]). However, the main aim of this pa-
per is to study the role played by the memory term as time tends to infinity. Results
concerning asymptotic behavior of solutions for semilinear problems in presence of non-
trivial terms of convolution type, involving the principal part of the differential operator,
can be found in [1,12,14,16].

In this paper, due to the time-dependence of h, the evolutive system (0.3) of differen-
tial equations is non-autonomous. Therefore, in order to study its asymptotic behavior,
we have to introduce the notion of process, which is a generalization of the semigroup
of operators on a Hilbert space.

Definition 0.1. A two-parameter family {U(t, τ)}t≥τ, τ∈IR of operators on a Hilbert
space H is said to be a process if the following hold:

(i) U(τ, τ) is the identity map on H for any τ ∈ IR;
(ii) U(t, s)U(s, τ) = U(t, τ) for any t ≥ s ≥ τ ;
(iii) U(t, τ)x→ x as t ↓ τ for any x ∈ H and any τ ∈ IR.

In Theorem 2.1 and Theorem 2.2 below we show that, given z0 in a suitable Hilbert
space H, under proper conditions on g and h, there exists a unique solution z(t) in H
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to problem (0.3), which continuously depends on z0. Thus we can define the family of
processes Uh(t, τ), depending on the functional parameter h, and acting on H, as

Uh(t, τ)z0 = z(t) (0.4)

where z(t) is the solution at time t of (0.3) with initial data z0 given at time τ . The
parameter h is usually called the symbol of the process. Notice that if h is time-
independent, the process Uh(t, τ) reduces to a semigroup by setting

Sh(t) = Uh(t, 0).

The study of the long-time behavior of the family of processes Uh(t, τ) will be
carried out in Section 3 and Section 4, where, using the techniques of [5,6], we prove the
existence of absorbing sets in H and in a smaller space V, and of a global attractor. In
all cases the objects are uniform as h is allowed to move in a suitable functional space.
Finally, in Section 5 we show that for a particular choice of the symbol space (namely
for an external heat supply with a quasiperiodic dependence on time) the Hausdorff
dimension of the uniform attractor is finite.

1. Functional Setting and Notation

Let Ω ⊂ IR3 be a bounded domain with Lipschitz boundary. With usual notation,
we introduce the spaces Lp, Hk and Hk

0 acting on Ω. Let 〈·, ·〉 and || · || denote the
L2-inner product and L2-norm, respectively, and let || · ||p denote the Lp-norm. With
abuse of notation, we use 〈·, ·〉 to denote also the duality between Lp and its dual space
Lq. We recall Poincaré inequality

λ0||v||2 ≤ ||∇v||2 ∀ v ∈ H1
0 (1.1)

and
γ0||∇v||2 ≤ ||∆v||2 ∀ v ∈ H2 ∩H1

0 (1.2)

for some λ0, γ0 > 0, where (1.2) is obtained from (1.1) and Young inequality (see
Lemma 1.2 below). In force of (1.1)-(1.2), the inner products on H1

0 and H2 ∩H1
0 can

be defined in the following manner:

〈u, v〉H1
0

= 〈∇u,∇v〉

and
〈u, v〉H2∩H1

0
= 〈∆u,∆v〉

In view of (h2), let L2
µ(IR+, L2) be the Hilbert space of L2-valued functions on IR+,

endowed with the inner product

〈ϕ,ψ〉µ =
∫ ∞

0

µ(s)〈ϕ(s), ψ(s)〉 ds
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Similarly on L2
µ(IR+,H1

0 ) and L2
µ(IR+,H2∩H1

0 ), respectively, we have the inner products

〈ϕ,ψ〉L2
µ(IR+,H1

0 ) = 〈∇ϕ,∇ψ〉µ

and
〈ϕ,ψ〉L2

µ(IR+,H2∩H1
0 ) = 〈∆ϕ,∆ψ〉µ.

Finally we introduce the Hilbert spaces

H = L2 × L2
µ(IR+,H1

0 )

and
V = H1

0 × L2
µ(IR+,H2 ∩H1

0 )

which are respectively endowed with the inner products

〈w1, w2〉H = 〈ψ1, ψ2〉+ 〈∇ϕ1,∇ϕ2〉µ

and
〈w1, w2〉V = 〈∇ψ1,∇ψ2〉+ 〈∆ϕ1,∆ϕ2〉µ

where wi = (ψi, ϕi) ∈ H or V for i = 1, 2.
We will also consider spaces of functions defined on an (possibly infinite) interval

I with values in a Banach space X such as C(I,X), Lp(I,X) and Hk(I,X), with the
usual norms.

To describe the asymptotic behavior of the solutions of our system we need to
introduce the space T p

b (IR, X) of Lp
loc-translation bounded functions with values in a

Banach space X, namely

T p
b (IR, X) =

f ∈ Lp
loc(IR, X) : ||f ||T p

b
(IR,X) = sup

ξ∈IR

(∫ ξ+1

ξ

||f(y)||pX dy

) 1
p

<∞

 .

In an analogous manner, given τ ∈ IR, we define the space T p
b ([τ,+∞), X).

Definition 1.1. A function f ∈ Lp
loc(IR, X) is said to be translation compact in

Lp
loc(IR, X), and we write f ∈ T p

c (IR, X), if the hull of f , defined as

H(f) = {f(·+ r)}r∈IR
Lp

loc(IR,X)

is compact in Lp
loc(IR, X).

The reader is referred to [7] for a more detailed presentation of the subject. Here we
just highlight that T p

c (IR, X) ⊂ T p
b (IR, X). Moreover

||ϕ||T p
b

(IR,X) ≤ ||f ||T p
b

(IR,X) ∀ ϕ ∈ H(f).

We also remark that the class T p
c (IR, X) is quite general. For example, it contains

Lq(IR, X) for all q ≥ p, the constant X-valued functions, and the class of almost periodic
functions (see [2]).
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We now recall some technical results which will be needed in the course of the
investigation.

Lemma 1.2. (Young inequality). Let a, b ≥ 0 be given. Then for every ε > 0, and for
every 1 < p, q <∞ such that 1

p + 1
q = 1, the inequality

ab ≤ εap +K(ε, p, q)bq

holds with
K(ε, p, q) =

1
q
(εp)−

q
p . (1.3)

Lemma 1.3. (Gagliardo-Nirenberg). Let 2 < p ≤ 6. Then there exists c > 0 such that
the inequality

||u||p ≤ c||∇u||ν ||u||1−ν

holds for all u ∈ H1
0 , with

ν =
3
2

[
p− 2
p

]
.

