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Abstract

In this paper we investigate the longtime behavior of the mathematical model of a homogeneous vis-
coelastic plate based on Reissner–Mindlin deformation shear assumptions. According to the approximation
procedure due to Lagnese for the Kirchhoff viscoelastic plate, the resulting motion equations for the ver-
tical displacement and the angle deflection of vertical fibers are derived in the framework of the theory of
linear viscoelasticity. Assuming that in general both Lame’s functions, λ and μ, depend on time, the cou-
pling terms between the equations of displacement and deflection depend on hereditary contributions. We
associate to the model a nonlinear semigroup and show the behavior of the energy when time goes on. In
particular, assuming that the kernels λ and μ decay exponentially, and not too weakly with respect to the
physical properties considered in the model, then the energy decays uniformly with respect to the initial
conditions; i.e., we prove the existence of an absorbing set for the semigroup associated to the model.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Linear viscoelasticity; Reissner–Mindlin plates; Dynamical systems

1. Introduction

In order to describe the mechanical behavior of the plate, we first formulate proper consti-
tutive equations in the framework of the well-established linear theory of viscoelasticity. Then,
by means of the Mindlin strain-displacement relations (first assumed in [12]) and the Reissner
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assumption on deformation shear [15], we deduce the set of model equations for the plate, by
paralleling the procedure performed in [9] and [10].

The resulting system models the evolution of vertical displacement and deflections of a ho-
mogeneous, isotropic Mindlin plate with memory.

2. The Reissner–Mindlin plate model with memory

The first step of this paper is to formulate a mathematical model of the motion of a thin plate
obeying a stress–strain hereditary constitutive equation.

We consider a thin plate of uniform thickness d . When the plate is in equilibrium, we assume
it occupies a fixed bounded domain D ⊂ R

3 placed in a reference frame x = (x1, x2, x3). Let
Ui(x1, x2, x3), i = 1,2,3, denote the components of the displacement vector of the point x. The
plate has a middle surface midway between its faces in a region Ω ⊂ R

2 of the plane x3 = 0.
We suppose that its smooth boundary Γ = ∂Ω is composed for two parts, Γ = Γ0 ∪ Γ1, such
that Γ̄0 ∩ Γ̄1 �= ∅ and we assume that the plate is rigidly clamped along Γ0 and simply supported
along Γ1. Henceforth, we denote by ui(x1, x2), i = 1,2,3, the components of the displacement
vector of the points of the middle surface Ω of the plate which have coordinates (x1, x2,0) at
equilibrium.1 Moreover, let Ω− = Ω × {−d/2} and Ω+ = Ω × {d/2} denote its faces, and
Λ = ∂Ω × (−d/2, d/2) its edge.

As is well known, in standard linear elasticity the stress–strain relation is given by

S(x, t) = L0E(x, t),

where the elastic strain E and the stress S are second-order tensors. In small displacement theory,
E is given by

E(x, t) = 1

2

(∇U(x, t) + (∇U)T (x, t)
)
, (2.1)

U being the displacement vector. In the isotropic case, the fourth-order tensor L0 involves two
independent Lame’s constants λ and μ, namely

L0 = λI ⊗ I + 2μI, for τ � 0.

According to this constitutive equation, a mathematical model for the isotropic elastic plate
can be derived by assuming the Mindlin–Timoshenko hypothesis (see, for instance, [10]).
Namely, the linear filaments of the plate initially perpendicular to the middle surface Ω are
required to remain straight and undergo neither contraction nor extension, but the Kirchhoff as-
sumption that they remain perpendicular to the deformed middle surface is removed.

In small displacement theory this assumption implies that transverse shear effects may be no
longer neglected and the small displacement U(x1, x2, x3) is related to the displacement of the
middle surface u(x1, x2) by the approximate relations

U1 = u1 − x3ψ, U2 = u2 − x3φ, U3 = u3, (2.2)

where ψ(x1, x2) and φ(x1, x2) are the angles of deflection of the filament with respect to the
normal direction along the x1- and x2-axis, respectively. In virtue of (2.1), this assumption leads
to the strain-displacement relations of the Mindlin–Timoshenko model, namely

1 Observe that we denote with the pedex 1,2, . . . the component of a vector, and with the pedex x, t , s the derivative
with respect to the variable.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E11 = ∂u1

∂x1
− x3

∂ψ

∂x1
,

E22 = ∂u2

∂x2
− x3

∂φ

∂x2
,

E12 = 1

2

[
∂u1

∂x2
+ ∂u2

∂x1
− x3

(
∂ψ

∂x2
+ ∂φ

∂x1

)]
,

E13 = 1

2

[
∂w

∂x1
− ψ

]
,

E23 = 1

2

[
∂w

∂x2
− φ

]
,

E33 = 0,

(2.3)

where w = u3 is the bending component of the displacement u. Here, in order to generalize the
model, we assume that the plate is composed of an isotropic linear viscoelastic material. As a
consequence, the stress–strain law is given by

S(x, t) = DL ∗ E(x, t), (2.4)

where ∗ denotes a convolution

DL ∗ E(x, t) =
∞∫

−∞
Dτ L(τ )E(x, t − τ) dτ

and Dτ is the distributional derivative with respect to τ . Moreover, we observe that L(τ ) is an
isotropic fourth-order tensor which vanishes for τ < 0 and involves two independent relaxation
functions λ and μ, namely

L(τ ) = λ(τ)I ⊗ I + 2μ(τ)I, for τ � 0.

