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Abstract. Solid-liquid transitions in thermal insulators and weakly
conducting media are modeled through a phase-field system with mem-
ory. The evolution of the phase variable ϕ is ruled by a balance law
which takes the form of a Ginzburg-Landau equation. A thermodynamic
approach is developed starting from a special form of the internal en-
ergy and a nonlinear hereditary heat conduction flow of Coleman-Gurtin
type. After some approximation of the energy balance, the absolute tem-
perature θ obeys a doubly nonlinear “heat equation” where a third-order
nonlinearity in ϕ appears in place of the (customarily constant) latent-
heat. The related initial and boundary value problem is then formulated
in a suitable setting and its well–posedness and stability is proved.

1. Introduction

In this paper we investigate the well-posedness of the system

ϕt − κ∆ϕ+ F ′(ϕ) +
θ

θc
G′(ϕ) = 0 (1.1)

∂t

(
α(θ)− 1

θc
G(ϕ)

)
− k0∆θ −

∫ ∞
0

k(s)∆θ(t− s) ds = R(θ), (1.2)

where ∂t or the subscript t denote partial differentiation with respect to time.
Here, ϕ ∈ [0, 1] is the phase-field variable and θ the absolute temperature.
We propose this system as a phase-field model for first-order solid-liquid
transitions. It generalizes [4] and accounts for thermal memory effects in
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weakly heat conducting media as well as insulators where thermal conduc-
tivity increases linearly with temperature (see, for instance, [14]). In the
sequel, the full model is developed by regarding separately the two equa-
tions of the system.

First, we introduce the order parameter of the transition as a phase-field
ϕ(x, t) which changes smoothly in space. In addition, its evolution equation
is regarded as a balance law of the structure order (see [11]). To fix ideas
we let ϕ increase with the structure order so that ϕ = 0 in the less–ordered
phase (liquid). As customary in temperature-induced transitions, this bal-
ance law takes the form of the Ginzburg-Landau equation (1.1), where θc
is the temperature transition value and W = F + G provides the so-called
“double–well” potential. Usually, it is a fourth–order polynomial in ϕ which
has two wells of equal depth located at ϕ = 0 and ϕ = 1. On the contrary,
the choice of G(ϕ) is quite arbitrary and related to the latent heat L. In
particular, G is required to satisfy

G(1)−G(0) = L ,

where L > 0 gives the heat absorbed during the transition from solid to
liquid phase (melting latent heat). In the Caginalp model [9], for instance,
G is linear in ϕ. Penrose and Fife in [20] proposed a different class of
models where G has quadratic growth. Some solidification models (see, for
instance, [21]) assume that G has degree three or five, but there is no reason
to rule out G to be even. The choice of G with an odd degree is motivated by
making more efficient numerical simulations in the small undercooling regime
(see [13]). On the contrary, an even function G induces some boundedness
property on the phase variable (see Proposition 2.1). Here, according to [11],
we assume both F and G to be fourth-order polynomials

F (ϕ) = L(3ϕ4 − 4ϕ3) and G(ϕ) = L(3ϕ4 − 8ϕ3 + 6ϕ2) , (1.3)

so that W (ϕ) = 6Lϕ2(1− ϕ)2 and F (0) = G(0) = 0 , F (1) = −G(1) = −L ,
F ′(0) = F ′(1) = G′(0) = G′(1) = 0 . Since L > 0, this choice accounts
for first–order phase transition phenomena and solutions to (1.1) fulfill the
following properties:

– ϕ(x, t) = 0 and ϕ(x, t) = 1 are equilibrium solutions (i.e., local
minimizers of the free energy) whatever may be the value of θ,

– at θ = θc both solutions are stable (i.e., absolute minima); a change
of stability occurs when θ < θc or θ > θc.
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It is worth noting that these statements cannot be satisfied when the degree
of F ′ and G′ is less than two. In particular, neither Caginalp nor Penrose–
Fife models agree with the first property. What is more, the choice (1.3)
enables us to prove the bound 0 ≤ ϕ(x, t) ≤ 1 provided that 0 ≤ ϕ(x, 0) ≤ 1
and θ(x, t) > 0 for all t > 0 (see [11]).

The evolution equation for the temperature is obtained from the energy
balance law, as usual. After assuming a special expression for the internal
power of the structure order, the heat equation takes the form

∂t

(
e− F (ϕ)− κ

2
|∇ϕ|2

)
− θ

θc
∂tG(ϕ)− (∂tϕ)2 = −∇ · q + r. (1.4)

In order to derive (1.2) we assume here a heat conduction law of the Coleman-
Gurtin type (see [10]) so that the heat flux vector q depends both on the
present value of the temperature gradient ∇θ(t) and its past history up to
t > 0, namely,

q(t) = −k0θ(t)∇θ(t)− θ(t)
∫ ∞

0
k(s)∇θt(s) ds , k0 > 0 , (1.5)

where θt(s) = θ(t − s). When the memory term is neglected (k ≡ 0) the
nonlinear Fourier heat conduction law considered in [4] is recovered,

q(t) = −k0θ(t)∇θ(t) .

On the other hand, when

k(s) = ε (k0 − k1) exp(−εs) , k0 > k1 > 0

(1.5) is equivalent to the rate–type constitutive equation

∂tp + εp = −k0∇∂tθ − ε k1∇θ , q = θ p

which models the heat flux in a (nonlinear) Jeffreys-type rigid conductor at
rest.

According to (1.5), the free energy density ψ is assumed to split into two
parts: the first, ψ1, independent of ∇θt, the last, ψ2, which only depends
on ∇θt. In the special case α(θ) = c ln θ equation (1.2) is obtained from
the energy balance by means of a suitable choice of ψ1 and ψ2 in agreement
with thermodynamics. In particular, after replacing (1.5) into (1.4) and
multiplying the result by 1/θ, some approximations are needed to obtain
(1.2).

A lot of papers deal with the heat equation with memory, namely (1.2)
where α(θ) = cθ and G = 0. The model was proposed in [10] and lately
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studied by many authors (see e.g. [15] and references therein), including its
asymptotic behavior in the history space setting [16, 17].

Well-posedness results for the full system (1.1)–(1.2) have been scrutinized
recently in the literature assuming α(θ) = c θ and letting G to have at
most quadratic growth. In addition, F is assumed to be – or include – the
indicator function I[0,1] of the closed interval [0, 1], in order to force the phase
variable to sit between 0 and 1. In particular, when a quadratic nonlinearity
for G is involved and α(θ) = c θ, the problem has been studied first in
[8], where existence and uniqueness results for weak and smooth solutions
have been proved via energy methods. More recently, a system like (1.1)–
(1.2) was proposed in [5] as a particular case of a more general phase-field
model with thermal memory where the usual energy balance is replaced
by an entropy balance law. Using a different thermodynamic approach, a
thorough investigation of (1.1)–(1.2) has been carried out in [6, 7] assuming
α(θ) = ln θ, G(ϕ) = Lϕ and F = I[0,1]. The main results proved therein,
that is existence, uniqueness and asymptotic behavior of solutions, jointly
with positivity of the temperature field, strongly depend on the linear form
of G.

