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Abstract

A phase-field system which describes the evolution of both the absolute temperature θ and the phase variable f during first-order transitions
in thermal insulators is considered. A thermodynamic approach is developed by regarding the order parameter as a phase field and its evolution
equation as a balance law. By virtue of the special form of the internal energy, a third-order nonlinearity G′

2( f ) appears in the energy balance
in place of the (customarily constant) latent heat. As a consequence, the bounds 0 ≤ f ≤ 1 hold whenever θ is positive valued. In addition,
a nonlinear Fourier law with conductivity proportional to temperature is assumed. Well-posedness for the resulting initial and boundary value
problem are then established in a suitable setting.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we investigate the well-posedness of a
phase-field model describing temperature-induced solid–liquid
transitions in materials whose thermal conductivity increases
linearly with the temperature. The full model is developed in
Section 2, regarding the order parameter f of the transition as
a phase field f (x, t) which changes smoothly in the domain
Ω ⊂ R3. As is customary, f represents the solid concentration,
and f = 0 for the fluid phase, f = 1 for the solid phase. In
the cylinder Ω × (0, T ) the evolution of the phase field f (x, t)
and the absolute temperature θ(x, t) is ruled by the following
system:

ft − κ1 f + G ′

1( f )+
θ

θc
G ′

2( f ) = 0 (1.1)
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∂t

(
α(θ)−

1
θc

G2( f )
)

− k01θ = R (1.2)

endowed with initial and Neumann–Dirichlet boundary
conditions. Here and in the sequel ∂t , as well as the subscript
·t , denote differentiation with respect to time.

The kinetic equation governing the phase-field evolution
is derived here from a balance law along the lines of [9,
10]. It takes the form of the non-isothermal Ginzburg–Landau
equation (1.1), where θc is the temperature transition value
(see [13]). As is customary in first-order transitions, the
function G = G1 + G2 provides the so-called “double-well
potential” which has two wells of equal depth located at f = 0
and f = 1. When θ = θc, only two bulk (i.e. stationary and
uniform) stable equilibrium solutions to (1.1) exist: f (x, t) = 0
and f (x, t) = 1.

In order to derive (1.2), a nonlinear Fourier heat conduction
law with conductivity proportional to temperature is assumed,
namely

q(t) = −k0θ(t)∇θ(t).

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
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This is the case when insulating media are considered
(see [17]). In water, for instance, the heat transfer is mainly
due to convection, so ice looks like a thermal insulator (the
igloo is based on this property) and the same holds true for
water at rest. To check whether this system is in agreement
with thermodynamics, we define the second law by means of
the Clausius–Duhem inequality. Accordingly, we take a suitable
choice of the free energy density ψ and, after multiplying by
1/θ and neglecting some terms, the energy balance equation
yields (1.2) with α(θ) = ln θ .

Phase-field models like (1.1) and (1.2) have been extensively
studied (see, for instance, [6,12] and references therein) and
applied to realistic materials problems [14]. In the standard
Caginalp model [7], α and G2 are linear in θ and f ,
respectively. Penrose and Fife in [20] proposed a different class
of models where G2 has (at most) quadratic growth. Some
solidification models (see, for instance, [22,23]) assume that
G2 has degree 3 or 5. Finally, in [8] a cubic nonlinearity G2
is scrutinized in order to model superheating and undercooling.

According to [14], the choice of G2 with an odd degree is
motivated by making more efficient numerical simulations in
the small undercooling regime. Nevertheless, there is no reason
to rule out G2 being even. Thus, following [9], we assume G1,
G2 to be fourth-order polynomials such that

G1( f )+ G2( f ) = G( f ) = 6L f 2(1 − f )2 (1.3)

and the following properties of solutions to (1.1) hold:

P.1 — f (x, t) = 0 and f (x, t) = 1 correspond to bulk
solid and liquid equilibrium states for all values of the
temperature θ ,

P.2 — at θ = θc both states are stable, and a change of stability
occurs when θ < θc or θ > θc,

P.3 — superheating and undercooling are allowed when θ lies
in a neighborhood of θc.

It is worth noting that P.1 cannot be satisfied when the
polynomial degree of G ′

1 and G ′

2 is lower than 2. Thus,
neither Caginalp nor Penrose–Fife models agree with P.1.
Assuming (1.3), if G2 is a cubic nonlinearity then the validity
of P.2 and P.3 is restricted to a suitable neighborhood of θc,
but no restriction occurs when G2 has degree 5 [22]. As
newly remarked in [9], properties P.1–P.3 are fulfilled for any
temperature even when G1 and G2 are suitable fourth-order
functions, namely

G1( f ) = L(3 f 4
− 4 f 3) and

G2( f ) = L(3 f 4
− 8 f 3

+ 6 f 2).