Here and in the sequel, for τ ∈ IR, we denote IRτ = [τ,+∞). The following Gronwall-
type lemma is a modification of Lemme A.5 in [4] (see [20] for a detailed proof).

Lemma 1.4. Let φ be a non-negative, absolutely continuous function on IRτ , τ ∈ IR,
which satisfies for some ε > 0 and 0 ≤ σ < 1 the differential inequality

d

dt
φ(t) + εφ(t) ≤ Λ +m1(t)φ(t)σ +m2(t) a.e. t ∈ IRτ

where Λ ≥ 0, and m1 and m2 are non-negative locally summable functions on IRτ . Then

φ(t) ≤ 1
1− σ

[
φ(τ) e−ε(t−τ) +

Λ
ε

]
+
[∫ t

τ

m1(y) e−ε(1−σ)(t−y)dy

] 1
1−σ

+
1

1− σ

∫ t

τ

m2(y) e−ε(t−y)dy

for any t ∈ IRτ .
The easy proof of the next result is left to the reader.

Lemma 1.5. Let m ∈ T 1
b (IRτ , IR+) for some τ ∈ IR. Then, for every ε > 0,∫ t

τ

m(y) e−ε(t−y)dy ≤ C(ε)||m||T 1
b

(IRτ ,IR+)

where
C(ε) =

eε

1− e−ε
. (1.4)
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We conclude the section with a lemma which will be needed in the last part of the
paper (for the proof see [22], p. 300–303).

Lemma 1.6. There exists a positive constant κ such that, for any given m vectors
{ϕ1, . . . , ϕm} in H1

0 which are orthonormal in L2, it follows that

m∑
j=1

||∇ϕj ||2 ≥ κm
5
3 .

2. Existence and Uniqueness

In this section we establish existence and uniqueness results for problem (0.3). Unlike
in [14], where the nonlinearity is assumed to be an odd degree polynomial on any order,
here we are interested in considering more general nonlinear terms. Of course we have
to pay the price of requiring additional properties. Here below is a list of conditions on
g which will be used throughout the paper.

Conditions on the nonlinear term g. Let g ∈ C(IR), and assume that there exist
non-negative constants cj , j = 1, 2, 3, 4, 5, and β > 0 such that

(g1) |g(u)| ≤ c1(1 + |u|β)

(g2) u · g(u) ≥ −c2 + c3|u|β+1

(g3) |g(u)− g(v)| ≤ c4|u− v|(1 + |u|γ + |v|γ) with γ = max{β − 1, 0}
(g4) g ∈ C1(IR) and g′(u) ≥ −c5.

Clearly, if the nonlinearity is weak, the above conditions can be relaxed. For instance,
if β ≤ 1 then c3 = 0, if β < 1 then (g2) is not needed at all.

Theorem 2.1. Assume (h1)-(h2), and let (g1)-(g2) hold for some β > 0. For any
initial time τ ∈ IR, given

h ∈ L1
loc(IRτ , L

2) + L2
loc(IRτ ,H

−1) and z0 = (θ0, η0) ∈ H

there exists a function z = (θ, η), with

θ ∈ L∞([τ, T ], L2) ∩ L2([τ, T ],H1
0 ) ∩ Lβ+1([τ, T ], Lβ+1) ∀ T > τ

η ∈ L∞([τ, T ], L2
µ(IR+,H1

0 )) ∀ T > τ

such that
zt = Lz +G(z)

in the weak sense, and
z|t=τ = z0.
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Furthermore
z ∈ C([0, T ],H) ∀ T > τ.

Proof of the above result re-casts exactly the Faedo-Galerkin scheme used in [14].
The only difference here depends on the presence of a time dependent heat supply
h ∈ L1

loc(IRτ , L
2) + L2

loc(IRτ ,H
−1), which can be easily handled making use of the

Gronwall lemma.
We just recall two relations from [14] which will be needed later. The first is obtained

taking the inner product in H of (0.3)1 and z = (θ, η), applying the divergence theorem,
performing an integration by parts, and using (h2), whereas the second one is obtained
integrating the first one from τ to T , along with proper estimates.

d

dt
||z||2H + 2k0||∇θ||2 −

∫ ∞

0

µ′(s)||∇η(s)||2 ds = −2〈g(θ), θ〉+ 2〈h, θ〉 (2.1)

∫ T

τ

||θ(y)||β+1
β+1 dy ≤ C

(
||θ0||2 + T

)
(2.2)

for some C > 0 independent of T .
In order to obtain uniqueness results for (0.3), further restrictions on g are needed.

We shall provide two uniqueness results under different hypotheses.

Theorem 2.2. In the hypotheses of Theorem 2.1, assume that either (g3) with β ≤ 7
3

or (g4) hold. Then the solution z(t) to (0.3) is unique, and the mapping

z0 7→ z(t) ∈ C(H,H) ∀ t ∈ [τ, T ].

Proof. Suppose that z1 = (θ1, η1) and z2 = (θ2, η2) are two solutions of (0.3) with initial
data z10 and z20, respectively, and set z̃ = (θ̃, η̃) = z1 − z2 and z̃0 = z10 − z20. Taking
the difference of (0.3)1 with z1 and z2 in place of z, and taking the product by z̃ in H,
we get (repeating the argument leading to (2.1))

d

dt
||z̃||2H + 2k0||∇θ̃||2 ≤ −2〈g(θ1)− g(θ2), θ̃〉 (2.3)

where we used (h2) to delete the integral term.
Suppose first that (g3) holds with β ≤ 7

3 . Since

2|〈g(θ1)− g(θ2), θ̃〉| ≤ 2c4
∫

Ω

|θ̃|2 [1 + |θ1|γ + |θ2|γ ] dx

applying the generalized Hölder inequality with p, q ≥ 1 such that

1
6

+
1
p

+
1
q

= 1
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and in virtue of the continuity of the embedding H1
0 ↪→ L6,

2|〈g(θ1)− g(θ2), θ̃〉| ≤ 2c4 ||θ̃||6 ||θ̃||p ||1 + |θ1|γ + |θ2|γ ||q
≤ c6 ||∇θ̃|| ||θ̃||p ||1 + |θ1|γ + |θ2|γ ||q

(2.4)

for some c6 > 0. We now consider two cases. If γ ≤ 1, then choose p = 2 and q = 3 in
(2.4), and define

mγ(t) =
c26
8k0

||1 + |θ1(t)|γ + |θ2(t)|γ ||23. (2.5)

Since 3γ ≤ γ + 2, and θ1, θ2 ∈ Lβ+1([τ, T ], Lβ+1), it is clear that mγ ∈ L1([τ, T ]), and
in force of (2.2), ||mγ ||L1([τ,T ]) remains bounded as z10 and z20 run in a bounded set. By
Young inequality,

2|〈g(θ1)− g(θ2), θ̃〉| ≤ 2k0||∇θ̃||2 +mγ ||θ̃||2. (2.6)

If 1 < γ ≤ 4
3 , let

p =
6γ + 12
10− γ

and q =
γ + 2
γ

in (2.4). From Lemma 1.3,
||θ̃||p ≤ c||∇θ̃||ν ||θ̃||1−ν

with

ν = 2
[
γ − 1
γ + 2

]
.