The aim of this paper is to prove well–posedness and stability of the
Cauchy-Neumann-Dirichlet initial-boundary value problem generated by
(1.1)-(1.2) with α(θ) = ln θ and a fourth-order nonlinearity for G. This is
achieved by means of a procedure introduced in [4], where we prove well-
posedness of a similar system without memory (k ≡ 0). The main diffi-
culty here is due to the different state identification at time t > 0, namely
(ϕ(t), θ(t),∇θt). Indeed, the presence of a convolution term would prevent us
from applying any maximum principle to prove the positivity of the temper-
ature component of the solution. This positivity result can be achieved here
only by virtue of the choice α(θ) = ln θ in (1.2). Even if we take advantage
of some results proven in [6], the novelty of our paper consists in obtaining
the boundedness of the phase-field solution directly in the customary setting
of a double well potential, with no recurse to the interval indicator func-
tion and its subdifferential, which are rather typical of the Stefan problem
with a sharp interface. What is more, this procedure enables us to handle
nonlinearity in G of degree higher than two.

The plan is as follows. In Section 2, we introduce the model and we formu-
late the problem with proper initial and boundary conditions. In Section 3
we prove the existence result. First we construct a sequence Gε of functions
with lipschitz derivative, approaching G and behaving as well as G in (0, 1).
When Gε is considered in place of G, exploiting a recent result by Colli et
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al. [6], we obtain existence, uniqueness and positivity of the temperature for
all solutions (ϕε(t), θε(t),∇θtε). This allows us to apply Proposition 2.1 and
ensures that 0 ≤ ϕε ≤ 1 holds for all ε > 0. Finally, we pass to the limit as
ε → 0 and prove both uniform convergence and uniqueness of solutions via
energy methods. Section 4 is devoted to show uniqueness of the solution.
Finally, in Section 5 we prove the stability of solutions by means of energy
estimates and Gronwall lemma.

2. Phase transition model

Following the point of view of [11] and [12], every phase transition can
be interpreted as a change in the order structure inside the material. The
variable which measures the internal order structure is a scalar function ϕ
which takes its values between 0 and 1, such that ϕ = 0 corresponds to
the less ordered phase and ϕ = 1 describes the more ordered state. We
denote respectively by K, p and σ the density, the flux and the supply of
the internal order structure.

The balance of the structure order considered in [11] and [12] leads to the
following local equation

ρK = ∇ · p + ρσ, (2.1)

where ρ is the mass density. We assume in particular the constitutive equa-
tions

K = ϕt + f(ϕ) +
θ

θc
g(ϕ) (2.2)

p = κ∇ϕ, (2.3)

where θ is the absolute temperature, θc is the critical temperature of the
phase transition, κ is a positive constant, f, g are two functions characterizing
the first-order phase transition.

Therefore, equation (2.1) assumes the form

ρ
[
ϕt + f(ϕ) +

θ

θc
g(ϕ)

]
= κ4ϕ+ ρσ. (2.4)

Henceforth, we suppose that the density ρ is constant and for sake of sim-
plicity we let ρ = 1. Moreover, we assume σ = 0. Accordingly, (2.4) reduces
to

ϕt + f(ϕ) +
θ

θc
g(ϕ) = κ4ϕ. (2.5)
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In order to deduce the equation for the temperature, we consider the energy
balance law

et = P i −∇ · q + r , (2.6)
where e is the internal energy, q is the heat flux, r is the heat supply and
P i is the internal structure order power, defined as

P i = Kϕt + p · ∇ϕt. (2.7)

By defining F,G such that F ′(ϕ) = f(ϕ), G′(ϕ) = g(ϕ), F (0) = G(0) = 0,
the internal power is given by

P i = ϕ2
t + ∂tF (ϕ) +

θ

θc
∂tG(ϕ) +

κ

2
∂t(|∇ϕ|2).

Thus, from (2.6) we obtain

∂t

[
e− F (ϕ)− κ

2
|∇ϕ|2

]
− θ

θc
∂tG(ϕ)− ϕ2

t = −∇ · q + r. (2.8)

In this paper we deal with weakly conducting materials with fading ther-
mal memory, so that the heat flux is assumed to obey the constitutive equa-
tion (see [12])

q(t) = −k0θ(t)∇θ(t)− θ(t)
∫ ∞

0
k(s)∇θt(s)ds

= −k0θ(t)∇θ(t) + θ(t)
∫ ∞

0
k′(s)∇θ̃t(s)ds, (2.9)

where k0 > 0, k ∈W 2,1(0,∞) ∩H1(0,∞) and

∇θt(s) = ∇θ(t− s),

∇θ̃t(s) =
∫ s

0
∇θ(t− τ)dτ =

∫ t

t−s
∇θ(τ)dτ.

Substitution into (2.8) yields

∂t

[
e− F (ϕ)− κ

2
|∇ϕ|2

]
− θ

θc
∂tG(ϕ)− ϕ2

t (2.10)

= k0θ4θ + k0|∇θ|2 − θ
∫ ∞

0
k′(s)4θ̃t(s)ds−∇θ ·

∫ ∞
0

k′(s)∇θ̃t(s)ds+ r.

We examine the restrictions imposed to the constitutive equations by the
principles of thermodynamics. To this aim we identify the state of the system
at time t > 0 with the quadruplet (θ(t), ϕ(t),∇ϕ(t),∇θ̃t) and suppose that
the thermodynamical potentials depend on the state. Denoting by η the
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entropy function, the second law of thermodynamics, expressed in terms of
the Clausius-Duhem inequality, gives

ηt ≥ −∇ ·
(q
θ

)
+
r

θ
.

Hence, relations (2.6), (2.7) imply

θηt ≥ et −Kϕt − p · ∇ϕt +
1
θ
q · ∇θ.

By introducing the free energy ψ = e− θη, in view of constitutive equations
(2.2) and (2.3), the previous inequality leads to

ψt + ηθt − ϕ2
t −

[
f(ϕ) +

θ

θc
g(ϕ)

]
ϕt − κ∇ϕ · ∇ϕt +

1
θ
q · ∇θ ≤ 0. (2.11)

Hereafter, we suppose the free energy depending on the state variables as

ψ(θ, ϕ,∇ϕ,∇θ̃t) = ψ1(θ, ϕ,∇ϕ) + ψ2(∇θ̃t),

where the functionals ψ1, ψ2 satisfy

ψ1(0, 0,0) = 0, ψ2(0) = 0.

Then from (2.9) and (2.11), we obtain the inequality

∂tψ1 + ∂tψ2 ≤ −ηθt + ϕ2
t +

[
f(ϕ) +

θ

θc
g(ϕ)

]
ϕt + κ∇ϕ · ∇ϕt

+ k0|∇θ|2 −∇θ ·
∫ ∞

0
k′(s)∇θ̃t(s)ds. (2.12)

The arbitrariness of θt, ϕt,∇ϕt implies the relations

η = −∂ψ1

∂θ
, f(ϕ) +

θ

θc
g(ϕ) =

∂ψ1

∂ϕ
, κ∇ϕ =

∂ψ1

∂∇ϕ
.