What is more, this choice enables one to prove the boundedness
of f (see Proposition 2.1),

0 ≤ f (x, t) ≤ 1, (1.4)

provided that 0 ≤ f (x, 0) ≤ 1 and θ(x, t) > 0 for all t > 0.
Well-posedness of the initial–boundary value problem

generated by (1.1) and (1.2) is proved here by means of
the following procedure. First we construct a sequence Gε

2
of functions with Lipschitz derivative, approaching G2 and

behaving as well as G2 in (0, 1). Then, exploiting a recent
result of Colli et al. [2], we obtain existence, uniqueness and
positivity of the temperature when Gε

2 is considered in place
of G2. Even in this case P.1 is fulfilled. Then Proposition 2.1
applies and ensures that (1.4) holds for all ε. Finally, we pass
to the limit as ε → 0 and prove both uniform convergence
and uniqueness of solutions via energy methods. The novelty of
our result consists in obtaining the boundedness of the phase-
field solution directly in the customary setting of a double-well
potential, with no recourse to the interval indicator function
and its subdifferential, which are rather typical of the Stefan
problem with a sharp interface.

Assuming α(θ) = cθ and G2( f ) = L f , problems like (1.1)
and (1.2) were studied first in [7] and well-posedness has been
established. There, θ stands for the variation of the temperature
relative to the critical value, and its positivity is not expected.
In addition, in that model the boundedness of f is not implied.
Hence, in order to force the phase variable f to sit between 0
and 1, G1 is assumed to be – or include – the indicator function
I of the interval (0, 1) (see, for instance, [16]). This is the case
when a “mushy region” does exist at θ = θc, and all possible
values f ∈ [0, 1] are allowed at equilibrium, not only f = 0,
f = 1. Regarding the long time behavior and existence of
a maximal attractor for phase-field systems of this kind, the
reader is referred to, e.g., [15,21].

When α(θ) = cθ and G2( f ) is a quadratic nonlinearity,
phase-field systems like (1.1) and (1.2) are also useful for
describing ferromagnetic transformations (see, e.g., [20]). Well-
posedness and long time behavior results were proved first
in [18] via energy methods. Neither positivity of θ nor
boundedness of f are established.

Recently, in [2,3] a thorough investigation was carried out
for a more general model with thermal memory. In particular,
when α(θ) = ln θ , G2( f ) = L f and G1 = I , the indicator
function of the interval (0, 1), existence and uniqueness have
been shown jointly with positivity of the temperature field.

The plan of the paper is as follows. In Section 2, we
formulate the model in a proper thermodynamic setting and
prove Proposition 2.1. In Section 3 we obtain the existence
of one solution with positive temperature and bounded phase
field. Finally, in Section 4 we state uniqueness and continuous
dependence results.

2. Phase transition model

Let us consider a material occupying a bounded domain Ω
of R3 whose boundary ∂Ω has the unit normal vector n. We
assume that the mass density ρ is constant and for the sake of
simplicity we let ρ = 1. The state of the material is described
by the order parameter f , which represents the concentration of
the solid phase, and by the absolute temperature θ .

The evolution equation for the phase field is deduced from
the balance of the structure order, expressed through the
equation∫

S
kdx =

∫
∂S

p · nSda +

∫
S
σdx, (2.5)
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for any smooth subbody S ⊂ Ω with boundary ∂S and unit
normal vector nS . Here k is the internal structure order density,
p and σ are the structure order flux and supply. By applying the
divergence theorem to (2.5), we obtain the local formulation

k = ∇ · p + σ. (2.6)

In particular, in order to describe a first-order phase transition,
we consider the constitutive equations

k = ft + g1( f )+
θ

θc
g2( f ) (2.7)

p = κ∇ f, (2.8)

where θc is the critical temperature of the phase transition, κ is
a positive constant, g1, g2 are two functions depending on the
phase field f . Moreover we assume σ = 0.

Substitution into (2.6) leads to the differential equation

ft + g1( f )+
θ

θc
g2( f ) = κ1 f. (2.9)

The evolution equation for the temperature can be obtained
from the energy balance law, written in the local form as

h = −∇ · q + r,

where h is the rate at which heat is absorbed, q is the heat flux
vector and r is the heat supply. Moreover, in view of the first
law of thermodynamics

et = P i
+ h,

where e is the internal energy and P i denotes the internal action
power. Therefore

et = P i
− ∇ · q + r. (2.10)

In this model we neglect the internal mechanical power due
to macroscopic movements and assume that P i is the internal
structure order power, defined as

P i
= k ft + p · ∇ ft = f 2

t + ∂t G1( f )+
θ

θc
∂t G2( f )

+
κ

2
∂t (|∇ f |

2), (2.11)

with G1 and G2 such that G ′

1( f ) = g1( f ), G ′

2( f ) = g2( f ),
G1(0) = G2(0) = 0. Therefore Eq. (2.10) reads

∂t

[
e − G1( f )−

κ

2
|∇ f |

2
]

−
θ

θc
∂t G2( f )− f 2

t

= −∇ · q + r. (2.12)

The constitutive law for the heat flux is usually given by

q = −k(θ)∇θ,

where k(θ) is the thermal conductivity. When insulating
materials, for instance ice and water, are considered, the
conductivity is allowed to depend linearly on the temperature
[4,17], namely

q = −k0θ∇θ, (2.13)

with k0 > 0. Therefore Eq. (2.12) can be written as

∂t

[
e − G1( f )−

κ

2
|∇ f |

2
]

−
θ

θc
∂t G2( f )− f 2

t

= k0θ1θ + k0|∇θ |
2
+ r. (2.14)

Now, we prove that this model is compatible with the
second law of thermodynamics, expressed in terms of the
Clausius–Duhem inequality [11]

ηt ≥ −∇ ·

(q
θ

)
+

r
θ
, (2.15)

where η is the entropy. Relations (2.10), (2.11) and (2.15) imply

θηt ≥ et − k ft − p · ∇ ft +
1
θ

q · ∇θ.