Therefore (2.4) enhances to

2|〈g(θ1)− g(θ2), θ̃〉| ≤ cc6 ||∇θ̃||1+ν ||θ̃||1−ν ||1 + |θ1|γ + |θ2|γ ||q (2.7)

Define
mγ(t) = (cc6)

2
1−ν K

(
2k0,

2
1+ν ,

2
1−ν

)
||1 + |θ1|γ + |θ2|γ ||

2
1−ν
q (2.8)

with K as in (1.3). Notice that γq = γ + 2, and 2γ
1−ν ≤ γ + 2 for γ ≤ 4

3 . Being
θ1, θ2 ∈ Lγ+2([τ, T ], Lγ+2), we conclude that mγ ∈ L1([τ, T ]), and again from (2.2),
||mγ ||L1([τ,T ]) remains bounded as z10 and z20 run in a bounded set. Applying Lemma 1.2
to (2.7) we get that inequality (2.6) holds also in this case. Thus (2.3) turns into

d

dt
||z̃||2H ≤ mγ ||θ̃||2 ≤ mγ ||z̃||2H

and Gronwall lemma then yields

||z̃(t)||2H ≤ ||z̃0||2H exp
[∫ t

τ

mγ(y) dy
]

which implies the result.
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Assume then (g4), and notice that

g(θ1)− g(θ2) = θ̃

∫ 1

0

g′(λθ1 + (1− λ)θ2) dλ.

Therefore

−2〈g(θ1)− g(θ2), θ̃〉 = −2
∫

Ω

|θ̃|2
[∫ 1

0

g′(λθ1 + (1− λ)θ2) dλ
]
dx ≤ 2c5||θ̃||2

and (2.3) becomes
d

dt
||z̃||2H ≤ 2c5||θ̃||2 ≤ 2c5||z̃||2H.

Using again Gronwall lemma we obtain

||z̃(t)||2H ≤ ||z̃0||2H e
2c5(t−τ)

which concludes the proof.

3. Existence of Uniform Absorbing Sets in H and in V

Let E be the Hilbert space into which move all orbits of problem (0.3), namely

Uh(t, τ) : E → E E = H or E = V

with Uh(t, τ) given by (0.4). The aim of this section is to prove in either case the
existence of a bounded absorbing set, which is uniform as h runs into a given functional
set, typically a complete metric space. Such a set is sometimes called the symbol space.

In the sequel F will always denote a symbol space. We also agree to call BE(0, R)
the open ball in E with center 0 and radius R > 0.

Definition 3.1. A set B0 ⊂ E is said to be uniformly absorbing (with respect to h ∈ F )
for the family {Uh(t, τ), h ∈ F} if for any bounded set B ⊂ E there exists t∗ = t∗(B)
such that ⋃

h∈F

Uh(t, τ)B ⊂ B0 ∀ t ≥ τ + t∗ ∀ τ ∈ IR.

Theorem 3.2. Assume (h1)-(h3), and let (g1)-(g2), and either (g3) with β ≤ 7
3 , or

(g4) hold. Let
F ⊂ T 1

b (IR, L2) + T 2
b (IR,H−1)

be a bounded set. Then there exists a bounded, uniformly absorbing set in H for the
family {Uh(τ, t), h ∈ F}.
Proof. Let

Φ = sup
h∈F

||h||T 1
b

(IR,L2)+T 2
b

(IR,H−1) = sup
h∈F

[
inf

h=h1+h2

{
||h1||T 1

b
(IR,L2) + ||h2||T 2

b
(IR,H−1)

}]
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and let h = h1 + h2 be a decomposition of h. In force of (g2) and Young inequality we
get

−2〈g(θ), θ〉+ 2〈h, θ〉 ≤ 2c2|Ω| − 2c3||θ||β+1
β+1 + 2||h1||||θ||+

k0

2
||∇θ||2 +

2
k0
||h2||2H−1 .

Thus, using (h3) and (1.1), and denoting

ε0 = min
{
λ0k0, δ

}
and Λ = 2max

{
c2|Ω|, 1,

1
k0

}
equation (2.1) turns into

d

dt
||z||2H + ε0||z||2H + k0||∇θ||2 + 2c3||θ||β+1

β+1 ≤ Λ
[
1 + ||h1||||z||H + ||h2||2H−1

]
. (3.1)

Therefore, setting

Ψ = Ψ(ε0,Λ,Φ) =
2Λ
ε0

+ Λ2Φ2C2
(

ε0
2

)
+ 2ΛΦ2C(ε0) (3.2)

with C as in (1.4), Lemma 1.4 with σ = 1
2 and Lemma 1.5 entail

||z(t)||2H ≤ 2||z(t0)||2He
−ε0(t−t0) + Ψ ∀ t ≥ t0 (3.3)

for any given t0 ≥ τ . In particular,

||z(t)||2H ≤ 2||z0||2He
−ε0(t−τ) + Ψ ∀ t ≥ τ (3.4)

from which it follows at once that every ballBH(0, ρ), with radius ρ >
√

Ψ, is a uniformly
absorbing set in H as h ∈ F .

Observe that, in the above proof, condition (g3) with β ≤ 7
3 or (g4) are used

only to formulate the result in term of process (and therefore uniqueness of solution
is required). If we relax (g3) and (g4), the very same uniform bound holds for a (not
necessarily unique) solution of (0.3).

In order to get an absorbing set in V we have to strengthen the hypothesis on the
symbol space.