Because of the relation Dτ L = L(0)δ + L
′, where ′ = d/dt and δ represents the Dirac delta

distribution, we have

DL ∗ E(x, t) = L(0)E(x, t) +
∞∫

0

L
′(τ )E(x, t − τ) dτ. (2.5)

In order to apply a variational principle and attain the motion equation, we shall transform
the original stress–strain constitutive equation by means of the Laplace transform. Let ϕ(t) be a
function taking values in a Hilbert space, and let denote by ϕ̂ its Laplace transform, namely

ϕ̂(s) =
∞∫

0

e−stϕ(t) dt.

In particular, we have (DL)ˆ(s) = sL̂(s) where

L̂(s) = λ̂(s)I ⊗ I + 2μ̂(s)I.

Formally applying the Laplace transform in (2.4)–(2.5), we get

Ŝij = sλ̂δij Êkk + 2sμ̂Êij . (2.6)
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Now, we introduce the viscoelastic Poisson’s ratio ν and viscoelastic Young’s modulus E so that
their Laplace transforms are respectively defined by

ν̂ = λ̂

2s(λ̂ + μ̂)
, Ê = μ̂(3λ̂ + 2μ̂)

λ̂ + μ̂
. (2.7)

Then, we have

2μ̂ = Ê

1 + sν̂
, λ̂ = Ê

1 + sν̂
· sν̂

1 − 2sν̂
(2.8)

and (2.6) becomes

Ŝij = sÊ

1 + sν̂

(
Êij + sν̂

1 − 2sν̂
Êkkδij

)
. (2.9)

As is customary in thin plate theory, we assume that the exterior normal force acting on the faces
Ω+ and Ω− is zero, so that the transverse normal stress is negligible compared to other stress:

Ŝ33 = S33 ≈ 0 in Ω+ ∪ Ω−.

This allows Ê33 to be expressed as a function of Ê11 and Ê22, namely

Ê33 = − sν̂

1 − sν̂
(Ê11 + Ê22). (2.10)

Substituting (2.10) into (2.9), we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ŝ11 = sÊ

1 − s2ν̂2
[Ê11 + sν̂Ê22],

Ŝ22 = sÊ

1 − s2ν̂2
[sν̂Ê11 + Ê22],

Ŝ33 = 0,

Ŝij = K
sÊ

1 + sν̂
Êij , i �= j,

(2.11)

where, as is customary in the theory of Mindlin–Timoshenko beams and plates, consistency with
the presence of transverse shear justifies the introduction of a suitable scalar factor K to correct
its expression.

Discrepancy between the last relation in (2.3) and (2.10) is due to the fact that terms of order
d2 and higher have been ignored here. In addition, consistency with the absence of transverse
shear requires that the plate is subject to an external distribution of loads per unit mass f =
(f1, f2, f3) with f1 and f2 independent of x3.

The motion equation, via a variational formulation, can be obtained by introducing the vis-
coelastic energy P(t) whose transform is given by

P̂(s) = 1

2

d/2∫
−d/2

∫
Ω

(
Ŝij Êij + ρ0s

2ÛiÛi

)
dx1 dx2 dx3. (2.12)

If integration with respect to x3 is carried out, the stretching components û1, û2 uncouple from
the bending component ŵ of the plate displacement, so that both the strain energy and the kinetic
energy split into two parts (see [10]).
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Substituting (2.11) and (2.2)–(2.3) into (2.12) and considering only the part P̂b(s) of P̂(s)

containing the bending terms, we obtain

P̂b(s) = sN̂

2

∫
Ω

[(
∂ψ̂

∂x1

)2

+
(

∂φ̂

∂x2

)2

+ 2sν̂
∂ψ̂

∂x1

∂φ̂

∂x2

+ K
(1 − sν̂)

2

(
∂ψ̂

∂x2
+ ∂φ̂

∂x1

)2]
dx1 dx2

+ sĤ

2

∫
Ω

[(
∂ŵ

∂x1
− ψ̂

)2

+
(

∂ŵ

∂x2
− φ̂

)2]
dx1 dx2

+ s2ρ0d

2

∫
Ω

{
d2

12

(
ψ̂2 + φ̂2) + ŵ2

}
dx1 dx2. (2.13)

Here N and H are assumed to be regular causal functions such that their Laplace transforms
satisfy the relations

N̂(s) = Ê(s)d3

12(1 − s2ν̂2(s))
, (2.14)

Ĥ (s) = Ê(s)d3K

48(1 + s2ν̂(s))
. (2.15)

3. The variational setting

We transform (2.13) in the time domain and study the associated variational problem.
Let v = [

ψ
φ

]
and introduce the spatial operator

A =
⎡
⎣ ∂2

∂x2
1

+ 1−ν
2

∂2

∂x2
2

1+ν
2

∂2

∂x1∂x2

1+ν
2

∂2

∂x1∂x2

1−ν
2

∂2

∂x2
1

+ ∂2

∂x2
2

⎤
⎦ ,

where ν is a constant such that 0 < ν < 1/2.
We follow Dafermos [1] (see also [7]), in order to formulate the problem in a history space

setting and we introduce the additional variables

ηt (s) = v(t) − v(t − s), (3.1)

ρt (s) = w(t) − w(t − s) (3.2)

for t ∈ [0,+∞) and s ∈ (0,+∞).
The dynamics of η and ρ are governed by the equations

ηt + ηs = vt in Ω × (0,+∞)2,

ρt + ρs = wt in Ω × (0,+∞)2

along with the initial and boundary conditions

η0 = η0, ρ0 = ρ0, in Ω × (0,+∞),

ηt (0) = 0, ρt (0) = 0, in Ω × (0,+∞),
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where η0 = v(0) − v(−s) and ρ0 = w(0) − w(−s) describe the past history; the homogeneous
boundary conditions are a consequence of definitions (3.1), (3.2).