By introducing the free energy ψ = e − θη, in view of the
representations (2.7) and (2.8), we have

ψt + ηθt − f 2
t −

[
g1( f )+

θ

θc
g2( f )

]
ft − κ∇ f · ∇ ft

+
1
θ

q · ∇θ ≤ 0.

Finally, from (2.13) we obtain the inequality

ψt ≤ −ηθt + f 2
t +

[
g1( f )+

θ

θc
g2( f )

]
ft + κ∇ f · ∇ ft

+ k0|∇θ |
2. (2.16)

By assuming ψ = ψ(θ, f,∇ f ), from the arbitrariness of
θt , ft ,∇ ft , we deduce

η = −
∂ψ

∂θ
, g1( f )+

θ

θc
g2( f ) =

∂ψ

∂ f
, κ∇ f =

∂ψ

∂∇ f
.

Hence

ψ(θ, f,∇ f ) = −C(θ)+ G1( f )+
θ

θc
G2( f )+

κ

2
|∇ f |

2

η(θ, f ) = c(θ)−
1
θc

G2( f ),

where C ′(θ) = c(θ). Substitution into (2.16) leads to the
reduced inequality

0 ≤ f 2
t + k0|∇θ |

2, (2.17)

which holds true and proves the thermodynamical consistency
of the model.

In order to specialize the system of differential equations
describing the evolution of this first-order phase-field model,
we choose

c(θ) = α0(1 + ln θ),

with α0 > 0, and

g1( f ) = 12L f 2( f − 1), g2( f ) = 12L f (1 − f )2, (2.18)

with L > 0. Accordingly

G1( f ) = L(3 f 4
− 4 f 3), G2( f ) = L(3 f 4

− 8 f 3
+ 6 f 2)

(2.19)
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and

ψ = −α0θ ln θ + L(3 f 4
− 4 f 3)+

L
θc
(3 f 4

− 8 f 3
+ 6 f 2)θ

+
κ

2
|∇ f |

2 (2.20)

η = α0(1 + ln θ)−
L
θc
(3 f 4

− 8 f 3
+ 6 f 2) (2.21)

e = ψ + θη = α0θ + L(3 f 4
− 4 f 3)+

κ

2
|∇ f |

2. (2.22)

In view of these choices, at the transition temperature θ =

θc, the free energy depends on the phase field f through the
term

L(3 f 4
− 4 f 3)+ L(3 f 4

− 8 f 3
+ 6 f 2)

θ

θc
= 6L f 2(1 − f )2,

which coincides with the usual double-well potential.
Moreover, since

θc[η(θc, 0)− η(θc, 1)] = L ,

the constant L can be identified with the latent heat absorbed
during the first-order transition.

In view of (2.19) and (2.22), the heat equation (2.14) takes
the form

α0θt −
12L
θc
θ f (1 − f )2 ft − f 2

t = k0θ1θ + k0|∇θ |
2
+ r.

Hereafter, we consider the approximation of this equation
obtained by neglecting the terms proportional to f 2

t and |∇θ |2,
namely

α0θt −
12L
θc
θ f (1 − f )2 ft = k0θ1θ + r. (2.23)

This means that the reduced inequality (2.17) holds as an
equality, and the thermodynamical consistency is still ensured.
By multiplying (2.23) by 1

θ
, we finally obtain

α0(ln θ)t −
12L
θc

f (1 − f )2 ft = k01θ +
r
θ
.

In the sequel we restrict our attention to special situations in
which either r = 0, or the temperature θ remains very close to
the transition temperature θc. If this is the case, the source r

θ

can be approximated by

r
θ

≈ r
[

1
θc

−
1
θ2

c
(θ − θc)

]
and this in turn implies the further approximation

α0(ln θ)t −
12L
θc

f (1 − f )2 ft = k01θ +
r
θc

(
2 −

θ

θc

)
. (2.24)

In view of (2.18), the phase-field evolution equation (2.9)
can be written in the form

ft = κ1 f + 12L f 2(1 − f )− 12L
θ

θc
f (1 − f )2. (2.25)

The differential equations (2.24) and (2.25) are completed
with a non-homogeneous Dirichlet condition for the temper-
ature and a Neumann boundary condition for the phase field,
namely

θ |∂Ω = θΓ (2.26)
∇ f · n|∂Ω = 0. (2.27)

As a preliminary result, we scrutinize Eq. (2.25) with boundary
condition (2.27) disregarding the heat equation (2.24) in the
system and assuming that θ is a given nonnegative field. In this
case we state that (2.25) and (2.27) lead to the boundedness
of the phase field. The proof is given in [9], where a different
system involving the same equation is considered.