Theorem 3.3. Assume (h1)-(h3), and let (g1)-(g2), and either (g3) with β < 7
3 , or

(g4) hold. Let
F ⊂ T 2

b (IR, L2)

be a bounded set. Then there exists a bounded, uniformly absorbing set in V for the
family {Uh(τ, t), h ∈ F}.
Proof. Let

Φ = sup
h∈F

||h||T 2
b

(IR,L2).
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Observe that (3.1)-(3.3) still hold (with h1 = h and h2 ≡ 0). Hence integration of (3.1)
on the interval [t, t+ 1], with t ≥ τ , and Young inequality lead to the estimate∫ t+1

t

[
k0||∇θ(y)||2 + 2c3||θ(y)||β+1

β+1

]
dy

≤ ||z(t)||2H + Λ +
∫ t+1

t

Λ ||h(y)|| ||z(y)||H dy

≤ (2 + Λ)||z(t0)||2H + Ψ + Λ +
1
2
ΛΦ2 +

1
2
ΛΨ ∀ t ≥ t0

(3.5)

for any given t0 ≥ τ . To achieve uniform estimates involving the existence of a bounded
uniformly absorbing set in V we multiply (0.2)1 by −∆θ with respect to the inner
product of L2, and the laplacian of (0.2)2 by ∆η with respect to the inner product of
L2

µ(IR+, L2). Adding the two terms, and performing an integration by parts, we obtain

d

dt
||z||2V + 2k0||∆θ||2 −

∫ ∞

0

µ′(s)||∆η(s)||2 ds = 2〈g(θ)− h,∆θ〉. (3.6)

Young inequality entails

2|〈h,∆θ〉| ≤ k0

2
||∆θ||2 +

2
k0
||h||2. (3.7)

Concerning the term 2〈g(θ),∆θ〉, assume first that (g3) holds with β < 7
3 . Young

inequality and (g1) then give

2〈g(θ),∆θ〉 ≤ k0

2
||∆θ||2 +

2c21
k0
||1 + |θ|β ||2

≤ k0

2
||∆θ||2 + c7 + c8||θ||2γ+2

2γ+2

for some c7, c8 > 0. From Lemma 1.3 (recall that γ = max{β − 1, 0}),

||θ||2γ+2
2γ+2 ≤ c||∇θ||3γ ||θ||2−γ

hence, introducing

σ =
1
2

max{3γ − 2, 0} < 1

we get

2〈g(θ),∆θ〉 ≤ k0

2
||∆θ||2 + c7 + cc8(1 + ||θ||2)(1 + ||∇θ||2)||∇θ||2σ

. (3.8)

Consider next the case when (g4) holds. Since θ|∂Ω = 0, the continuity of g and the
Green formula yield∫

∂Ω

g(θ)∇θ · n dσ =
∫

∂Ω

g(0)∇θ · n dσ =
∫

Ω

g(0)∆θ dx
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where n is the outward pointing normal vector. Thus, using again the Green formula,
in force of Young inequality and (g4),

2〈g(θ),∆θ〉 = 2
∫

Ω

g(0)∆θ dx− 2
∫

Ω

g′(θ)∇θ · ∇θ dx

≤ 2
k0
g2(0)|Ω|+ k0

2
||∆θ||2 + 2c5||∇θ||2.

(3.9)

Clearly the above computations are justified in a Faedo-Galerkin scheme. Therefore in
either case, setting

ϕ1 = cc8(1 + ||θ||2)(1 + ||∇θ||2)

and
ϕ2 =

2
k0
||h||2 + c7 +

2
k0
g2(0)|Ω|+ 2c5||∇θ||2

from (3.7)-(3.9) we conclude that

2〈g(θ)− h,∆θ〉 ≤ ϕ1 ||∇θ||2σ + ϕ2 + k0||∆θ||2.

Finally, in virtue of (h3) and (1.2), and denoting

ε1 = min {γ0k0, δ}

we obtain from (3.6) the inequality

d

dt
||z||2V + ε1||z||2V ≤ ϕ1 ||z||2σ

V + ϕ2.

From (3.3) and (3.5), there exist two positive constants K1 and K2 (depending on Φ)
such that ∫ t+1

t

[ϕ1(y) + ϕ2(y)] dy ≤ K1 ||z(t0)||4H +K2 ∀ t ≥ t0

for any given t0 ≥ τ . Hence Lemma 1.4 and Lemma 1.5 lead to

||z(t)||2V ≤
1

1− σ
||z(t0)||2Ve

−ε1(t−τ) +
[
C (ε1(1− σ)) (K1 ||z(t0)||4H +K2)

] 1
1−σ

+
1

1− σ
C(ε1) (K1 ||z(t0)||4H +K2) ∀ t ≥ t0

(3.10)

for any given t0 ≥ τ . Let now z0 ∈ B(0, R) in V. Recalling (1.1)-(1.2),

||z0||H ≤ R1 = Rmax
{

1
λ0
,

1
γ0

}
.

and (3.10) applied for t0 = τ yields

||z(t)||2V ≤
1

1− σ
R2 + ξ(R1) ∀ t ≥ τ (3.11)



14 C.GIORGI, A.MARZOCCHI & V.PATA

having defined the function

ξ(r) =
[
C (ε1 (1− σ)) (K1 r

4 +K2)
] 1

1−σ +
1

1− σ
C(ε1) (K1 r

4 +K2).

Notice that ξ(r) is increasing in r. Set now, with reference to (3.2), ρ >
√

Ψ. According
to Theorem 3.2 there exists tR ≥ 0 such that ||z(t)||H ≤ ρ whenever t ≥ τ + tR. Thus
from (3.10)-(3.11) we get that

||z(t)||2V ≤
R2 + ξ(R1)(1− σ)

(1− σ)2
e−ε1(t−τ) + ξ(ρ) ∀ t ≥ τ + tR.

Therefore we get that every ball BV(0, ρ′) , with ρ′ >
√
ξ(
√

Ψ), is a uniformly absorbing
set in V as h ∈ F .

4. Existence of a Uniform Attractor

We begin recalling some definitions due to Haraux [17].

Definition 4.1. A set K ⊂ H is said to be uniformly attracting for the family
{Uh(t, τ), h ∈ F} if for any τ ∈ IR and any bounded set B ⊂ H

lim
t→∞

[
sup
h∈F

dist(Uh(t, τ)B,K)
]

= 0 (4.1)

where
dist(B1,B2) = sup

z1∈B1

inf
z2∈B2

||z1 − z2||H

denotes the semidistance of two sets B1 and B2 inH. A family of processes that possesses
a uniformly attracting compact set is said to be uniformly asymptotically compact.