Then, we associate the variables η and ρ to the memory kernels μ and κ , such that

μ(σ) = −d2N ′(σ ),

κ(σ ) = −d2H ′(σ ).

We observe that the introduction of the past history as a new state variable seems unavoidable if
one is interested in analyzing the structural stability of the system with respect to initial data.

The analytic purpose of this work is to prove some continuous dependence and uniqueness
results which allow to interpret the model as a dynamical system. Then, we show the dissipa-
tivity of the semigroup associated to the problem by constructing an absorbing set (see, e.g.,
[8,16]). This analysis extends the studies proposed in [7] where the beam case is examined; we
note that the results concerning the plate model are not trivial and that we remove the balance
hypothesis on the structural constants of the model, only asking that the memory kernels should
dissipate sufficient energy. We also remark that the longtime behavior of the plate model can be
investigated by a direct approach, which does not imply the use of semigroup techniques, and
that a structural–polynomial-stability of the solutions can be proved if the memory kernels decay
polynomially (see [14]).

Introducing the nonlinear functions f and g we are able to state our problem.

Problem P. Our purpose is to study the rate of decay of the solution (v,w,η,ρ) associated to
the semilinear system of equations

vtt − Av −
∞∫

0

μ(s)Aη(s) ds + κ0(v + ∇w) +
∞∫

0

κ(s)
(
η(s) + ∇ρ(s)

)
ds + f (v) = 0,

(3.3)

wtt − κ0∇ · (v + ∇w) −
∞∫

0

κ(s)∇ · (η(s) + ∇ρ(s)
)
ds + g(w) = 0, (3.4)

ηt + ηs = vt , (3.5)

ρt + ρs = wt (3.6)

in Ω , for any t > 0, s > 0, which satisfy the boundary problem for the mechanical variables(
∂ψ

∂x1
+ ν

∂φ

∂x2

)
n1 + 1 − ν

2

(
∂ψ

∂x2
+ ∂φ

∂x1

)
n2 = 0, (3.7)

1 − ν

2

(
∂ψ

∂x2
+ ∂φ

∂x1

)
n1 +

(
ν

∂ψ

∂x1
+ ∂φ

∂x2

)
n2 = 0, (3.8)

(v + ∇w) · n = 0 (3.9)

in ∂Ω × [0,+∞) along with the boundary problem for the history variables(
∂η1

∂x1
+ ν

∂η2

∂x2

)
n1 + 1 − ν

2

(
∂η1

∂x2
+ ∂η2

∂x1

)
n2 = 0,

1 − ν

2

(
∂η1

∂x2
+ ∂η2

∂x1

)
n1 +

(
ν
∂η1

∂x1
+ ∂η2

∂x2

)
n2 = 0,

(η + ∇ρ) · n = 0
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in ∂Ω × [0,+∞) × (0,+∞); and

ηt (0) = 0,

ρt (0) = 0

on Ω × [0,+∞). We study the initial value problem

v(0) = v0 in Ω,

vt (0) = v1 in Ω,

η0 = η0 in Ω × (0,∞),

w(0) = w0 in Ω,

wt(0) = w1 in Ω,

ρ0 = ρ0 in Ω × (0,∞).

4. Hypothesis and preliminary results

4.1. Hypothesis on memory kernels

As far as existence of the solution to Problem P is concerned, we let the memory kernels μ(s)

and κ(s) satisfy the following conditions:

μ(s), κ(s) ∈ C1(
R

+) ∩ L1(
R

+)
, (4.1)

μ(s), κ(s) � 0, (4.2)

μ′(s), κ ′(s) � 0. (4.3)

In view of (4.1) and (4.2) we define

μ0 =
∞∫

0

μ(s) ds and κ00 =
∞∫

0

κ(s) ds.

In order to obtain energy uniform estimates, we will suppose also{
μ′ ∈ L2(0, sμ), κ ′ ∈ L2(0, sκ ),

μ′(s) + δμμ(s) � 0, κ ′(s) + δκκ(s) � 0 ∀s ∈ R
+,

(4.4)

and that

μ′(s) + Mμμ(s) � 0 ∀s � sμ, κ ′(s) + Mκκ(s) � 0 ∀s � sκ (4.5)

for some 0 < δμ < Mμ, 0 < δκ < Mκ and sμ, sκ > 0, where Mμ, Mκ are constants depending on
sμ, sκ and increasing as σμ and σκ decrease, respectively.

The conditions (4.4) imply the exponential decay of the kernels. This hypothesis seems un-
avoidable in order to have exponential decay of the associated linear problem and it is commonly
assumed (cf., e.g., [3,11]). On the other hand, it seems quite obvious that to have exponential
decay of the energy, the kernel must show the same rate of decay (see [6]).
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We suppose also

μ0 � 2, (4.6)

κ00 � 2. (4.7)

Remark 4.1. We point out that the only reason of being dissipative for the model we have intro-
duced is due to the presence of the memory terms. Hence, hypothesis (4.6) and (4.7) expresses
the fact that the—only—dissipation in the model has to be “strong enough,” in order to prove
uniform decay of the solution with respect to initial data.2

Notation. Let us introduce some notation. We consider the Hilbert spaces L2(Ω) and H 1(Ω)

with the standard norms ‖ · ‖L2 and ‖ · ‖H 1 and Hilbert products (·,·)L2 , (·,·)H 1 . Let us use the
same notation ‖ · ‖L2 (‖ · ‖H 1 ) both for the norm in L2(Ω) (H 1(Ω)) and for that in L2(Ω,R

2)

(H 1(Ω,R
2), respectively).