Accordingly we deduce the representations

ψ1(θ, ϕ,∇ϕ) = −C(θ) + F (ϕ) +
θ

θc
G(ϕ) +

κ

2
|∇ϕ|2 (2.13)

η(θ, ϕ) = c(θ)− 1
θc
G(ϕ), (2.14)

where c(θ) is any function of the temperature and C ′(θ) = c(θ).
Therefore, inequality (2.12) reduces to

∂tψ2 ≤ ϕ2
t + k0|∇θ|2 −∇θ ·

∫ ∞
0

k′(s)∇θ̃t(s)ds. (2.15)
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There are many functionals ψ2 satisfying (2.15) (see [2]). Here we consider
the Graffi free energy

ψ2(t) = ψG(t) = −1
2

∫ ∞
0

k′(s)|∇θ̃t(s)|2ds, (2.16)

where the kernel k is such that

k′(s) ≤ 0, k′′(s) ≥ 0. (2.17)

By differentiating (2.16) with respect to time, we obtain

∂tψG(t) = −
∫ ∞

0
k′(s)∇θ̃t(s) ·

[
∇θ(t)−∇θt(s)

]
ds

and an integration by parts yields

∂tψG(t) = −∇θ(t) ·
∫ ∞

0
k′(s)∇θ̃t(s)ds− 1

2

∫ ∞
0

k′′(s)|∇θ̃t(s)|2ds. (2.18)

Substitution into (2.15) leads to the inequality

0 ≤ ϕ2
t (t) + k0|∇θ(t)|2 +

1
2

∫ ∞
0

k′′(s)|∇θ̃t(s)|2ds, (2.19)

which is satisfied in view of (2.17).
We conclude this section with the introduction of the system of differential

equations which describe the evolution of this first order phase model. In
this framework, we choose

c(θ) = α(1 + ln θ) ,

with α > 0 and

f(ϕ) = −12Lϕ2(1− ϕ), g(ϕ) = 12Lϕ(1− ϕ)2.

Therefore equation (2.5) reads

ϕt = κ4ϕ+ 12Lϕ2(1− ϕ)− 12L
θc

θϕ(1− ϕ)2. (2.20)

Moreover, owing to (2.13) and (2.14), the internal energy is written as

e = ψ + θη = αθ + F (ϕ) +
κ

2
|∇ϕ|2 − 1

2

∫ ∞
0

k′(s)|∇θ̃t(s)|2ds.

Substitution into (2.10) and use of (2.18) provide

αθt − 12L
θ

θc
ϕ(1− ϕ)2ϕt = ϕ2

t + k0θ4θ + k0|∇θ|2

− θ
∫ ∞

0
k′(s)4θ̃t(s)ds+

1
2

∫ ∞
0

k′′(s)|∇θ̃t(s)|2ds+ r.
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In the sequel we consider an approximation of this equation, namely

αθt − 12L
θ

θc
ϕ(1− ϕ)2ϕt = k0θ4θ − θ

∫ ∞
0

k′(s)4θ̃t(s)ds , (2.21)

which is obtained by ignoring the terms

ϕ2
t + k0|∇θ|2 +

1
2

∫ ∞
0

k′′(s)|∇θ̃t(s)|2ds.

This could be justified by requiring that ϕ2
t and |∇θt(s)|2, s ≥ 0, are negli-

gible and assuming the condition

−
∫ ∞

0
s2k′′(s)ds = M <∞.

Indeed, a direct computation proves the inequality

k0|∇θ(t)|2 −
∫ ∞

0
k′′(s)|∇θ̃t(s)|2ds ≤ k0|∇θ(t)|2 +M sup

s>0
|∇θt(s)|2

≤ (k0 +M) sup
s≥0
|∇θt(s)|2.

It is worth noting that under such an approximation the thermodynamic
consistence of the model is guaranteed anyway, since relation (2.19) still
holds as an equality.

Finally, by multiplying (2.21) by 1/θ, we obtain the “heat equation”

α(ln θ)t −
12L
θc

ϕ(1− ϕ)2ϕt = k04θ −
∫ ∞

0
k′(s)4θ̃t(s)ds+

r

θ
. (2.22)

Equations (2.20) and (2.22) are completed with initial and boundary condi-
tions. Due to the presence of a memory term in (2.22), we prescribe in Ω,
the domain occupied by the material,

ϕ(x, 0) = ϕ0 , θ(x, s) = θ0(x, s) , s ≤ 0 , (2.23)

jointly with a Neumann boundary condition for the phase field and a non-
homogeneous Dirichlet condition for the temperature

∇ϕ · n|∂Ω = 0 , θ|∂Ω = θΓ, (2.24)

where n denotes the unit outward normal to ∂Ω, the boundary of Ω.
As already proved in [11], the IBV problem (2.20)-(2.23)1-(2.24)1 ensures

the boundedness of the phase field between 0 and 1 as a consequence of the
positivity of the temperature θ.
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Proposition 2.1. (see [11], Theorem 2) Given θ ≥ 0 in Ω × (0, T ), if ϕ
is a solution of (2.20), (2.23)1 and (2.24)1 with initial datum ϕ0 satisfying
0 ≤ ϕ0 ≤ 1 a.e. in Ω, then 0 ≤ ϕ ≤ 1, a.e. in Ω× (0, T ).

It is worth noting that the same result holds when the function g(ϕ) =
12Lϕ(1− ϕ)2 is replaced by µ(ϕ), where µ is any continuous function such
that rµ(r) ≥ 0, for all r ∈ R.

3. Existence of the solutions

For convenience, we introduce here some notation and recall some stan-
dard inequalities to be used in the sequel. As usual, we denote by Lp(Ω)
and Hk(Ω), respectively, the Lebesgue and Sobolev spaces endowed with the
standard norms ‖ · ‖Lp(Ω) and ‖ · ‖Hk(Ω). In particular ‖ · ‖ stands for the
L2(Ω)−norm. Let H1

0 (Ω) denote the closure in H1(Ω) of the space C∞0 (Ω) of
smooth functions with compact support. For each v ∈ H1

0 (Ω) the Poincaré
inequality

λ0(Ω)‖v‖2 ≤ ‖∇v‖2 (3.1)

holds. Finally, let us denote Qt = Ω× (0, t), for any t ∈ [0, T ].
If a, b are two functions of t, we denote by ∗ the convolution product,

namely,

a ∗ b(t) =
∫ t

0
a(s)b(t− s)ds.