Proposition 2.1. Given θ ≥ 0 in Ω × (0, T ), if f is a
solution to (2.25) and (2.27) with initial datum f (x, 0) = f0(x)
satisfying 0 ≤ f0 ≤ 1 a.e. in Ω , then

0 ≤ f ≤ 1, a.e. in Ω × (0, T ).

Remark 2.1. The boundedness of f can be proved even if
we replace g2( f ) = 12L f (1 − f )2 by µ( f ), where µ is a
continuous function such that zµ(z) ≥ 0, for all z ∈ R.

3. Existence of solutions

First, we introduce some notation. For any given Hilbert
space H let 〈·, ·〉H and ‖ · ‖H denote the H-inner product and
H-norm, respectively. By analogy, the norm of any Banach
space B is denoted by ‖ · ‖B. In particular, let 〈·, ·〉 and ‖ · ‖

denote the inner product and norm in L2(Ω). Sometimes, 〈·, ·〉

stands for the duality pairing between H1
0 (Ω) and H−1(Ω) and

〈〈·, ·〉〉 denotes the duality pairing between L2(0, T, H1
0 (Ω))

and L2(0, T, H−1(Ω)).
We recall that for every v ∈ H1

0 (Ω) the Poincaré inequality

λ0(Ω)‖v‖2
≤ ‖∇v‖2

holds. If v ∈ H2(Ω) ∩ H1
0 (Ω), the Poincaré and Young

inequalities yield

γ0(Ω)‖∇v‖2
≤ ‖1v‖2.

In this section we prove the existence of a solution to the
problem

(P)


ft = κ1 f + 12L f 2(1 − f )−

12L
θc
θ f (1 − f )2

α0(ln θ)t −
12L
θc

f (1 − f )2 ft = k01θ +
r
θc

(
2 −

θ

θc

)
∇ f · n|∂Ω = 0, θ |∂Ω = θΓ
f (x, 0) = f0(x), θ(x, 0) = θ0.

For simplicity we suppose θΓ independent of t . Moreover for
each t ∈ [0, T ], we define Qt = Ω × (0, t) and assume

(H1) r ∈ L∞(QT ), rt ∈ L∞(QT );
(H2) f0 ∈ H1(Ω), 0 ≤ f0 ≤ 1 a.e. in Ω , θ0 ∈ L∞(Ω);
(H3) θΓ ∈ H1/2(∂Ω) ∩ L∞(∂Ω);
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(H4) there exist two positive constants θ∗ and θ∗ such that
θ∗ ≤ θΓ ≤ θ∗, θ∗ ≤ θ0 ≤ θ∗.

In order to deal with homogeneous boundary conditions we
introduce the function θH ∈ H1(Ω), which solves the problem{
1θH = 0, in Ω
θH|∂Ω = θΓ .

Accordingly, the following inequalities hold:

θ∗ ≤ θH ≤ θ∗, a.e. in Ω , (3.28)
‖θH‖H1(Ω) ≤ c‖θΓ ‖H1/2(∂Ω). (3.29)

Henceforth, we denote by u the difference

u = θ − θH (3.30)

which satisfies a homogeneous Dirichlet boundary condition.
Therefore, the Poincaré inequality holds and gives

‖u‖ ≤ ‖u‖H1(Ω) ≤ CΩ‖∇u‖, CΩ =
1

λ0(Ω)
.

Finally, we assume the following lower bound on the source r :

(H5) infQT r = b ≥ −
k0θ

2
c

CΩ
.

3.1. An auxiliary problem

In order to prove the existence of solutions to problem (P),
we introduce the auxiliary problem

(P ′)


ft = κ1 f + 12L f 2(1 − f )− λ′( f )

θ

θc

α0(ln θ)t −
1
θc
λ′( f ) ft = k01θ +

r
θc

(
2 −

θ

θc

)
∇ f · n|∂Ω = 0, θ |∂Ω = θΓ
f (x, 0) = f0(x), θ(x, 0) = θ0

with λ ∈ C1(R) and λ′ Lipschitz continuous.
The existence of solutions to problem (P ′) can be proved

with the same technique as was used in [2, Theorem 2.1]. The
main difference here concerns the first equation of (P ′), where
the term 12L f 2(1 − f ) appears in place of the sum −σ ′( f ) −

β( f ). Since σ ′ and β are assumed to be a Lipschitz continuous
function and a maximal monotone graph, respectively, the first
equation of (P ′) reads as a special case of (2.21) in [2] by means
of the following identifications:

β( f ) = f 3
− f 2

+ ν f, σ ′( f ) = −ν f,

where ν > 1
3 in order to guarantee the monotonicity of

β. Assuming that the memory kernel vanishes, the integro-
differential equation (2.20) of [2] reduces to the second
equation of (P ′) except for the last term on the right-hand side,
i.e. rθ/θ2

c . Nevertheless, this additional term is linear in θ and,
in view of (H1), (H5), the following existence result can be
achieved as in [2] with minor modifications.