Definition 4.2. A closed set A ⊂ H is said to be a uniform attractor for the family
{Uh(t, τ), h ∈ F} if it is at the same time uniformly attracting and contained in every
closed uniformly attracting set.

The above minimality property replaces the invariance property that characterizes
the attractors of semigroups. It is also clear from the definition that the uniform at-
tractor of a family of processes is unique.

The fundamental results of Chepyzhov and Vishik (see [5,6]) that we are going to
exploit read as follows.

Theorem 4.3. Assume that F is a compact metric space and that there exists a con-
tinuous semigroup T (t) acting on it, which satisfies the translation equality

Uh(t+ s, τ + s) = UT (s)h(t, τ) ∀ h ∈ F. (4.2)
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Assume also that Uh(t, τ) is continuous as a map H × F → H, for every τ ∈ IR and
t ≥ τ . Then if the family {Uh(t, τ), h ∈ F} is uniformly asymptotically compact it
possesses a compact uniform attractor given by

A =

{
z(0) such that z(t) is any bounded complete
trajectory of Uh(t, τ) for some h ∈ A(F )

}

where A(F ) is the attractor of the semigroup T (t) on F .

The existence of A(F ) is assured from the well-known theorems about the attractors
of semigroups (see, e.g., [22]).

Theorem 4.4. The set Ã = A×A(F ) ⊂ H× F is the attractor of the semigroup S(t)
acting on H× F defined by

S(t)(z0, h) = (Uh(t, 0)z0, T (t)h) . (4.3)

From the translation equality (4.2) it is immediate to verify that S(t) is a semigroup.
Using standard techniques, one could prove directly the existence of an attractor Ã for
S(t). The peculiarity of Theorem 4.3 and Theorem 4.4 stands in the characterization
of Ã as A×A(F ).

In view of the above results, we write the solution z = (θ, η) to (0.3) as z = zL +zN ,
with zL = (θL, ηL) and zN = (θN , ηN ), where zL solves the linearized homogeneous
system, and zN is the solution of the nonlinear system with null initial data, namely,

∂tzL = LzL

zL|∂Ω = 0
zL(0) = z0

(4.4)

and
∂tzN = LzN +G(z)
zN |∂Ω = 0
zN (0) = 0.

(4.5)

It is apparent that the solution zL to (4.4) fulfills the uniform estimate (3.4) with Ψ = 0,
namely,

||zL(t)||2H ≤ 2||z0||2He
−ε0(t−τ) ∀ t ≥ τ. (4.6)

Since
||zN (t)||2H ≤ 2||z(t)||2H + 2||zL(t)||2H

we have also
||zN (t)||2H ≤ 8||z0||2He

−ε0(t−τ) + 2Ψ ∀ t ≥ τ. (4.7)
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For further reference, we denote by ηt
N (s; τ, z0, h) the second component of the

solution zN to (4.5) at time t with initial time τ with z(τ) = z0 and symbol h. Observe
that ηN can be computed explicitly from (4.5) as follows:

ηt
N (s) =


∫ s

0

θN (t− y) dy 0 ≤ s ≤ t− τ∫ t−τ

0

θN (t− y) dy s > t− τ.

(4.8)

Our goal is to build a compact uniformly attracting set for the process. In the sequel,
let ρ > 0 be fixed such that BH(0, ρ) is a uniformly absorbing set in H for Uh(t, τ),
as h ∈ F (whose existence is assured by Theorem 3.2). Moreover, with reference to
Definition 3.1, let tρ = t∗(BH(0, ρ)).

Lemma 4.5. Assume (h1)-(h3), and let (g1)-(g3) with β ≤ 5
3 hold. Let F and Φ as in

Theorem 3.3. Then there exists a positive constant Γ, depending on Φ, such that

||zN (t)||2V ≤ Γ (1 + ||z(t0)||H)4 ∀ t ≥ t0 (4.9)

for any t0 ≥ τ , τ ∈ IR. Moreover such a Γ does not depend on the particular initial
time τ chosen.
Proof. We parallel the proof of Theorem 3.3 (with zN in place of z), the only differ-
ence being the evaluation of the term 2〈g(θ),∆θN 〉. Indeed in this case, using Young
inequality, (g1), and Lemma 1.3, we obtain

2〈g(θ),∆θN 〉 ≤
k0

2
||∆θN ||2 +

2c21
k0
||1 + |θ|β ||2

≤ k0

2
||∆θN ||2 + c7 + c8||θ||2γ+2

2γ+2

≤ k0

2
||∆θN ||2 + c7 + cc8||∇θ||3γ ||θ||2−γ

≤ k0

2
||∆θN ||2 + c7 + cc8(1 + ||∇θ||2)(1 + ||θ||2)

since β ≤ 5
3 . Thus, denoting

ϕ =
2
k0
||h||2 + c7 + cc8(1 + ||∇θ||2)(1 + ||θ||2)

we conclude that
d

dt
||zN ||2V + ε1||zN ||2V ≤ ϕ.

From (3.3) and (3.5) there exist two positive constants K3 and K4 (depending on Φ)
such that ∫ t+1

t

ϕ(y) dy ≤ K3 ||z(t0)||4H +K4 ∀ t ≥ t0
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for any given t0 ≥ τ . Hence Lemma 1.4 and Lemma 1.5 lead to

||zN (t)||2V ≤ C(ε1) (K3 ||z(t0)||4H +K4)

as claimed.

Lemma 4.6. Assume (h1)-(h3), and (g1)-(g3) with β ≤ 5
3 , and let F and Φ be as in

Theorem 3.3. Denote

M =
⋃

h∈F

⋃
z0∈BH(0,ρ)

⋃
τ∈IR

⋃
t≥τ+tρ

ηt
N (·; τ, z0, h).

Then M is relatively compact in L2
µ(IR+,H1

0 ).

Proof. It is clear from Lemma 4.5 that M is bounded in L2
µ(IR+,H2 ∩H1

0 ). Let then
ηt

N ∈M. The derivative of (4.8) yields

∂

∂s
ηt

N (s) =

{
θN (t− s) 0 ≤ s ≤ t− τ

0 s > t− τ.
(4.10)

Thus (4.7) and (4.10) entail∫ ∞

0

µ(s)
∣∣∣∣∣∣∣∣ ∂∂s ηt

N (s)
∣∣∣∣∣∣∣∣2 ds =

∫ t−τ

0

µ(s)||θN (t− s)||2 ds ≤
(
8ρ2 + 2Ψ

)
||µ||L1(IR+).