Let us consider two functions v, z ∈ H 1(Ω,R
2), on account of (3.7)–(3.8), we can set

〈−Av, z〉L2 =
∫
Ω

{(
∂v1

∂x1
+ ν

∂v2

∂x2

)
∂z1

∂x1
+ 1 − ν

2

(
∂v1

∂x2
+ ∂v2

∂x1

)
∂z1

∂x2

+ 1 − ν

2

(
∂v1

∂x2
+ ∂v2

∂x1

)
∂z2

∂x1
+

(
ν
∂v1

∂x1
+ ∂v2

∂x2

)
∂z2

∂x2

}
dΩ. (4.8)

Now, we observe that

〈−Av,v〉L2 =
∫
Ω

{(
∂v1

∂x1

)2

+
(

∂v2

∂x2

)2

+ 2ν
∂v1

∂x1

∂v2

∂x2
+ 1 − ν

2

(
∂v1

∂x2
+ ∂v2

∂x1

)2}
dΩ.

Let us introduce the Hilbert space

V =
{
(v1, v2) ∈ L2(Ω,R

2):
∂v1

∂x1
,
∂v2

∂x2
,
∂v2

∂x1
+ ∂v1

∂x2
∈ L2(Ω)

}
with the norm

‖v‖2
V =

∫
Ω

{
v1 + v2 +

∣∣∣∣∂v1

∂x1

∣∣∣∣
2

+
∣∣∣∣∂v2

∂x2

∣∣∣∣
2

+
∣∣∣∣∂v2

∂x1
+ ∂v1

∂x2

∣∣∣∣
2}

dΩ.

The kernel of −A is the subspace of V of the linear function of the form[
c0x2 + c1

−c0x1 + c2

]
,

where c0, c1, and c2 are constants. It follows that the linear subspace of V which is orthogonal
in L2(Ω,R

2) to the kernel of −A is characterized by the conditions∫
Ω

(x2v1 − x1v2) dΩ = 0,

∫
Ω

v1 dΩ = 0,

∫
Ω

v2 dΩ = 0

and we denote by VA this space.

2 Obviously the value 2 is connected with the technique used in calculation, and it is none interest to find a sharper
value. The thing which seems unavoidable is the lower bound to the L1(R+)-norms of memory kernels.
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Remark 4.2. The operator −A is coercive on VA. Exploiting Korn inequality (see, e.g., [2,4]), it
is possible to prove that the norm ‖ · ‖V introduced by the operator −A in VA is equivalent to the
usual norm in H 1(Ω,R

2). Hence, in what follows, we shall often exploit the inequality

c1‖v‖V � ‖v‖H 1 � c2‖v‖V

for every v ∈ VA and some 0 < c1 < c2.

Thanks to (4.1), (4.2) and Remark 4.2, we introduce the Hilbert spaces

M = L2
μ

(
R

+;VA

) ∩ L2
κ

(
R

+;L2(Ω,R
2)),

N = L2
κ

(
R

+;H 1(Ω)
)
,

where the natural scalar product is

(ξ, ζ )M =
∞∫

0

μ(s)
(
ξ(s), ζ(s)

)
V

ds +
∞∫

0

κ(s)
(
ξ(s), ζ(s)

)
L2 ds,

(ξ, ζ )N =
∞∫

0

κ(s)
(
ξ(s), ζ(s)

)
H 1 ds.

4.2. Hypothesis on the nonlinearities

We assume that f ∈ C1(R2,R
2) and g ∈ C1(R,R) are such that there exist F and G as

f = ∇F, g = G′

and F(0,0) = G(0) = 0. Let s ∈ R and x ∈ R
2 and we make the following assumptions

(see [13]):

lim inf|s|→∞
G(s)

s2
� 0, (4.9)

lim inf|s|→∞
sg(s) − ε0G(s)

s2
� 0, (4.10)

lim inf|x|→∞
Fxi

(x)

|x|2 � 0, i = 1,2, (4.11)

lim inf|x|→∞
f (x) · x − ε0F(x)

|x|2 � 0 (4.12)

for some ε0 > 0. We will use the following lemmas (cf. [5] for proofs).

Lemma 4.1. Assume (4.9)–(4.12) hold. Then, for every ε > 0 there exists Cε > 0 such that

(
g(w),w

)
L2 − ε0

∫
Ω

G(w)dΩ � −ε‖w‖2
L2 − Cε, (4.13)

∫
G(w)dΩ � −ε‖w‖2

L2 − Cε, (4.14)
Ω
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(
f (v), v

)
L2 − ε0

∫
Ω

F(v)dΩ � −ε‖v‖2
L2 − Cε, (4.15)

∫
Ω

F(v)dΩ � −ε‖v‖2
L2 − Cε (4.16)

for every w ∈ H 1
0 (Ω) and v ∈ H 1

0 (Ω,R
2).

To prove uniform energy estimates, we have to require∣∣g′(s)
∣∣ � Λg, (4.17)∣∣∣∣∂fi(x1, x2)

∂xi

∣∣∣∣ � Λf ∀i = 1,2. (4.18)

Lemma 4.2. We assume that (4.17) and (4.18) hold. Then, inequalities (4.14), (4.16) are implied.
Furthermore, for every ε > 0 there exists Cε > 0 such that(

g(w),w
)
L2 −

∫
Ω

G(w)dΩ � −ε‖w‖2
L2 − Cε, (4.19)

(
f (v), v

)
L2 −

∫
Ω

F(v)dΩ � −ε‖v‖2
L2 − Cε (4.20)

for every w ∈ H 1(Ω,R) and v ∈ H 1(Ω,R
2).