Theorem 3.1. Problem (P ′) admits at least a solution ( f, θ)
such that

f ∈ L2(0, T, H2(Ω)) ∩ H1(0, T, L2(Ω)), (3.31)

θ ∈ L2(0, T, H1(Ω)), θ > 0 a.e. in QT , (3.32)

ln θ ∈ L∞(0, T, L2(Ω)) ∩ H1(0, T, H−1(Ω)). (3.33)

3.2. Approximating problems

In order to solve problem (P), we construct here a family of
approximating problems of type (P ′). To this end, following the
Yosida regularization scheme, for each ε ∈ (0, 1], we consider
the function

ϕε(z) = z + εg2(z), z ∈ R,

where g2 is defined by (2.18).
Taking into account that ϕε is invertible and letting Jε =

ϕ−1
ε , we introduce the function

µε(z) =
z − Jε(z)

ε
. (3.34)

It is easy to check that µε : R → R satisfies the following
properties (see [5]):

• µε is C1(R) and Lipschitz continuous for all ε ∈ (0, 1],
• µε(z) → g2(z) as ε → 0, for all z ∈ R,
• µε(0) = µε(1) = 0, for all ε ∈ (0, 1],
• zµε(z) ≥ 0, for all ε ∈ (0, 1],
• there exists a constant m > 0, independent of ε, such that

max
0≤z≤1

µε(z) = m. (3.35)

For any ε ∈ (0, 1], let us consider the initial–boundary value
problem

(Pε)


fεt = κ1 fε + 12L f 2

ε (1 − fε)− µε( fε)
θε

θc

α0(ln θε)t −
1
θc
µε( fε) fεt = k01θε +

r
θc

(
2 −

θε

θc

)
∇ fε · n|∂Ω = 0, θε|∂Ω = θΓ
fε(x, 0) = f0(x), θε(x, 0) = θ0ε

where the initial data θ0ε are such that

θ0ε ∈ H1(Ω), θ∗ ≤ θ0ε ≤ θ∗, for any ε ∈ (0, 1],

θ0ε →
ε→0

θ0 in L2(Ω) and a.e. in Ω .

Thanks to the properties of µε, (Pε) is an approximation
of the original problem (P) and turns out to be equivalent
to (P ′) on identifying µε with λ′. Hence, in view of
Theorem 3.1, problem (Pε) admits a solution ( fε, θε) satisfying
(3.31)–(3.33). Moreover, since θε is positive a.e., owing to
Proposition 2.1 and Remark 2.1 such a solution satisfies

0 ≤ fε ≤ 1, a.e. in QT . (3.36)

As expected, the existence of solutions ( f, θ) to problem
(P) will be achieved by taking any solution ( fε, θε) to problem
(Pε) and then letting ε → 0. In order to prove convergence
by means of a compactness argument we need some a priori
estimates which ensure the uniform boundedness of solutions
to (Pε) with respect to ε. The existence result is guaranteed by
the following theorem, whose proof will be detailed in further
subsections.
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Theorem 3.2. If assumptions (H1)–(H5) are satisfied, then
problem (P) admits at least a solution ( f, θ) such that

f ∈ L2(0, T, H2(Ω)) ∩ H1(0, T, L2(Ω)),
θ ∈ L2(0, T, H1(Ω)), θ > 0 a.e. in QT ,

ln θ ∈ L∞(0, T, L2(Ω)) ∩ H1(0, T, H−1(Ω)).

In addition 0 ≤ f ≤ 1 a.e. in QT .

3.3. Uniform estimates

Let us multiply the first equation of (Pε) by fεt , the second
by uε = θε − θH and integrate over Qt . We obtain∫

Qt

[ f 2
εt + k0|∇uε|2]dxds +

∫
Ω

[
κ

2
|∇ fε(t)|2 + 3L f 4

ε

+ Mε( fε(t))
θH
θc

+ α0θε(t)
]

dx = I1 + I2 + I3, (3.37)

where

I1 =

∫
Ω

[4L f 3
ε (t)+ α0θH ln θε(t)]dx,

I2 =

∫
Qt

r
θc

(
2 −

θε

θc

)
uεdxds,

I3 =

∫
Ω

[
κ

2
|∇ f0|

2
+ 3L f 4

0 − 4L f 3
0 + Mε( f0)

θH
θc

+ α0θ0ε

− α0θH ln θ0ε

]
dx,

and

Mε(z) =

∫ z

0
µε(s)ds.

Henceforth we denote by c any positive constant which depends
on the structural data of the problem but is independent of ε. It
is allowed to take different values even in the same formula.
Moreover, in the following estimates we will repeatedly use the
Poincaré, Young and Hölder inequalities, jointly with a suitable
choice of the constants.

In view of (3.28) and (3.36), we deduce

I1 ≤ c + c
∫
Ω

ln θεdx ≤ c +
α0

2

∫
Ω
θεdx .

Moreover,

I2 ≤ c‖r‖L2(Qt )
‖uε‖L2(Qt )

−
b
θ2

c
‖uε‖2

L2(Qt )
,

so that for any ν > 0 we have

I2 ≤ c + ν‖∇uε‖2
L2(Qt )

+ max{0,−b}
CΩ

θ2
c

‖∇uε‖2
L2(Qt )

.

Finally, the boundedness of I3 follows from assumptions (H2)
on the initial data.