By differentiating with respect to time, we obtain the identity

(a ∗ b)t = a(0)b+ at ∗ b. (3.2)

If a ∈ L1(0, t), b ∈ L2(Qt), the Young theorem provides

‖a ∗ b‖L2(Qt) ≤ ‖a‖L1(0,t)‖b‖L2(Qt). (3.3)

Now let us introduce some assumptions on the data. For simplicity the
boundary datum θΓ is supposed to be time independent. Moreover we require

(H1) k, k′ ∈ L1(0,+∞);
(H2) r ∈ L∞(QT );
(H3) ϕ0 ∈ H1(Ω), 0 ≤ ϕ0 ≤ 1 a.e. in Ω, θ0 ∈ L∞(Ω);
(H4) θΓ ∈ H1/2(∂Ω) ∩ L∞(∂Ω);
(H5) there exist two positive constants θ∗ and θ∗ such that θ∗ ≤ θΓ ≤

θ∗, θ∗ ≤ θ0 ≤ θ∗.
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In order to deal with homogeneous boundary conditions, let us consider the
function θH ∈ H1(Ω) solution to problem{

4θH = 0, in Ω
θH|∂Ω = θΓ .

In view of (H4), (H5), θH satisfies the following inequalities

θ∗ ≤ θH ≤ θ∗, a.e. in Ω (3.4)
‖θH‖H1(Ω) ≤ c‖θΓ‖H1/2(∂Ω) . (3.5)

Let us denote by u the difference

u = θ − θH. (3.6)

Accordingly u satisfies a homogeneous Dirichlet boundary condition and
owing to (3.1) the inequality

‖u‖ ≤ ‖u‖H1(Ω) ≤ λ1(Ω)‖∇u‖ (3.7)

holds.
Now we perform a further approximation of equation (2.22), by assuming

that the temperature θ is close to θH, for every t > 0. Accordingly, by means
of the approximation

θH
θ
≈ 1− 1

θH
(θ − θH) = 2− θ

θH
,

equation (2.22) is written as

α(ln θ)t−
12L
θc

ϕ(1−ϕ)2ϕt = k04θ−
∫ ∞

0
k′(s)4θ̃t(s)ds+

r

θH

(
2− θ

θH

)
. (3.8)

Moreover, in order to distinguish the dependence on the past history θ0 in
the previous equation, we split the heat flux as

q(t) = −k0θ(t)∇θ(t)− θ(t)(k ∗ ∇θ(t)) + qH(t),

where

qH(t) = −θ(t)
∫ ∞

0
k(t+ s)∇θ0(s)ds.
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Thus, we prove existence of solutions to problem

(P )



ϕt = κ4ϕ+ 12Lϕ2(1− ϕ)− 12L
θc

θϕ(1− ϕ)2

α(ln θ)t −
12L
θc

ϕ(1− ϕ)2ϕt = k04θ + k ∗ 4θ + rH −
r

θ2
H
θ

∇ϕ · n|∂Ω = 0, θ|∂Ω = θΓ

ϕ(x, 0) = ϕ0(x), θ(x, 0) = θ0,

where

rH = −∇ ·
(qH
θ

)
+

2r
θH

=
∫ ∞

0
k(t+ s)4θ0(s)ds+

2r
θH

is a known function of x and t.
Let us require the following additional assumptions:

(H6) rH ∈ L2(QT );
(H7) there exists δ > 1 such that b = inf{r(x, t) : (x, t) ∈ QT } ≥ − k0θ2∗

δλ1(Ω) .

We introduce here a family of approximating problems (Pε), ε ∈ (0, 1].
More precisely, for each ε ∈ (0, 1], we denote by gε the Yosida regularization
of the function g(ϕ) = 12Lϕ(ϕ− 1)2 and consider the problem

(Pε)



ϕt = κ4ϕ+ 12Lϕ2(1− ϕ)− gε(ϕ)
θ

θc

α(ln θ)t −
1
θc
gε(ϕ)ϕt = k04θ + k ∗ 4θ + rH −

r

θ2
H
θ

∇ϕ · n|∂Ω = 0, θ|∂Ω = θΓ

ϕ(x, 0) = ϕ0(x), θ(x, 0) = θ0ε,

where the initial data θ0ε are chosen with the following properties

θ0ε ∈ H1(Ω), θ∗ ≤ θ0ε ≤ θ∗, for any ε ∈ (0, 1]

and

θ0ε → θ0 in L2(Ω) and a.e. in Ω as ε→ 0.

The existence of a solution (ϕε, θε) to (Pε) is obtained with the same tech-
nique used in [6], where the authors prove the existence of a solution (ϕ, θ)
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to problem

(P ′)



ϕt = κ4ϕ− ξ − σ′(ϕ)− λ′(ϕ)
θ

θc

α(ln θ)t −
1
θc
λ′(ϕ)ϕt = k04θ + k ∗ 4θ +R

ξ ∈ β(ϕ)
∇ϕ · n|∂Ω = 0, θ|∂Ω = θΓ

ϕ(x, 0) = ϕ0(x), θ(x, 0) = θ0

such that

ϕ ∈ L2(0, T,H2(Ω)) ∩H1(0, T, L2(Ω))
θ ∈ L2(0, T,H1(Ω)), θ > 0 a.e. in QT

ln θ ∈ L∞(0, T, L2(Ω)) ∩H1(0, T,H−1(Ω)).

Here λ′ and σ′ are Lipschitz continuous functions and β is a maximal mono-
tone graph. With the identifications

λ′ = gε, β(ϕ) = 12L(ϕ3 − ϕ2 + ϕ), σ′(ϕ) = −12Lϕ ,

λ′, σ′ are Lipschitz continuous functions and β is monotone. Since the addi-
tional term r

θ2H
θ is linear in θ, existence of solutions to (Pε) can be proved as

in [6] with minor modifications. Accordingly, the following theorem holds.

Theorem 3.1. For any ε ∈ (0, 1], problem (Pε) admits at least a solution
(ϕε, θε) such that

ϕε ∈ L2(0, T,H2(Ω)) ∩H1(0, T, L2(Ω))
θε ∈ L2(0, T,H1(Ω)), θε > 0 a.e. in QT

ln θε ∈ L∞(0, T, L2(Ω)) ∩H1(0, T,H−1(Ω)).

Remark 3.1. Since θε > 0 and ϕεgε(ϕε) ≥ 0, owing to Proposition 2.1,
each solution of (Pε) satisfies

0 ≤ ϕε ≤ 1, a.e. in QT . (3.9)

We prove now that a solution (ϕε, θε) of problem (Pε) converges to a
solution (ϕ, θ) of (P ) as ε → 0. To this purpose we deduce some a priori
estimates which ensure the boundedness of (ϕε, θε) uniformly with respect
to ε.

In the subsequent inequalities we denote by c any positive constant in-
dependent of ε. Moreover, we will repeatedly use the Hölder and Young
inequalities with suitable choices of the constants.
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Lemma 3.1. If (ϕε, θε) is a solution to (Pε), there exists a constant c such
that

‖ϕε‖L∞(0,T,H1(Ω))∩H1(0,T,L2(Ω)) + ‖uε‖L2(0,T,H1
0 (Ω)) + ‖θε‖L∞(0,T,L1(Ω)) ≤ c.