Remark 4.3. On account of hypothesis on the nonlinearities, multiple solutions to the stationary
problem are admitted, in particular when f and g are nonmonotonic functions.

5. Well posedness

Theorem 5.1. Suppose conditions (4.1)–(4.3) and (4.9)–(4.12) hold true. We assume also

v0 ∈ VA, w0 ∈ H 1(Ω), η0 ∈M,

v1 ∈ L2(Ω,R
2), w1 ∈ L2(Ω), ρ0 ∈N .

Then, for every T > 0, Problem P admits a unique continuous solution, i.e., (v,w,η, ρ) such
that

v ∈ C(0, T ;VA), w ∈ C
(
0, T ;H 1(Ω)

)
, η ∈ C(0, T ;M),

v ∈ C
(
0, T ;L2(Ω,R

2)
)
, w ∈ C

(
0, T ;L2(Ω)

)
, ρ ∈ C(0, T ;N ).

Furthermore, we suppose (vi,wi, ηi, ρi), i = 1,2, are solutions corresponding to initial data
(vi

0, v
i
1,w

i
0,w

i
1, η

i, ρi), then there exists an increasing function C = C(T ) such that the following
estimate holds:∥∥v1 − v2

∥∥2
V

+ ∥∥v1
t − v2

t

∥∥2
L2 + ∥∥w1 − w2

∥∥2
H 1 + ∥∥w1

t − w2
t

∥∥2
L2

+ ∥∥η1 − η2
∥∥2
M + ∥∥ρ1 − ρ2

∥∥2
N

� C(T )
{∥∥v1

0 − v2
0

∥∥2
V

+ ∥∥v1
1 − v2

1

∥∥2
L2 + ∥∥w1

0 − w2
0

∥∥2
H 1 + ∥∥w1

1 − w2
1

∥∥2
L2

+ ∥∥η1
0 − η2

0

∥∥2
M + ∥∥ρ1

0 − ρ2
0

∥∥2
N

}
.
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The proofs of the stated results are omitted. They can be carried out via Faedo–Galerkin
method and using Gronwall type inequalities (with due technical modifications, see [7], where
the beam case is analyzed in detail; see also [17]).

6. Absorbing set

We agree to denote the solution

z(t) =

⎡
⎢⎢⎢⎢⎢⎣

v(t)

vt (t)

w(t)

wt (t)

ηt

ρt

⎤
⎥⎥⎥⎥⎥⎦

to Problem P, with initial data

z(0) = z0 ∈H = VA × L2(Ω,R
2) × H 1(Ω) × L2(Ω) ×M×N

by S(t)z0. Hence, on account of Theorem 5.1, the solution is described by the continuous semi-
group S(t) acting on the space H, i.e., S(t) enjoys the following properties:

(i) S(t) :H →H, continuous for every t � 0,
(ii) S(0) = I (identity on H),

(iii) limt→0+ S(t)z = z for every z ∈H,
(iv) S(t)S(τ ) = S(t + τ).

We prove here the dissipative nature of the system. This is equivalent to proving the existence
of an absorbing set, i.e., of a bounded set into which all the orbits corresponding to different
initial data and evolving according to the action of the semigroup S(t) eventually enter. We
recall its definition (cf., e.g., [8,16,17]).

Definition 6.1. Let (X,d) be a metric space. A set B0 ⊂ X is said to be absorbing for the semi-
group {S(t): t � 0} acting on X if for any bounded set B ⊂ X there exists tB � 0 such that
S(t)B ⊂ B0 for every t � tB .

We introduce the energy associated to the semigroup S(t) as

E(t) = ∥∥vt (t)
∥∥2

L2 + ∥∥v(t)
∥∥2

V
+ ∥∥wt(t)

∥∥2
L2 + ∥∥η(t)

∥∥2
L2

μ(V )

+ ∥∥η + ∇ρ(t)
∥∥2

L2
κ (L2)

+ κ0
∥∥v(t) + ∇w(t)

∥∥2
L2 . (6.1)

Concerning the dissipation in energy of the semigroup S(t), hypothesis (4.4)–(4.7) implies the
exponential decay of (6.1), and we are able to state our main result.

Theorem 6.1. Assume (4.1)–(4.7), (4.17) and (4.18). Then, there exist two positive constants
C1 and C0—depending only on the structures of the nonlinearities and of the memory kernels,
hence C0 = C0(μ0, κ0, κ00, ε0) and C1 = C1(μ0, κ0, κ00, ε0)—and ε > 0, such that the following
estimate holds

E(t) � C1e
−εtE(0) + C0

for every t � 0.
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Corollary 6.1. The semigroup {S(t): t � 0}, acting on the space H, has a bounded absorbing
set B0; i.e., any ball of H with radius strictly greater than C0, can be chosen as an absorbing set
B0 for the semigroup {S(t): t � 0}.

Remark 6.1. When the nonlinearities vanish, we have that C0 = 0, and Theorem 6.1 implies
exponential vanishing of the energy associated to the semigroup S(t).