Thanks to (H5) and a suitable choice of ν, substitution in
(3.37) yields

‖ fεt‖2
L2(Qt )

+ c‖∇uε‖2
L2(Qt )

+
κ

2
‖∇ fε(t)‖2

+

∫
Ω

[
Mε( fε(t))

θH
θc

+
α0

2
θε(t)

]
dx ≤ c.

Therefore we obtain

‖ fε‖L∞(0,T,H1(Ω))∩H1(0,T,L2(Ω)) + ‖uε‖L2(0,T,H1
0 (Ω))

+ ‖θε‖L∞(0,T,L1(Ω)) ≤ c. (3.38)

By comparison with (Pε) and using (3.35), we get

‖1 fε‖L2(QT )
≤ c, (3.39)

‖(ln θε)t‖L2(0,T,H−1(Ω)) ≤ c. (3.40)

By multiplying the second equation of problem (Pε) by ln θε −

ln θH and integrating the product over Ω , we achieve

α0

2
d
dt

‖ ln θε − ln θH‖
2
+ k0

∫
Ω

1
θε

|∇θε|
2dx

=

∫
Ω

[
k0

θH
∇θε · ∇θH +

1
θc
µ( fε) fεt (ln θε − ln θH)

+
r
θc

(
2 −

θε

θc

)
(ln θε − ln θH)

]
dx . (3.41)

By virtue of (3.35) and (3.38) and assumptions on θH, each
term on the right-hand side of (3.41) can be estimated by means
of the following inequalities:∫
Ω

k0

θH
∇θε · ∇θHdx ≤ ‖∇θε‖ ‖∇θH‖ ≤ ‖∇uε‖2

+ c∫
Ω

1
θc
µ( fε) fεt (ln θε − ln θH)dx ≤

m
θc

‖ fεt‖‖ ln θε − ln θH‖

≤
m
θc

[‖ fεt‖2
+ ‖ ln θε − ln θH‖

2
]∫

Ω

r
θc

(
2 −

θε

θc

)
(ln θε − ln θH)dx

≤ c‖r‖
2
+ c‖r‖

2
L4(Ω)‖∇uε‖2

+ ‖ ln θε − ln θH‖
2.

Substitution into (3.41) leads to

α0

2
d
dt

‖ ln θε − ln θH‖
2
+ k0

∫
Ω

1
θε

|∇θε|
2dx

≤

(
m
θc

+ 1
)

‖ ln θε − ln θH‖
2
+

m
θc

‖ fεt‖2

+ (1 + c‖r‖
2
L4(Ω))‖∇uε‖2

+ ‖r‖
2
+ c.

Therefore, keeping (3.38) into account, the Gronwall inequality
yields

‖ ln θε − ln θH‖
2
L∞(0,T,L2(Ω)) ≤ c,

and finally

‖ ln θε‖L2(QT )
≤ c. (3.42)

3.4. Proof of Theorem 3.2

Previous a priori estimates allow us to prove the convergence
of any solution ( fε, θε) towards some solution ( f, θ) to problem
(P). In view of the uniform bounds (3.38)–(3.40) and (3.42),
we deduce, up to subsequences, the following convergences:
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fε → f weakly in L2(0, T, H2(Ω)) and in

H1(0, T, L2(Ω)), (3.43)

uε → u weakly in L2(0, T, H1
0 (Ω)), (3.44)

ln θε → ` weakly in L2(QT ) and in H1(0, T, H−1(Ω)).
(3.45)

Taking (3.30) into account, from (3.44) we easily have

θε → θ weakly in L2(0, T, H1(Ω)). (3.46)

In addition, the uniform boundedness of the norms

‖ f 2
ε (1 − fε)‖L2(QT )

, ‖µε( fε)θε‖L2(QT )
, ‖µε( fε) fεt‖L2(QT )

ensures their weak convergence in L2(QT ). Now, in view of the
compact embeddings H2(Ω) ↪→ H1(Ω), L2(Ω) ↪→ H−1(Ω),
from (3.43) and (3.45) we deduce

fε → f strongly in L2(0, T, H1(Ω)),
ln θε → ` strongly in L2(0, T, H−1(Ω)),

so that (see [19, p.12], for instance)

12L f 2
ε (1 − fε) → 12L f 2(1 − f ) = g2( f )

weakly in L2(QT ).

The inequality

|µε( fε)− g2( fε)| ≤ |µε( fε)− µε( f )| + |µε( f )− g2( f )|

≤ c| fε − f | + |µε( f )− g2( f )|,

jointly with previous results, provides

µε( fε) → g2( f ) strongly in L2(QT )

and thanks to (3.43) and (3.46) we obtain in addition

µε( fε)θε → f 2(1 − f )θ weakly in L2(QT ),

µε( fε) fεt → f 2(1 − f ) ft weakly in L2(QT ).

Concerning the logarithmic term, we notice that∫
QT

θε ln θεdxdt =

∫
QT

(uε + θH) ln θεdxdt → 〈〈`, u〉〉

+

∫
QT

θH`dxdt.

By applying [1, p.42], we prove ` = ln θ and then θ > 0 a.e. in
QT .

The final part of Theorem 3.2 follows from Proposition 2.1.