(3.10)

Proof. Let us multiply the first equation of (Pε) by ϕεt, the second by
uε = θε − θH and integrate over Qt. We obtain∫

Qt

(
ϕ2
εt + k0|∇uε|2

)
dxds (3.11)

+
∫

Ω

[κ
2
|∇ϕε(t)|2 + 3Lϕ4

ε(t) +Gε(ϕε(t))
θH
θc

+ αθε(t)
]
dx = I1 + I2 + I3 ,

where

I1 =
∫

Ω

[
4Lϕ3

ε(t) + αθH ln θε(t)
]
dx

I2 =
∫
Qt

[
− (k ∗ ∇uε) · ∇uε +

(
rH −

r

θH

)
uε −

r

θ2
H
u2
ε

]
dxds

I3 =
∫

Ω

[κ
2
|∇ϕ0|2 + 3Lϕ4

0 − 4Lϕ3
0 +Gε(ϕ0)

θH
θc

+ αθ0ε − αθH ln θ0ε

]
dx

and

Gε(r) =
∫ r

0
gε(s)ds.

From inequalities (3.4) and (3.9) we deduce

I1 ≤ c+ c

∫
Ω

ln θε(t)dx ≤ c+
α

2

∫
Ω
θε(t)dx.

In view of identity (3.2) we obtain

I2 ≤
∫
Qt

|[k(0)(1 ∗ ∇uε) + k′ ∗ 1 ∗ ∇uε] · ∇uε|dxds

+
[
‖rH‖L2(Qt) +

1
θ∗
‖r‖L2(Qt)

]
‖uε‖L2(Qt) − b

∫
Qt

u2
ε

θ2
H
dxds,

so that by means of (3.3) and (3.7) we prove

I2 ≤ (|k(0)|+ ‖k′‖L1(0,T ))‖1 ∗ ∇uε‖L2(Qt)‖∇uε‖L2(Qt)

+ λ1(Ω)
[
‖rH‖L2(Qt) +

1
θ∗
‖r‖L2(Qt)

]
‖∇uε‖L2(Qt) + max{0,−b} 1

θ2
∗
‖uε‖2L2(Qt)

.
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By virtue of (H7), it follows

I2 ≤
k0

δ
‖∇uε‖2L2(Qt)

+ c

∫ t

0
‖∇uε‖2L2(Qs)ds+ c.

Finally, assumptions (H3) and (3.4) prove the boundedness of I3.
Substitution into (3.11) yields

‖ϕεt‖2L2(Qt)
+ k0

(δ − 1)
δ
‖∇uε‖2L2(Qt)

+
κ

2
‖∇ϕε(t)‖2 + 3L‖ϕε(t)‖4L4(Ω)

+
∫

Ω

[
Gε(ϕε(t))

θH
θc

+
α

2
θε(t)

]
dx ≤ c+ c

∫ t

0
‖∇uε‖2L2(Qs)ds.

Therefore, Gronwall’s inequality implies (3.10). �

Remark 3.2. By comparison with (Pε), using (3.10), we prove the inequal-
ities

‖4ϕε‖L2(QT ) ≤ c, (3.12)

‖(ln θε)t‖L2(0,T,H−1(Ω)) ≤ c. (3.13)

Lemma 3.2. Let (ϕε, θε) be a solution to (Pε), then

‖ ln θε‖L2(QT ) ≤ c. (3.14)

Proof. Let us integrate the second equation of the problem (Pε) in the time
interval (0, t), thus obtaining

α(ln θε − ln θ0ε)−
1
θc

[Gε(ϕε)−Gε(ϕ0)] (3.15)

= k0 ∗ 4θε + 1 ∗ k ∗ 4θε + 1 ∗
(
rH −

r

θH
− r

θ2
H
uε

)
.

By subtracting to both sides α ln θH, multiplying by −4uε = −4θε and
integrating in Qt we deduce∫

Qt

α∇(ln θε − ln θH) · ∇θεdxds+
k0

2
‖1 ∗ 4uε(t)‖2

=
∫
Qt

[
α(ln θH − ln θ0ε)4uε −

1
θc

[Gε(ϕε)−Gε(ϕ0)]4uε

−(1 ∗ k ∗ 4uε)4uε − 1 ∗
(
rH −

r

θH
− r

θ2
H
uε

)
4uε

]
dxds.

Hence,∫
Qt

α

θε
|∇θε|2dxds+

k0

2
‖1 ∗ 4uε(t)‖2 =

∫
Ω
α(ln θH − ln θ0ε)1 ∗ 4uε(t)dx
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+
∫
Qt

{ α

θH
∇θH · ∇θε −

1
θc

[Gε(ϕε)−Gε(ϕ0)]4uε

−(1 ∗ k ∗ 4uε)4uε − 1 ∗
(
rH −

r

θH
− r

θ2
H
uε

)
4uε

}
dxds. (3.16)

In order to estimate the right hand side of the previous equation notice that
relations (3.4), (3.5) and (3.10) imply

α

∫
Ω

(ln θH − ln θ0ε)1 ∗ 4uε(t)dx ≤ α‖ ln θH − ln θ0ε‖‖1 ∗ 4uε(t)‖

≤ c+
k0

16
‖1 ∗ 4uε(t)‖2,∫

Qt

α

θH
∇θH · ∇θεdxds

≤ α

θ∗
‖∇θH‖L2(QT )(‖∇uε‖L2(QT ) + ‖∇θH‖L2(QT )) ≤ c.

Moreover, an integration by parts yields

1
θc

∫
Qt

[Gε(ϕε)−Gε(ϕ0)]4uεdxdt

=
1
θc

∫
Ω

[Gε(ϕε(t))−Gε(ϕ0)](1 ∗ 4uε)(t)dx−
1
θc

∫
Qt

gε(ϕε)ϕεt(1 ∗ 4uε)dxds,

so that (3.10) provides the estimate

1
θc

∫
Qt

[Gε(ϕε)−Gε(ϕ0)]4uεdxds

≤ 1
θc
‖Gε(ϕε(t))−Gε(ϕ0)‖‖1 ∗ 4uε(t)‖+ c

∫ t

0
‖ϕεt(s)‖‖1 ∗ 4uε(s)‖ds

≤ c+
k0

16
‖1 ∗ 4uε(t)‖2 + c

∫ t

0
‖1 ∗ 4uε(s)‖2ds.

In view of the identity (3.2) we deduce∫
Qt

(k ∗ 1 ∗ 4uε)4uεdxds

=
∫

Ω
(k ∗ 1 ∗ 4uε)(t)(1 ∗ 4uε)(t)dx−

∫
Qt

(k ∗ 1 ∗ 4uε)t(1 ∗ 4uε)dxds

≤ k0

16
‖(1 ∗ 4uε)(t)‖2 + c‖(k ∗ 1 ∗ 4uε)(t)‖2
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+
∫
Qt

[|k(0)|(1 ∗ 4uε)2 + |(k′ ∗ 1 ∗ 4uε)(1 ∗ 4uε)|]dxds.

Hence, owing to (3.3) we obtain∫
Qt

(k ∗ 1 ∗ 4uε)4uεdxds ≤
k0

16
‖(1 ∗ 4uε)(t)‖2

+c(‖k‖2L2(0,T ) + |k(0)|+ ‖k′‖L1(0,T ))
∫ t

0
‖1 ∗ 4uε(s)‖2ds.