Proof of Theorem 6.1. We consider (3.3) multiplied by vt in L2(Ω,R
2), to get

1

2

d

dt

(‖vt‖2
L2 + ‖v‖2

V

) +
∞∫

0

μ(s)
(
η(s), vt

)
V

ds + κ0(v + ∇w,vt )L2

+
∞∫

0

κ(s)
(
η(s) + ∇ρ(s), vt

)
L2 ds + (

f (v), vt

)
L2 = 0. (6.2)

Equation (3.4) multiplied by wt in L2(Ω), and integration by parts give

1

2

d

dt
‖wt‖2

L2 + κ0(v + ∇w,∇wt)L2 +
∞∫

0

κ(s)
(
η(s) + ∇ρ(s),∇wt

)
L2 ds

+ (
g(w),wt

)
L2 = 0. (6.3)

Consider Eq. (3.5) multiplied in L2
μ(R+,VA) by η; we get, with obvious notation:

1

2

d

dt
‖η‖2

L2
μ(VA)

+
∞∫

0

μ(s)
(
ηs(s), η(s)

)
V

ds =
∞∫

0

μ(s)
(
vt , η(s)

)
V

ds. (6.4)

Consider Eq. (3.5), add the gradient of (3.6), and multiply the result by η + ∇ρ in L2
κ(R+,

L2(Ω,R
2)); we have

1

2

d

dt
‖η + ∇ρ‖2

L2
κ (L2)

+
∞∫

0

κ(s)
(
(η + ∇ρ)s(s), (η + ∇ρ)(s)

)
L2 ds

=
∞∫

0

κ(s)
(
(v + ∇w)t , (η + ∇ρ)(s)

)
L2 ds. (6.5)

Adding up (6.4) and (6.5) and using hypothesis (4.4), we get

1

2

d

dt

(‖η‖2
L2

μ(VA)
+ ‖η + ∇ρ‖2

L2
κ (L2)

) + (ηs, η)L2
μ(VA) + (

(η + ∇ρ)s, η + ∇ρ
)
L2

κ (L2)

�
∞∫

0

μ(s)
(
vt , η(s)

)
V

ds +
∞∫

0

κ(s)
(
(v + ∇w)t , (η + ∇ρ)(s)

)
L2 ds. (6.6)

Add Eqs. (6.2), (6.3) to (6.6); we have
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1

2

d

dt

(‖vt‖2
L2 + ‖v‖2

V + ‖wt‖2
L2 + κ0‖v + ∇w‖2

L2 + ‖η‖2
L2

μ(VA)
+ ‖η + ∇ρ‖2

L2
κ (L2)

)
+ (ηs, η)L2

μ(VA) + (
(η + ∇ρ)s, η + ∇ρ

)
L2

κ (L2)
+ (

f (v), vt

)
L2 + (

g(w),wt

)
L2 = 0.

(6.7)

We stress that the operator A does not act on the s variable. Then, by integration by parts and
exploiting (4.4), we have that

(ηs, η)L2
μ(VA) = 1

2

∞∫
0

μ(s)
d

ds

∥∥η(s)
∥∥2

V
ds = −1

2

∞∫
0

μ′(s)
∥∥η(s)

∥∥2
V

ds

� δμ

2

∞∫
0

μ(s)
∥∥η(s)

∥∥2
V

ds. (6.8)

By the same technique, we are yield to

(
(η + ∇ρ)s, η + ∇ρ

)
L2

κ (L2)
� δκ

2

∞∫
0

κ(s)
∥∥(η + ∇ρ)(s)

∥∥2
L2 ds. (6.9)

Using (6.8), (6.9) in (6.7), we obtain

1

2

d

dt

(
‖vt‖2

L2 + ‖v‖2
V + ‖wt‖2

L2 + ‖η‖2
L2

μ(VA)
+ ‖η + ∇ρ‖2

L2
κ (L2)

+ κ0‖v + ∇w‖2
L2

+ 2
∫
Ω

F(v)dΩ + 2
∫
Ω

G(w)dΩ

)
+ δ

2

(‖η‖2
L2

μ(V )
+ ‖ρ‖2

L2
κ (L2)

)
� 0, (6.10)

where δ = min(δμ, δκ).
We now consider the product in L2(Ω) of (3.4) and w

(wtt ,w)L2 + κ0(v + ∇w,∇w)L2 +
∞∫

0

κ(s)
(
η(s) + ∇ρ(s),∇w

)
L2 + (

g(w),w
)
L2 = 0

(6.11)

and the product in L2(Ω,R
2) of (3.3) and v

(vtt , v)L2 + κ0(v + ∇w,v)L2 + ‖v‖2
V +

∞∫
0

μ(s)
(
η(s), v

)
V

+
∞∫

0

κ(s)
(
η(s) + ∇ρ(s), v

)
L2 + (

f (v), v
)
L2 = 0. (6.12)

Using Young inequality, we have that∣∣∣∣∣
∞∫

μ(s)
(
η(s), v

)
V

ds

∣∣∣∣∣ �
∞∫

μ(s)
∥∥η(s)

∥∥
V
‖v‖V ds
0 0
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�
∞∫

0

μ(s)

(
ε

μ0
‖v‖2

V + μ0

4ε

∥∥η(s)
∥∥2

V

)
ds

� ε‖v‖2
V + μ0

4ε
‖η‖2

M (6.13)

and, using the same estimate, we also get∣∣∣∣∣
∞∫

0

κ(s)
(
η(s) + ∇ρ(s),∇w + v

)
L2 ds

∣∣∣∣∣ � ε‖∇w + v‖2
L2 + κ00

4ε
‖η + ∇ρ‖2

L2
κ (L2)

. (6.14)

Adding (6.11) to (6.12) and using (6.13), (6.14), we are yield to

(wtt ,w)L2 + (vtt , v)L2 + (1 − ε)‖v‖2
V + (κ0 − ε)‖v + ∇w‖2

L2

+ (
f (v), v

)
L2 + (

g(w),w
)
L2 � μ0

4ε
‖η‖2

M + κ00

4ε
‖η + ∇ρ‖2

L2
κ (L2)

. (6.15)