So we conclude that M is bounded in L2
µ(IR+,H2∩H1

0 )∩H1
µ(IR+, L2). Moreover, from

(4.8) and (4.9), with t0 = τ , it is easy to check that for every η ∈M

||∇η(s)||2 ≤ s2Γ(1 + ρ)4 ∈ L1
µ(IR+)

in force of the exponential decay of µ. The proof is completed applying the following
result from [21]:
Let µ ∈ C(IR+) ∩ L1(IR+) be a non-negative function, such that if µ(s0) = 0 for some
s0 ∈ IR+ then µ(s) = 0 for every s > s0. Let B0, B, B1 be three Banach spaces, with
B0 and B1 reflexive, such that

B0 ↪→ B ↪→ B1

the first injection being compact. Let M⊂ L2
µ(IR+, B) satisfy the following hypotheses:

(i) M is bounded in L2
µ(IR+, B0) ∩H1

µ(IR+, B1)

(ii) sup
η∈M

||η(s)||2B ≤ h(s) ∀ s ∈ IR+ for some h ∈ L1
µ(IR+).

Then M is relatively compact in L2
µ(IR+, B).

Proposition 4.7. Assume (h1)-(h3), and let (g1)-(g3) with β ≤ 5
3 hold. Let F and Φ

as in Theorem 3.3. Then there exists a compact, uniformly attracting set for the family
{Uh(t, τ), h ∈ F}.
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Proof. Denote by M the closure of M in L2
µ(IR+,H1

0 ), and introduce the set

K = BH2∩H1
0
(0,Γ(1 + ρ)4)×M ⊂ H.

From the compact embedding H2 ∩ H1
0 ↪→ H1

0 and Lemma 4.6, K is compact in H.
We need to show the uniform attraction property. Let B ⊂ H be a bounded set, with
R = supz∈B ||z||H, and let t∗ = t∗(B) such that, for every h ∈ F ,

Uh(t, τ)B ⊂ BH(0, ρ) ∀ t ≥ τ + t∗.

Let then t > tρ + t∗ + τ , and set t̂ = t − tρ − t∗ − τ > 0. Using the process properties
we get that

Uh(t̂+ tρ + t∗ + τ, τ)B = Uh(t̂+ tρ + t∗ + τ, t∗ + τ)Uh(t∗ + τ, τ)B
⊂ Uh(t̂+ tρ + t∗ + τ, t∗ + τ)BH(0, ρ).

Pick any z(t) ∈ Uh(t, τ)B, for t > tρ + t∗ + τ . Applying (4.9) with t0 = τ + t∗ we get

||∆θN (t)||2 ≤ ||zN (t)||2V ≤ Γ (1 + ||z(τ + t∗)||H)4 ≤ Γ (1 + ρ)4.

It is then apparent that zN (t) ∈ K. Therefore, from (4.6),

inf
m∈K

||z(t)−m||H ≤ ||zL(t)||H ≤
√

2Re−
ε0
2 (t−τ) ∀ t > tρ + t∗ + τ.

Being the above inequality independent of h ∈ F , we conclude that

sup
h∈F

dist(Uh(t, τ)B,K) ≤
√

2Re−
ε0
2 (t−τ) ∀ t > tρ + t∗ + τ

hence (4.1) holds, and the result is proved.
We are now ready to state the main result of the section.

Theorem 4.8. Assume (h1)-(h3), and let (g1)-(g3) with β ≤ 5
3 hold. Furthermore, let

f ∈ T 2
c (IR, L2).

Then there exists a compact uniform attractor A for the family {Uh(t, τ), h ∈ H(f)}
given by

A =

{
z(0) such that z(t) is any bounded complete
trajectory of Uh(t, τ) for some h ∈ H(f)

}
.

Proof. We apply Theorem 4.3 with F = H(f) and

T (t)h(s) = h(s+ t) h ∈ H(f)
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(i.e., T (t) is the translation semigroup acting on H(f)). It is then immediate to verify
the translation equality (4.2). From Proposition 4.7, with Φ = ||f ||T 2

b
(IR,L2), we get that

the family {Uh(t, τ), h ∈ H(f)} is uniformly asymptotically compact. The proof of the
(H × H(f),H)-continuity is practically identical to the proof of Theorem 2.2, and is
therefore omitted.

Notice that the attractor of the semigroup T (t) on H(f) coincides with the entire
space H(f).

In the course of the investigation we showed that BH(0, ρ) × H(f) is a bounded
absorbing set for the semigroup S(t) defined in (4.3). In particular, BH(0, ρ) × H(f)
is connected in H × H(f). Indeed, it is immediate to see that {f(· + r)}r∈IR is path
connected, and therefore its closure, i.e., H(f) is connected. Then by [17], Proposi-
tion 5.2.7, the attractor Ã of S(t) is connected, and so is its projection on H. We
summarize this discussion in the next corollary.

Corollary 4.9. The uniform attractor A for the family {Uh(t, τ), h ∈ H(f)} given by
Theorem 4.8 is connected.

Remark 4.10. The restriction β ≤ 5
3 is due to the presence of the memory. In fact,

in the particular case when the memory kernel vanishes, we reduce to the semilinear
equation

θt − k0∆θ + g(θ) = h

and using the uniform Gronwall lemma (see, e.g., [22]), it is easy to show that the above
results hold for β < 7

3 .

5. Hausdorff Dimension of the Uniform Attractor

In previous Theorem 4.3 and Theorem 4.4 it is shown that the uniform attractor
A of the family {Uh(t, τ), h ∈ H(f)} is the projection on H of the attractor Ã of the
corresponding semigroup S(t), acting on H×H(f). Therefore the Hausdorff dimensions
of these sets satisfy the inequality dimHA ≤ dimH Ã. In this section, along the line
of [5], we show that dimH Ã <∞ (and thus dimHA <∞) when the external heat source
has a quasiperiodic dependence on time.

We recall that the Hausdorff dimension of a subset X of a metric space E is defined
by

dimH X = sup

{
d > 0 : sup

ε>0
inf
Cε

∑
i∈I

rd
i < +∞

}
where Cε = {Bi(ri)}i∈I is a covering of X of balls of radii ri ≤ ε.

We now state the fundamental result from [10] concerning the Hausdorff dimensions
of fully invariant sets. We need first two definitions.