Finally, last integral in (3.16) can be estimated as∫
Qt

1 ∗
(
rH −

r

θH
− r

θ2
H
uε

)
4uεdxds

=
∫

Ω
1 ∗
(
rH −

r

θH
− r

θ2
H
uε

)
(t)(1 ∗ 4uε)(t)dx

−
∫
Qt

(
rH −

r

θH
− r

θ2
H
uε

)
(1 ∗ 4uε)dxds

≤ c
[
‖rH‖2L2(QT ) + ‖r‖2L2(QT ) + ‖r‖2L∞(QT )‖uε‖

2
L2(QT )

]
+
k0

16
‖(1 ∗ 4uε)(t)‖2 +

∫ t

0
‖1 ∗ 4uε(s)‖2ds.

Substitution of the previous inequalities into (3.16) leads to∫
Qt

α

θε
|∇θε|2dxds+

k0

4
‖(1 ∗ 4uε)(t)‖2 ≤ c

∫ t

0
‖1 ∗ 4uε(t)‖2dt+ c.

Therefore, Gronwall’s inequality yields

‖1 ∗ 4uε‖2L∞(0,T,L2(Ω)) ≤ c

and substituting into (3.15) we obtain

‖ ln θε‖2L∞(0,T,L2(Ω)) ≤ c.

Hence (3.14) holds. �

The a priori estimates proved in the previous lemmas allow to pass to the
limit as ε→ 0 and to obtain a solution (ϕ, θ) of problem (P ).

Theorem 3.2. If assumptions (H1)−(H7) are satisfied, problem (P ) admits
at least a solution (ϕ, θ) such that

ϕ ∈ L2(0, T,H2(Ω)) ∩H1(0, T, L2(Ω))
θ ∈ L2(0, T,H1(Ω)), θ > 0 a.e. in QT
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ln θ ∈ L∞(0, T, L2(Ω)) ∩H1(0, T,H−1(Ω)).

Moreover, 0 ≤ ϕ ≤ 1 a.e. in QT .

Proof. Inequalities (3.10), (3.12), (3.13) and (3.14), prove, up to subse-
quences, the following convergences

ϕε → ϕ weakly in L2(0, T,H2(Ω)) and in H1(0, T, L2(Ω)) (3.17)

uε → u weakly in L2(0, T,H1
0 (Ω)) (3.18)

ln θε → ` weakly in L2(QT ) and in H1(0, T,H−1(Ω)) (3.19)

and in view of (3.6)

θε → θ weakly in L2(0, T,H1(Ω)) . (3.20)

Therefore, the compact embeddings H2(Ω) ↪→ H1(Ω), L2(Ω) ↪→ H−1(Ω)
yield

ϕε → ϕ strongly in L2(0, T,H1(Ω)),
ln θε → ` strongly in L2(0, T,H−1(Ω)).

Accordingly, ([19, p.12])

12Lϕ2
ε(1− ϕε)→ 12Lϕ2(1− ϕ) = g(ϕ) weakly in L2(QT ).

From the inequality

|gε(ϕε)− g(ϕ)| ≤ |gε(ϕε)− gε(ϕ)|+ |gε(ϕ)− g(ϕ)|
≤ c|ϕε − ϕ|+ |gε(ϕ)− g(ϕ)|,

we deduce gε(ϕε) → g(ϕ) strongly in L2(QT ) and thanks to (3.17), (3.20)
we obtain

gε(ϕε)θε → 12Lϕ2(1− ϕ)θ weakly in L2(QT )
gε(ϕε)ϕεt → 12Lϕ2(1− ϕ)ϕt weakly in L2(QT ).

In order to prove the convergence of the logarithmic term, we observe that∫
QT

θε ln θεdxdt =
∫
QT

(uε + θH) ln θεdxdt→ 〈`, u〉+
∫
QT

θH`dxdt,

where 〈·, ·〉 denotes the duality pairing between L2(0, T,H1
0 (Ω)) and L2(0, T,

H−1(Ω)). Hence, ` = ln θ a.e. in QT (see [3, p.42]).
Finally, Proposition 2.1 proves the boundedness of ϕ. �
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4. Uniqueness of the solution

This section is devoted to prove uniqueness of the solution to problem (P ).
In particular we state a theorem which shows the continuous dependence on
the data.

Theorem 4.1. Let (ϕ1, θ1), (ϕ2, θ2) be two solutions of the problem (P ) with
data ϕ01, θ01, θΓ1, rH1, r1 and ϕ02, θ02, θΓ2, rH2, r2 satisfying (H2) − (H7),
then the following inequality holds

‖ϕ1(t)− ϕ2(t)‖2 + ‖∇ϕ1 −∇ϕ2‖2L2(Qt)

+
∫
Qt

(ln θ1 − ln θ2)(θ1 − θ2)dxds+ ‖1 ∗ ∇(u1 − u2)(t)‖2

≤M [‖r1 − r2‖L∞(Qt) + ‖rH1 − rH2‖2L2(Qt)
+ ‖d01 − d02‖2

+‖θΓ1 − θΓ2‖2H1/2(∂Ω)
+ ‖θΓ1 − θΓ2‖H1/2(∂Ω)] , (4.1)

where
d0i = α ln θ0i −

1
θc

(1
4
ϕ4

0i −
2
3
ϕ3

0i +
1
2
ϕ2

0i

)
, i = 1, 2

and M > 0 depends on ϕ0i, θ0i, θΓi, rHi, ri, i = 1, 2.

Proof. Let us integrate the second equation of (P ) over the time interval
(0, t)

α ln θ − k0 ∗ 4θ − 1 ∗ k ∗ 4θ (4.2)

=
L

θc

(
3ϕ4 − 8ϕ3 + 6ϕ2

)
+ 1 ∗

(
rH −

r

θ2
H
θ
)
− L

θc

(
3ϕ4

0 − 8ϕ3
0 + 6ϕ2

0

)
.

By letting

ϕ = ϕ1−ϕ2, θ = θ1−θ2, θH = θH1−θH2, rH = rH1−rH2, d0 = d01−d02 ,

from the first equation of (P ) and (4.2), we obtain

ϕt − κ4ϕ = 12L[ϕ2
1(1− ϕ1)− ϕ2

2(1− ϕ2)]

− 12L
θc

[θ1ϕ1(1− ϕ1)2 + θ2ϕ2(1− ϕ2)2], (4.3)

α(ln θ1 − ln θ2)− k0 ∗ 4θ − 1 ∗ k ∗ 4θ

=
L

θc

[
3(ϕ4

1 − ϕ4
2)− 8(ϕ3

1 − ϕ3
2) + 6(ϕ2

1 − ϕ2
2)
]

+ 1 ∗ rH − 1 ∗
(
r1

θ2
H1

θ1 −
r2

θ2
H2

θ2

)
+ d0 . (4.4)
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Multiplication of (4.3) by ϕ and (4.4) by u = u1 − u2 = θ − θH provides
1
2
‖ϕ(t)‖2 + κ‖∇ϕ‖2L2(Qt)