Then, adding (6.10) to (6.15), multiplied by a coefficient α such small that
μ0α

ε
< δ and

κ00α

ε
< δ,

we obtain

1

2

d

dt

(
‖vt‖2

L2 + ‖v‖2
V + ‖wt‖2

L2 + ‖η‖2
L2

μ(V )
+ ‖η + ∇ρ‖2

L2
κ (L2)

+ κ0‖v + ∇w‖2
L2 + 2

∫
Ω

F(v)dΩ + 2
∫
Ω

G(w)dΩ

)

+ α(wtt ,w)L2 + α(vtt , v)L2 + α(κ0 − ε)‖v + ∇w‖2
L2 + α(1 − ε)‖v‖2

V

+ δ

4

(‖η‖2
L2

μ(V )
+ ‖η + ∇ρ‖2

L2
κ (L2)

) + α
(
f (v), v

)
L2 + α

(
g(w),w

)
L2 � 0. (6.16)

We set

L= E + 2
∫
Ω

F(v )dΩ + 2
∫
Ω

G(w)dΩ

and observe that exploiting hypothesis (4.17) and (4.18) the energy is bounded when L is
bounded and L is positively defined.

We introduce the auxiliary variables v̄ = vt +αv and w̄ = wt +αw, and use the trivial identity

α(v, vtt )L2 = 1

2

d

dt

(‖v̄‖2
L2 + α2‖v‖2

L2

) + α3‖v‖2
L2 − α‖v̄‖2

L2 − (vtt , vt )L2

(and the same for w and w̄). Then, (6.16) becomes

1

2

d

dt

(
‖v‖2

V + ‖η‖2
L2

μ(V )
+ ‖η + ∇ρ‖2

L2
κ (L2)

+ κ0‖v + ∇w‖2
L2

+ 2
∫
Ω

F(v)dΩ + 2
∫
Ω

G(w)dΩ + ‖v̄‖2
L2 + α2‖v‖2

L2 + ‖w̄‖2
L2 + α2‖w‖2

L2

)

+ α(κ0 − ε)‖v + ∇w‖2
2 + α(1 − ε)‖v‖2

V + α3‖v‖2
2
L L
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− α‖v̄‖2
L2 + α3‖w‖2

L2 − α‖w̄‖2
L2 + δ

4

(‖η‖2
L2

μ(V )
+ ‖η + ∇ρ‖2

L2
κ (L2)

)
+ α

(
f (v), v

)
L2 + α

(
g(w),w

)
L2 � 0. (6.17)

Now, we look to control the terms in v̄ and w̄. Let us introduce the functionals:

L1 = −
∫
Ω

vt ·
∞∫

0

μ(s)η(s) ds dx, (6.18)

L2 = −
∫
Ω

wt

∞∫
0

κ(s)ρ(s) ds dx. (6.19)

We note that( ∞∫
0

μ(s)θ(s) ds

)2

=
( ∞∫

0

μ1/2(s)μ1/2(s)θ(s) ds

)2

� μ0

∞∫
0

μ(s)θ2(s) ds (6.20)

for every θ ∈ L2
μ(R+). Using Hölder inequality and (6.20), we get

( ∞∫
0

κ(s)
(
η(s) + ∇ρ(s)

)
ds,

∞∫
0

μ(s)η(s) ds

)
L2

� κ
1/2
00

( ∞∫
0

κ(s)
∥∥η(s) + ∇ρ(s)

∥∥2
L2 ds

)1/2

μ
1/2
0

( ∞∫
0

μ(s)
∥∥η(s)

∥∥2
L2 ds

)1/2

� κ00

2
‖η + ∇ρ‖2

L2
κ (L2)

+ μ0

2
‖η‖2

L2
μ(L2)

. (6.21)

Using (3.3)–(3.6) in (6.18) and (6.19), we get

dL1

dt
= −

∞∫
0

μ(s)
(
Av,η(s)

)
L2 ds +

∥∥∥∥∥
∞∫

0

μ(s)A1/2η(s) ds

∥∥∥∥∥
L2

+
∞∫

0

μ(s)
(
η(s), f (v)

)
L2 ds +

( ∞∫
0

κ(s)
(
η(s) + ∇ρ(s)

)
ds,

∞∫
0

μ(s)η(s) ds

)
L2

+ κ0

∞∫
0

μ(s)
(
η(s), v + ∇w

)
L2 ds − μ0‖vt‖2

L2 −
∞∫

0

μ′(s)
(
η(s), vt

)
L2 ds (6.22)

and

dL2

dt
=

∞∫
0

κ(s)
(
ρ(s), g(w)

)
L2 ds − κ00‖wt‖2

L2 + κ0

∞∫
0

κ(s)
(∇ρ(s), v + ∇w

)
L2 ds

+
( ∞∫

κ(s)∇ρ(s) ds,

∞∫
κ(s)

(
η(s) + ∇ρ(s)

)
ds

)
L2
0 0
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−
∞∫

0

κ ′(s)
(
ρ(s),wt

)
L2 ds. (6.23)

We study each term of the right-hand side of (6.22) and (6.23). In view of (4.5), we obtain
(cf. [6,17])

−μ0‖vt‖2
L2 −

∞∫
0

μ′(s)
(
η(s), vt

)
L2 ds � −μ0

2
‖vt‖2

L2 + C

∞∫
0

μ(s)
∥∥∇η(s)

∥∥2
L2 ds (6.24)

and

−κ00‖wt‖2
L2 −

∞∫
0

κ ′(s)
(
ρ(s),wt

)
L2 ds � −κ00

2
‖wt‖2

L2 + C

∞∫
0

κ(s)
∥∥∇ρ(s)