4. Uniqueness of the solution

In this section we prove the uniqueness of the solution to
problem (P). The following theorem shows the continuous
dependence on the data, which ensures the uniqueness of the
solution. For every function ϕ of x, t we define

ϕ̂(x, t) =

∫ t

0
ϕ(x, s)ds.

Theorem 4.1. If ( f1, θ1), ( f2, θ2) are two solutions to problem
(P) with f01, θ01, θΓ1, r1 and f02, θ02, θΓ2, r2 satisfying
(H1)–(H5), then

‖ f1(t)− f2(t)‖2
+ ‖∇ f1 − ∇ f2‖

2
L2(Qt )

+

∫
Qt

(ln θ1 − ln θ2)(θ1 − θ2)dxds

+ ‖∇û1(t)− ∇û2(t)‖2

≤ M(‖ f01 − f02‖
2
+ ‖r1 − r2‖

2
L2(QT )

+ ‖F01 − F02‖
2
+ ‖θΓ1 − θΓ2‖H1/2(∂Ω)

+ ‖θΓ1 − θΓ2‖
2
H1/2(∂Ω)), (4.47)

where

F0i = α0 ln θ0i −
12L
θc

[
1
4

f 4
0i −

2
3

f 3
0i +

1
2

f 2
0i

]
, i = 1, 2

and M is a constant depending on f0i , θ0i , θΓ i , ri , i = 1, 2.

Proof. Let ( fi , θi ), i = 1, 2, be two solutions to (P), and let

f = f1 − f2, θ = θ1 − θ2, r = r1 − r2,

F0 = F01 − F02, θΓ = θΓ1 − θΓ2, θH = θH1 − θH2.

By integrating the second equation of (P) over the time interval
(0, t), for each i = 1, 2 we obtain

α0 ln θi − k01θ̂i =
12L
θc

[
1
4

f 4
i −

2
3

f 3
i +

1
2

f 2
i

]
+

1
θc

∫ t

0
ri

(
2 −

θi

θc

)
ds + F0i (4.48)

and upon subtracting them it follows that

α0(ln θ1 − ln θ2)− k01θ̂

=
12L
θc

[
1
4
( f 4

1 − f 4
2 )−

2
3
( f 3

1 − f 3
2 )+

1
2
( f 2

1 − f 2
2 )

]
+

2
θc

r̂ −
1
θ2

c

∫ t

0
(r1θ1 − r2θ2)ds + F0. (4.49)

In a similar way the first equation of (P) yields

ft − κ1 f = 12L[ f 2
1 (1 − f1)− f 2

2 (1 − f2)]

−
12L
θc

[θ1 f1(1 − f1)
2
− θ2 f2(1 − f2)

2
]. (4.50)

Let us multiply (4.50) by f and (4.49) by u = u1−u2 = θ−θH.
By integrating over Qt and adding the resulting equations, we
obtain

1
2
‖ f (t)‖2

+ κ‖∇ f ‖
2
L2(Qt )

+ α0

∫
Qt

(ln θ1 − ln θ2)θdxds

+
k0

2
‖∇û(t)‖2

=
1
2
‖ f01 − f02‖

2
+ J1 + J2 + J3 + J4, (4.51)
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where

J1 = 12L
∫

Qt

[
f 2
1 (1 − f1)− f 2

2 (1 − f2)−
θH1

θc
f1(1 − f1)

2

+
θH2

θc
f2(1 − f2)

2
]

f dxds

J2 =
12L
θc

∫
Qt

{[
1
4
( f 4

1 − f 4
2 )−

2
3
( f 3

1 − f 3
2 )

+
1
2
( f 2

1 − f 2
2 )

]
u − [u1 f1(1 − f1)

2

− u2 f2(1 − f2)
2
] f

}
dxds

J3 =

∫
Qt

[
2
θc

r̂ −
1
θ2

c

∫ s

0
(r1θ1 − r2θ2)dτ + F0

]
u dxds

J4 = α0

∫
Qt

(ln θ1 − ln θ2) θH dxds.

Now we estimate individually each integral J1, . . . , J4. We
have

J1 = 12L
∫

Qt

[
( f1 + f2) f 2

− ( f 2
1 + f1 f2 + f 2

2 ) f 2

−
1
θc

f1(1 − f1)
2θH f −

θH2

θc
f 2(1 + f 2

1 + f1 f2 + f 2
2 )

+
2θH2

θc
( f1 + f2) f 2

]
dxds

≤ 12L
∫

Qt

[
( f1 + f2) f 2

−
1
θc

f1(1 − f1)
2θH f

+
2θH2

θc
( f1 + f2) f 2

]
dxds.

In view of Proposition 2.1, we obtain

J1 ≤ c
{
‖ f ‖

2
L2(Qt )

+

∫ t

0
[‖θH‖ + ‖ f (s)‖H1(Ω)]‖ f (s)‖ ds

}
.

Therefore, owing to (3.30), for any ν > 0 it follows that

J1 ≤ c‖ f ‖
2
L2(Qt )

+ ν‖∇ f ‖
2
L2(Qt )

+ c‖θΓ ‖
2
H1/2(∂Ω). (4.52)

By rearranging the terms of J2, we obtain

J2 =
12L
θc

∫
Qt

{
−u1

[
3
4

f 2
1 +

1
2

f1 f2 +
1
4

f 2
2 −

4
3

f1 −
2
3

f2

+
1
2

]
+ u2

[
3
4

f 2
2 +

1
2

f1 f2 +
1
4

f 2
1 −

4
3

f2 −
2
3

f1

+
1
2

]}
f 2dxds.