+ α

∫
Qt

(ln θ1 − ln θ2)θdxds

+
k0

2
‖1 ∗ ∇u(t)‖2 = J1 + J2 + J3 + J4, (4.5)

where

J1 = 12L
∫
Qt

[
ϕ2

1(1− ϕ1)− ϕ2
2(1− ϕ2)− θH1

θc
ϕ1(1− ϕ1)2

+
θH2

θc
ϕ2(1− ϕ2)2

]
ϕdxds

J2 =
L

θc

∫
Qt

[
3(ϕ4

1 − ϕ4
2)− 8(ϕ3

1 − ϕ3
2) + 6(ϕ2

1 − ϕ2
2)
]
udxds

− 12L
θc

∫
Qt

[u1ϕ1(1− ϕ1)2 − u2ϕ2(1− ϕ2)2]ϕdxds

J3 =
∫
Qt

[
1 ∗ k ∗ ∇u · ∇u− 1 ∗

( r1

θ2
H1

u1 −
r2

θ2
H2

u2 +
r1

θH1
− r2

θH2

)
u
]
dxds

J4 =
∫
Qt

[(1 ∗ rH + d0)u− α(ln θ1 − ln θ2)θH] dxds.

Let us estimate each integral Ji, i = 1, ..., 4. Concerning J1, we have

J1 = 12L
∫
Qt

[
(ϕ1 + ϕ2)ϕ2 − (ϕ2

1 + ϕ1ϕ2 + ϕ2
2)ϕ2 − 1

θc
ϕ1(1− ϕ1)2ϕθH

− θH2

θc
(1 + ϕ2

1 + ϕ1ϕ2 + ϕ2
2)ϕ2 +

2θH2

θc
(ϕ1 + ϕ2)ϕ2

]
dxds

≤ 12L
∫
Qt

[
(ϕ1 + ϕ2)ϕ2 − 1

θc
ϕ1(1− ϕ1)2θHϕ+

2θH2

θc
(ϕ1 + ϕ2)ϕ2

]
dxds.

The boundedness of ϕ1, ϕ2 and inequalities (3.4), (3.5) imply

J1 ≤ c‖ϕ‖2L2(Qt)
+ c

∫ t

0

[
‖θH‖+ ‖ϕ(s)‖

]
‖ϕ(s)‖ds

≤ c‖ϕ‖2L2(Qt)
+ c‖θΓ‖2H1/2(∂Ω)

. (4.6)

The second integral J2 can be written as

J2 =
1
θc

∫
Qt

[
−u1

(
9ϕ2

1 + 6ϕ1ϕ2 + 3ϕ2
2 − 16ϕ1 − 8ϕ2 + 6

)
+ u2

(
9ϕ2

2 + 6ϕ1ϕ2 + 3ϕ2
1 − 16ϕ2 − 8ϕ1 + 6

)]
ϕ2dxds.
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Hence, Proposition 2.1 yields

J2 ≤ c
∫
Qt

(|u1|+ |u2|)ϕ2dxds (4.7)

≤ ν
∫ t

0
‖∇ϕ(s)‖2ds+ c

∫ t

0
[‖u1(s)‖2H1(Ω) + ‖u2(s)‖2H1(Ω)]‖ϕ(s)‖2ds

for each ν > 0.
Now we consider the third integral J3. We obtain

J3 =
∫
Qt

1 ∗ k ∗ ∇u · ∇udxds

−
∫
Qt

1 ∗
[ r1

θ2
H1

u+
u2

θ2
H2

r − (θH1 + θH2)r2u2

θ2
H1θ

2
H2

θH +
r

θH1
− r2

θH1θH2
θH

]
udxds.

An integration by parts yields

J3 =
∫

Ω
(1 ∗ k ∗ ∇u)(t) · (1 ∗ ∇u)(t)dx−

∫
Qt

∂t(k ∗ 1 ∗ ∇u)(1 ∗ ∇u)dxds

−
∫

Ω
1 ∗
[
r1

θ2
H1

u+
u2

θ2
H2

r − (θH1 + θH2)r2u2

θ2
H1θ

2
H2

θH +
r

θH1
− r2

θH1θH2

]
(t)

× (1 ∗ u)(t)dx

+
∫
Qt

1 ∗
[
r1

θ2
H1

u+
u2

θ2
H2

r − (θH1 + θH2)r2u2

θ2
H1θ

2
H2

θH +
r

θH1
− r2

θH1θH2
θH

]
× (1 ∗ u)dxds .

Hence, by using inequalities (3.2) and (3.4) we have

J3 ≤ ‖1 ∗ k ∗ ∇u(t)‖‖1 ∗ ∇u(t)‖+ |k(0)|‖1 ∗ ∇u‖2L2(Qt)

+‖k′ ∗ 1 ∗ ∇u‖L2(Qt)‖1 ∗ ∇u‖L2(Qt)

+
1
θ∗

[
‖1 ∗ u(t)‖+ ‖1 ∗ u‖L2(Qt)

] [ 1
θ∗
‖u2‖L2(Qt)‖r‖L∞(Qt)

+
2θ∗

θ3
∗
‖r2‖L∞(Qt)‖u2‖L2(0,t,L4(Ω))‖θH‖L4(Ω)

+‖r‖L2(Qt) +
1
θ∗
‖r2‖L∞(Qt)‖θH‖L2(Qt)

]
−
∫

Ω

∫ t

0

r1

θ2
H1

uds(1 ∗ u)(t)dx+
∫

Ω

∫ t

0

r1

θ2
H1

u(1 ∗ u)dsdx. (4.8)
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A further integration by parts in the last two terms and (H7) provide

−
∫

Ω

∫ t

0

r1

θ2
H1

uds(1 ∗ u)(t)dx+
∫

Ω

∫ t

0

r1

θ2
H1

u(1 ∗ u)dxds

=
∫

Ω

{
− r1

2θ2
H1

[(1 ∗ u)(t)]2 +
∫ t

0

r1t

θH1
(1 ∗ u)ds(1 ∗ u)(t)

−
∫ t

0

r1t

2θ2
H1

[(1 ∗ u)(s)]2ds
}
dx

≤ max{0,− b

2θ2
∗
}‖(1 ∗ u)(t)‖2

+c‖r1t‖L∞(Qt)

[
‖(1 ∗ u)(t)‖+ ‖1 ∗ u‖L2(Qt)

]
‖1 ∗ u‖L2(Qt) .