∥∥2
L2 ds, (6.25)

where C is a constant depending on sμ, sκ , μ0 and κ00.
Using Hölder and Young inequalities and (6.20), we have

−
∞∫

0

μ(s)
(
Av,η(s)

)
L2 ds +

∥∥∥∥∥
∞∫

0

μ(s)A1/2η(s) ds

∥∥∥∥∥
L2

� ε
∥∥A1/2v

∥∥2
L2 + C‖η‖2

M (6.26)

and

κ0

(
v + ∇w,

∞∫
0

κ(s)∇ρ(s) ds

)
L2

+
( ∞∫

0

κ(s)
(
η(s) + ∇ρ(s)

)
ds,

∞∫
0

κ(s)∇ρ(s) ds

)
L2

� ε‖v + ∇w‖2
L2 + C

(‖η‖2
L2

μ(V )
+ ‖η + ∇ρ‖2

L2
κ (L2)

)
, (6.27)

where the constants Cs depend on κ0, κ00, μ0 and ε. Analogously,

κ0

∞∫
0

μ(s)
(
η(s), v + ∇w

)
L2 � ε‖v + ∇w‖2

L2 + C‖η‖2
L2

μ(V )
. (6.28)

Exploiting (4.17), we get

∞∫
0

κ(s)
(
ρ(s), g(w)

)
L2 ds � κ

1/2
00

∫
Ω

(
Λg|w| + g(0)

)( ∞∫
0

κ(s)
∣∣ρ(s)

∣∣2
ds

)1/2

dx

� ε‖w‖2
L2 + C‖η + ∇ρ‖2

L2
κ (L2)

+ C‖η‖2
L2

μ(V )
+ Cg, (6.29)

where Cg is a constant depending on g(0), κ00, |Ω| and on ε. Likely, using (4.18), we get

∞∫
0

μ(s)
(
η(s), f (v)

)
L2 ds � ε‖v‖2

L2 + C‖η‖2
L2

μ(V )
+ Cf , (6.30)

where Cf is a constant depending on f (0,0), μ0, |Ω| and on ε.
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Adding (6.22) to (6.23), and using (6.24)–(6.30), we are yield to

d(L1 +L2)

dt
+ μ0

2
‖vt‖2

L2 + κ00

2
‖wt‖2

L2

� C
(‖η‖2

L2
μ(V )

+ ‖η + ∇ρ‖2
L2

κ (L2)

) + ε
(∥∥A1/2v

∥∥2
L2 + 2‖v + ∇w‖2

L2 + ‖v‖2
L2 + ‖w‖2

L2

)
+ Cg + Cf . (6.31)

Recalling that

‖vt‖2
L2 = ‖v̄‖2

L2 − α
d

dt
‖v‖2

L2 − α2‖v‖2
L2

(the same estimate holds for wt ), hence we can rewrite (6.31) as

d

dt

(
L1 +L2 − α‖v‖2

L2 − α‖w‖2
L2

) + μ0

2
‖v̄t‖2

L2 + κ00

2
‖w̄t‖2

L2

� C
(‖η‖2

L2
μ(V )

+ ‖η + ∇ρ‖2
L2

κ (L2)

) + ε‖v‖2
V + 2ε‖v + ∇w‖2

L2 + (
ε + α2)‖v‖2

L2

+ (
ε + α2)‖w‖2

L2 + Cg + Cf . (6.32)

Let us introduce the functional

L= ‖v̄‖2
L2 + α2‖v‖2

L2 + κ0‖v + ∇w‖2
L2 + ‖v‖2

V + ‖w̄‖2
L2 + α2‖w‖2

L2

+ ‖η‖2
L2

μ(V )
+ ‖η + ∇ρ‖2

L2
κ (L2)

+ 2
∫
Ω

F(v)dΩ + 2
∫
Ω

G(w)dΩ (6.33)

and remark that, in view of (4.14), (4.16) and Poincaré inequality, there exist two positive con-
stants c1 and c2 such that

c1 +L(t) � c2E(t) � 0

for every t � 0.
Let us add (6.17), multiplied by a constant M , which will be chosen suitably large, to (6.32),

to get

d

dt

(
ML+L1 +L2 − α‖v‖2

L2 − α‖w‖2
L2

) +
(

μ0

2
− Mα

)
‖v̄‖2

L2 +
(

κ00

2
− Mα

)
‖w̄‖2

L2

+ (
Mα(κ0 − ε) − 2ε

)‖v + ∇w‖2
L2 + (

Mα(1 − ε) − ε
)‖v‖2

V

+ (
Mα3 − ε − α2)(‖v‖2

L2 + ‖w‖2
L2

) +
(

Mδ

4
− C

)(‖η‖2
M + ‖η + ∇ρ‖2

L2
κ (L2)

)
+ Mα

(
f (v), v

)
L2 + Mα

(
g(w),w

)
L2 � Cg + Cf . (6.34)

The positivity of the multiplying coefficients appearing in (6.34) is ensured by hypothesis (4.6)
and (4.7). Indeed,

Mδ

4
> C,

μ0

2
− Mα > 0,

κ00

2
− Mα > 0,

Mα3 − εα2 > 0, Mα(1 − ε) > 0, Mα(κ0 − ε) − 2ε > 0.

A possible choice of ε,α,M follows 0 < ε = α2 < 1 and ε < κ0 and M such that Mδ > 4C.
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Thanks to equivalence between L and ML + L1 + L2, we have that there exists δ > 0 such
that

d

dt
(ML+L1 +L2

) + δ(ML+L1 +L2
)
� Cf + Cg.

The application of a generalized Gronwall lemma (see, e.g., [17]) gives exponential decay of L
and hence of E . �
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