Hence, in view of the boundedness of f1, f2, we deduce

J2 ≤ c
∫

Qt

(|u1| + |u2|) f 2dxds

≤ c
∫ t

0
(‖u1(s)‖L4(Ω) + ‖u2(s)‖L4(Ω))‖ f (s)‖L4(Ω)

× ‖ f (s)‖ds

≤ ν‖∇ f ‖
2
L2(Qt )

+ c
∫ t

0
(‖u1(s)‖2

H1(Ω) + ‖u2(s)‖2
H1(Ω))

× ‖ f (s)‖2ds. (4.53)

Let us examine the third integral J3. An integration by parts
yields

J3 =

∫
Ω

[
2
θc

r̂(t)−
1
θ2

c

∫ t

0
(r1θ1 − r2θ2)dτ + F0

]
û(t)dx

−

∫
Qt

[
2
θc

r −
1
θ2

c
(r1θ1 − r2θ2)

]
ûdxds.

Hence

J3 ≤ c[‖r̂(t)‖ + ‖rθ1‖L2(Qt )
+ ‖r2θH‖L2(Qt )

+ ‖F0‖]‖û(t)‖

+ c[‖r‖L2(Qt )
+ ‖rθ1‖L2(Qt )

+ ‖r2θH‖L2(Qt )
]‖û‖L2(Qt )

−
1
θ2

c

∫
Ω

[∫ t

0
r2udsû(t)−

∫ t

0
r2uû ds

]
dx .

A further integration by parts leads to the relation

−
1
θ2

c

∫
Ω

[
û(t)

∫ t

0
r2u ds −

∫ t

0
r2uû ds

]
dx

= −
1
θ2

c

∫
Ω

[
1
2

r2(t)û(t)− û(t)
∫ t

0
r2t û ds +

∫ t

0
r2t û2ds

]
dx

≤ −
b

2θ2
c
‖û(t)‖2

+ c‖r2t‖L∞(Qt )(‖û(t)‖‖û‖L2(Qt )

+ ‖û‖
2
L2(Qt )

).

Thus, by means of the Young and Poincaré inequalities we
obtain

J3 ≤ ν‖∇û(t)‖2
+ c(1 + ‖r2t‖L∞(Qt ))‖∇û‖

2
L2(Qt )

+ c(‖r‖
2
L2(Qt )

+ ‖r‖
2
L∞(Qt )

‖θ1‖
2
L2(Qt )

+ ‖r2‖
2
L∞(Qt )

‖θH‖
2
L2(Qt )

+ ‖F0‖
2)+ max{0,−b}

CΩ

2θ2
c

× ‖∇û(t)‖2. (4.54)

Finally, the last integral J4 can be estimated as

J4 ≤ α0(‖ ln θ1‖L1(0,T,L2(Ω)) + ‖ ln θ2‖L1(0,T,L2(Ω)))‖θH‖.

(4.55)

Substitution of (4.52)–(4.55) into (4.51) and a suitable choice
of ν lead to the inequality

1
2
‖ f (t)‖2

+
κ

2
‖∇ f ‖

2
L2(Qt )

+ α0

∫
Qt

(ln θ1 − ln θ2)θdxds

+ c‖∇û(t)‖2
≤

∫ t

0
ϕ1(s)[‖ f (s)‖2

+ ‖∇û(s)‖2
]dxds

+ϕ2(t),

where

ϕ1(t) = c[1 + ‖u1(t)‖2
H1(Ω) + ‖u2(t)‖2

H1(Ω) + ‖r2t‖L∞(Qt )]

ϕ2(t) = c[‖ f0‖
2
+ ‖r‖

2
L2(Qt )

+ ‖r‖
2
L∞(Qt )

‖θ1‖
2
L2(Qt )

+ ‖F0‖
2
+ ‖θΓ ‖

2
H1/2(∂Ω) + ‖θΓ ‖H1/2(∂Ω)].
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Therefore, the Gronwall inequality provides

‖ f (t)‖2
+ ‖∇ f ‖

2
L2(Qt )

+

∫
Qt

(ln θ1 − ln θ2)θdxds

+ ‖∇û(t)‖2
≤

∫ t

0
ϕ1(s)ϕ2(s)e

∫ t
s ϕ1(τ )dτds + ϕ2(t),

so (4.47) holds. �

References

[1] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach
Spaces, Noordhoff International Publishing, Leiden, 1976.

[2] E. Bonetti, P. Colli, M. Fabrizio, G. Gilardi, Global solution to a singular
integrodifferential system related to the entropy balance, Nonlinear Anal.
TMA 66 (2007) 1949–1979.

[3] E. Bonetti, P. Colli, M. Fabrizio, G. Gilardi, Modelling and long-time
behaviour for phase transitions with entropy balance and thermal memory
conductivity, Discrete Contin. Dyn. Syst. Ser. B 6 (2006) 1001–1026.
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