Substitution into (4.8) and use of (3.5), (3.7), (3.10) yield

J3 ≤ c
[
‖1 ∗ ∇u‖2L2(Qt)

+ ‖r‖2L∞(Qt)
+ ‖θΓ‖2H1/2(∂Ω)

]
(4.9)

+
(
ν +

k0

2δ

)
‖1 ∗ ∇u(t)‖2

for each ν > 0.
Finally, last integral J4 can be controlled by using (3.5), (3.14), as

J4 ≤ ν‖1 ∗ ∇u(t)‖2 + c(‖rH‖2L2(Qt)
+ ‖1 ∗ ∇u(t)‖2L2(Qt)

+ ‖d0‖2)

+α(‖ ln θ1‖L1(0,T,L2(Ω)) + ‖ ln θ2‖L1(0,T,L2(Ω)))‖θH‖
≤ ν‖1 ∗ ∇u(t)‖2 + c(‖rH‖2L2(Qt)

+ ‖1 ∗ ∇u(t)‖2L2(Qt)

+‖d0‖2 + ‖θΓ‖H1/2(∂Ω)). (4.10)

Collecting (4.6), (4.7), (4.9), (4.10) and choosing the constant ν, from (4.5)
we deduce

1
2
‖ϕ(t)‖2 +

κ

2
‖∇ϕ‖2L2(Qt)

+ α

∫
Qt

(ln θ1 − ln θ2)θdxds

+
k0

4

(
1− 1

δ

)
‖1 ∗ ∇u(t)‖2

≤
∫ t

0

[
φ1(s)‖ϕ(s)‖2 + c‖1 ∗ ∇u(s)‖2

]
dxds+ φ2(t) ,

where

φ1(t) = c[1 + ‖u1(t)‖2H1(Ω) + ‖u2(t)‖2H1(Ω)]

φ2(t) = c[‖θΓ‖2H1/2(∂Ω)
+ ‖r‖2L∞(Qt)

+ ‖rH‖2L2(Qt)
+ ‖d0‖2 + ‖θΓ‖H1/2(∂Ω)] .
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Therefore, Gronwall’s inequality provides

‖ϕ(t)‖2 + ‖∇ϕ‖2L2(Qt)
+
∫
Qt

(ln θ1 − ln θ2)θdxds+ ‖1 ∗ ∇u(t)‖2

≤
∫ t

0
φ1(s)φ2(s)e

R t
s φ1(τ)dτds+ φ2(t),

so that (4.1) holds. �

5. Stability

In this section we deduce some energy estimates that prove the stability
of the solution to problem (P ). To this aim we assume

E(ϕ,∇ϕ, θ,∇ũ) =
∫

Ω

[κ
2
|∇ϕ|2 + 3L

θH
θc
ϕ2
(
ϕ2 + 2

)
+ αθ

]
dx

−
∫

Ω

∫ ∞
0

k′(s)
2
|∇ũ(s)|2dsdx

which is positive definite because of the inequalities

κ, α, L, θc > 0 and θH ≥ θ∗ > 0 a.e. in Ω , k′ ≤ 0 in R+ .

Theorem 5.1. Let (H2) and (H7) be respectively replaced by the stronger
conditions
(H2′) r ∈ L1 ∩ L∞(R+, L∞(Ω)) ,

(H7′) b = inf{r(x, t) : (x, t) ∈ Ω× R+} ≥ − k0 θ
2
∗

δλ1(Ω)
for some δ > 1.

Then for all t > 0 there exist m0, m1 > 0 such that E(t) ≤ m0 E(0) +m1.

Proof. Let us multiply (2.20) by ϕt and (3.8) by u. By integrating over Ω
we obtain

‖ϕt‖2 + k0‖∇u‖2 +
∫

Ω

∫ ∞
0

k(s)∇ut(s)ds · ∇udx

+
∫

Ω

[
κ∇ϕ · ∇ϕt − 12Lϕ2(1− ϕ)ϕt (5.1)

+12L
θH
θc
ϕ(1− ϕ)2ϕt + αθt + α(ln θ)tθH

]
dx =

∫
Ω

r

θH

(
2− θ

θH

)
udx.

After an integration by parts, the term involving the kernel memory can be
written as ∫ ∞

0
k(s)∇ut(s)ds · ∇u = −

∫ ∞
0

k′(s)∇ũt(s)ds · ∇u
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= −∂t
∫ ∞

0

k′(s)
2
|∇ũt(s)|2ds+

∫ ∞
0

k′′(s)
2
|∇ũt(s)|2ds.

Substitution into (5.1) yields

‖ϕt‖2+k0‖∇u‖2+
∫ ∞

0

k′′(s)
2
‖∇ũt(s)‖2ds+dΦ

dt
=
∫

Ω

r

θH

(
2− θ

θH

)
u dx, (5.2)

where

Φ = E +
∫

Ω

[
3Lϕ4 − 4L

(
1 +

2θH
θc

)
ϕ3 + c1

]
dx+

∫
Ω

(c1 − αθH ln θ) dx

and c1 is a suitable positive constant. Now, we choose c1 (large) and c0

(small) such that∫
Ω

[
3Lϕ4 − 4L

(
1 +

2θH
θc

)
ϕ3 + c1

]
dx ≥ c0

∫
Ω

3L
θH
θc
ϕ2
(
ϕ2 + 2

)
dx ≥ 0.

Moreover, the inequality ln θ ≤
√
θ and the bounds (3.4) imply∫

Ω
[αθ − αθH ln θ + c1]dx ≥

∫
Ω

[αθ − αθ∗
√
θ + c1]dx ≥ c0

∫
Ω
αθ dx > 0

provided that c1 is sufficiently large and c0 is sufficiently small. Accordingly,
the functional Φ turns out to be positive and such that

c0E ≤ Φ ≤ c2E + c3 .

In the case r ≡ 0, from (5.2) we have dΦ/dt ≤ 0 and then

E(t) ≤ 1
c0

Φ(t) ≤ 1
c0

Φ(0) ≤ c2

c0
E(0) +

c3

c0
. (5.3)

When r 6= 0, from (H7′) the right-hand side of (5.2) can be estimated by∫
Ω

r(t)
θH

(
2− θ(t)

θH

)
u(t) dx =

∫
Ω
r(t)

(θ(t)
θH
− 1− u2(t)

θ2
H

)
dx

≤ ‖r(t)‖L∞(Ω)

[ ∫
Ω

θ(t)
θH

dx+ |Ω|
]

+ max{0,− b

θ2
∗
}‖u(t)‖2

≤ 1
θ∗
‖r(t)‖L∞(Ω)

[ ∫
Ω
θ(t)dx+ θ∗|Ω|

]
+
k0

δ
‖∇u(t)‖2 .

By substituting into (5.2) and using (5.3), we obtain

dΦ(t)
dt

≤ 1
αθ∗
‖r(t)‖L∞(Ω) [E(t) + αθ∗|Ω|] ≤ ρ(t)[Φ(t) + c] ,
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where ρ(t) = ‖r(t)‖L∞(Ω)/c0αθ∗ and c = c0αθ∗|Ω|. In view of (H2′), ρ ∈
L1(R+) and by the Gronwall lemma we deduce

Φ(t) ≤ exp
(∫ t

τ
ρ(ξ) dξ

)
Φ(τ) +M1 .

and then
Φ(t) ≤M0Φ(0) +M1 ,

where M0 =
∫∞

0 ρ(ξ) dξ. Hence

E(t) ≤ 1
c0

Φ(t) ≤ M0

c0
Φ(0) +

M1

c0
≤ M0c2

c0
E(0) +

M0c3

c0
+
M1

c0
.

and the thesis follows by letting

m0 =
M0c2

c0
and m1 =

M0c3

c0
+
M1

c0
.
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