Definition 5.1. Let E be a Hilbert space, L(E) the space of continuous linear operators
from E to E , X ⊂ E , and S a (nonlinear) continuous map from X into E . Then S is said
to be uniformly quasidifferentiable on X if for any u ∈ X there exists S′(u) ∈ L(E) (the
quasidifferential of S at u with respect to X ) such that

||Su− Sv − S′(u)(u− v)||E ≤ σ(||u− v||E)||u− v||E ∀ v ∈ X
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where σ : IR → IR+ is independent on u, and σ(y) → 0 as y → 0+. The operator S′(u)
might not be unique.

Definition 5.2. Let M be a linear operator on a Hilbert space E . For any m ∈ IN the
m-dimensional trace of M is defined as

TrmM = sup
Q

m∑
j=1

〈Muj , uj〉E

where the supremum ranges over all possible orthogonal projections Q in E on the m-
dimensional space QE belonging to the domain of M , and {u1, . . . , um} is a orthonormal
basis of QE .

The following result holds.

Theorem 5.3. Let there be given a Hilbert space E, and let X ⊂ E be a compact fully
invariant set for S(t), i.e. S(t)X = X for all t ≥ 0. Assume also that S(t) is uniformly
quasidifferentiable on X for all t ≥ 0, and

sup
u0∈X

||S′(t, u0)||L(E) ≤ C(t) <∞ ∀ t ≥ 0

where S′(t, u0) is the quasidifferential of S(t) at u0. It is also assumed that S′(t, u0) is
generated by the equation in variation

Ut = M(u)U
U(0) = U0

that is, S′(t, u)U0 = U(t) with u(t) = S(t)u0. Introducing the number qm by the formula

qm = lim inf
T→∞

sup
u∈X

{
1
T

∫ T

0

TrmM(S(t)u) dt

}

if there exists m such that qm < 0, then dimH X ≤ m.
As anticipated at the beginning of the section, we shall consider a quasiperiodic

external heat supply, i.e., a function f : Ω× IR → IR of the form

f(x, t) = Φ(x,Λt) = Φ(x, λ1t, . . . , λKt)

where Φ(x, ω) ∈ C1(TK , L2) is a 2π-periodic function of ω on the K-dimensional torus
TK , and Λ = (λ1, . . . , λK) are rationally independent numbers. For further reference
we agree to denote

Φ′(x, ω) =
(

∂

∂ω1
Φ(x, ω), . . . ,

∂

∂ωK
Φ(x, ω)

)
ω = (ω1, . . . , ωK).

It is immediate to check that f ∈ T 2
c (IR, L2), and h ∈ H(f) if and only if

h(x, t) = Φ(x,Λt+ ω0) ω0 ∈ TK .
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Therefore H(f) might be identified with TK , and the translation semigroup acting on
H(f) is equivalent to the translation semigroup T (t) on TK , defined by

T (t)ω0 = [Λt+ ω0] = (Λt+ ω0)(mod 2π)K .

In the remaining of the paper we shall denote E = H × TK , and we consider the
semigroup S(t) acting on E given by (4.3), with T (t) as above. Clearly, with reference
to the previous section, the set Ã = A × TK (being A the uniform attractor of the
family {Uω(t, τ), ω ∈ TK}) is the attractor of S(t). For every w0 = (z0, ω0) ∈ E , the
vector w(t) = S(t)w0 = (z(t), ω(t)) is the solution of the differential equation

zt = Lz +G(z, ω)
ωt = Λ
z(0) = z0

ω(0) = ω0.

(5.1)

where
G(z, ω) = (Φ(ω)− g(θ), 0).

In the above formula and in the sequel, without further warning, we use the complete
decomposition of w, i.e., w = (θ, η, ω) = (Π1w,Π2w,Π3w), where Πj , j = 1, 2, 3, denote
the projections on L2, L2

µ(IR+,H1
0 ), and TK , respectively. We also define the operators

A (linear) and F on E by Aw = (Lz, 0) and F (w) = (G(z, ω), 0).

Theorem 5.4. Assume (h1)-(h2), and let (g1)-(g3) with β ≤ 7
3 and g ∈ C1(IR) hold.

Then the semigroup S(t) acting on E is uniformly quasidifferentiable on any bounded set
X which is invariant for S(t), i.e., S(t)X ⊂ X for every t ≥ 0, and the quasidifferential
S′(t, w0) at the point w0 = (z0, ω0) = (θ0, η0, ω0) satisfies the variation equation

Wt = AW + F ′(w)W
W (0) = W0 = (Z0,Σ0) = (Θ0,H0,Σ0)

(5.2)

where
S′(t, w0)W0 = W (t) = (Z(t),Σ(t)) = (Θ(t),Ht,Σ(t))

w(t) = (z(t), ω(t)) = (θ(t), ηt, ω(t)) = S(t)w0

and
F ′(w)W = (−g′(θ)Θ + Φ′(ω)Σ, 0, 0)

being F ′ the Fréchet differential of F . Furthermore

sup
w0∈X

||S′(t, w0)||L(E) ≤ C(t) <∞ ∀ t ≥ 0
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Proof. Let w = (z, ω) and w∗ = (z∗, ω∗) be solutions to system (5.1) with initial data
w0 and w∗0 , respectively, with w0, w

∗
0 ∈ X . The difference w̃ = w∗ − w satisfies the

problem
w̃t = Aw̃ + F (w∗)− F (w)
w̃(0) = w̃0 = w∗0 − w0.

(5.3)

Arguing as in the proof of Theorem 2.2, taking the inner product in E of (5.3) and w̃,
we get

d

dt
||w̃||2E ≤ mγ ||w̃||2E + 2|〈Φ(ω∗)− Φ(ω), θ̃〉|

with mγ given by (2.5) if γ ≤ 1, and by (2.8) if 1 < γ ≤ 4
3 . Due to the fact that X is

invariant for S(t) and is bounded in E , from (2.2) it is clear that

sup
θ∗,θ∈Π1X

mγ ∈ L1([0, T ]) ∀ T > 0.

Since
|〈Φ(ω∗)− Φ(ω), θ̃〉| ≤ ||Φ(ω∗)− Φ(ω)||||θ̃|| ≤ ||Φ′||L∞(TK ,L2)||ω̃||TK ||θ̃||

using Young inequality and defining rγ = mγ + ||Φ′||L∞(TK ,L2), in virtue of Gronwall
lemma we conclude that

||w̃(t)||2E ≤ ||w̃0||2E exp
[∫ t

0

rγ(y) dy
]
≤ ||w̃0||2EC(T ) ∀ t ≤ T (5.4)

where C(T ) < ∞ for all T > 0. Let now W be the solution to (5.2) with initial data
W (0) = w̃0. Indeed, it is easy to see that the linear (non-autonomous) problem (5.2)
with initial data W (0) = w̃0 possesses a unique solution W ∈ C([0, T ], E) for all T > 0.
Our goal is to show that W (t) = S′(t, w0)w̃0. Denote

ϕ = w∗ − w −W = w̃ −W.

Clearly ϕ satisfies
ϕt = Aϕ+ F ′(w)ϕ+ h(w∗, w)
ϕ(0) = 0

(5.5)

where
h(w∗, w) = F (w∗)− F (w)− F ′(w)w̃.

Due to the differentiability assumptions on g and Φ, there exists σ : IR → IR+, σ(y) → 0
as y → 0+, such that

||h(w∗, w)||E
||w̃||E

= σ(||w̃||E).

We take the inner product in E of (5.5) and ϕ. It is easily seen that the estimate for the
term 〈F ′(w)ϕ,ϕ〉E can be carried out exactly as above, whereas, by Young inequality,

2〈h(w∗, w), ϕ〉E ≤ ||h(w∗, w)||2E + ||ϕ||2E .
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Thus we get
d

dt
||ϕ||2E ≤ (rγ + 1)||ϕ||2E + ||h(w∗, w)||2E .

Gronwall lemma and (5.4) entail

||ϕ(t)||2E ≤
[∫ t

0

||h(w∗(y), w(y))||2E dy
]

exp
[∫ t

0

(rγ(y) + 1) dy
]

≤ sup
s∈[0,T ]

σ2(||w̃(s)||E)
[∫ t

0

||w̃(y)||2E dy
]
eTC(T )

≤ sup
s∈[0,T ]

σ2(||w̃(s)||E)||w̃0||2E C̃(T ) ∀ t ≤ T

(5.6)

with C̃(T ) = T eT (C(T ))2. From (5.4) we also get that

lim
w̃0→0

sup
s∈[0,T ]

σ2(||w̃(s)||E) = 0.

Then we conclude that, for every T > 0

lim
w̃0→0

||ϕ(T )||2E
||w̃0||2E

= 0

which gives the required uniform quasidifferentiability . Finally, taking the inner prod-
uct of (5.2) and W , and performing calculations analogous to those leading to (5.6), we
obtain the estimate

||W (T )||2E ≤ ||W0||2EC(T ) ∀ T ≥ 0

which yields the last assertion of the theorem.

It is immediate to verify that Theorem 5.4 still holds if we replace condition (g3)
with β ≤ 7

3 with condition (g4).
We now state our result about the dimension of the attractor.

Theorem 5.5 Assume (h1)-(h2), and let (g1)-(g3) with β ≤ 5
3 and g ∈ C1(IR) hold.

Then the attractor Ã of the semigroup S(t) acting on E has finite Hausdorff dimension.

Proof. let w0 ∈ Ã (so that w ∈ Ã). Let W = (Θ,H,Σ) be a unitary vector belonging
to the domain of A+ F ′(w). Then

〈
(
A+ F ′(w)

)
W,W 〉E = 〈AW,W 〉E − 〈g′(θ)Θ,Θ〉+ 〈Φ′(ω)Σ,Θ〉.

From a direct calculation (see also [14]),

〈AW,W 〉E ≤ −k0||∇Θ||2 − δ

2
||∇H||2µ.

An application of the generalized Hölder inequality entails

−〈g′(θ)Θ,Θ〉 ≤ ||Θ||6||Θ||||g
′(θ)||3.



24 C.GIORGI, A.MARZOCCHI & V.PATA

Since β ≤ 5/3, the term ||g′(θ)||23 is uniformly bounded as w0 ∈ Ã. Thus, exploiting the
embedding H1

0 ↪→ L6, and using Young inequality, we get

−〈g′(θ)Θ,Θ〉 ≤ k0

2
||∇Θ||2 + c9||Θ||2.

for some c9 > 0. Finally, being ||Φ′||L∞(TK ,L2) <∞,

〈Φ′(ω)Σ,Θ〉 ≤ c10||Θ||2 + c10||Σ||2TK

for some c10 > 0. Adding the pieces together, setting c11 = c9 + c10, we have

〈
(
A+ F ′(w)

)
W,W 〉E ≤ −k0

2
||∇Θ||2 − δ

2
||∇H||2µ + c11||Θ||2 + c10||Σ||2TK .

Therefore we conclude that A + F ′(w) ≤ M , where M is the diagonal operator acting
on L2 ⊕ L2

µ(IR+,H1
0 )⊕TK defined by

M =

 k0
2 ∆ + c11I 0 0

0 − δ
2I 0

0 0 c10I

 .

From the definition of Trm, it is apparent that Trm

(
A + F ′(w)

)
≤ Trm(M). Since M

is diagonal, it is easy to see that

Trm(M) = sup
Q

m∑
j=1

〈MWj ,Wj〉E

where the supremum is taken over the projections Q of the form Q1 ⊕ Q2 ⊕ Q3. This
amounts to considering vectors Wj where only one of the three components is non-zero
(and in fact of norm one in its space). Choose then m > k, and let n1, n2, n3 be the
numbers of vectors Wj of the form (Θ, 0, 0), (0,H, 0), and (0, 0,Σ), respectively. Notice
that, since TK is k-dimensional, n3 ≤ k. Thus, applying Lemma 1.6, we get

Trm(M) ≤ −k0

2
κn

5
3
1 + c11n1 −

δ

2
n2 + c10n3

which gives at once

qm ≤ −k0

2
κn

5
3
1 + c11n1 −

δ

2
n2 + c10k.

Since as m goes to infinity either n1 or n2 (or both) go to infinity, it is clear that there
exists m0 such that qm0 < 0. Thus the desired conclusion follows from Theorem 5.3 and
Theorem 5.4.

Corollary 5.6 Assume (h1)-(h2), and let (g1)-(g3) with β ≤ 5
3 and g ∈ C1(IR) hold.

Let f ∈ C1(IR, L2) be quasiperiodic in time. Then the uniform attractor A of the family
{Uh(t, τ), h ∈ H(f)} given by Theorem 4.7 has finite Hausdorff dimension.
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