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Abstract

In [[6] Riv. Mat. Univ. Parma 11 (2) (1970) 79–96] Ferrero demonstrates a connection between a
restricted class of planar nearrings and balanced incomplete block designs. In this paper, bearing in
mind the links between planar nearrings and weakly divisible nearrings (wd-nearrings), first we show
the construction of a family of partially balanced incomplete block designs from a special class of
wd-nearrings; consequently, we are able to give some formulas for calculating the design parameters.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

AnearringN is called aweakly divisible nearring(wd-nearring) if the following condition
is satisfied:∀a, b ∈ N ∃x ∈ N |ax= b or bx= a. This algebraic structure was first defined
and studied in[4] and a method to construct a special class of wd-nearrings was found in
[2,3]. This method has been generalized and implemented in “ SONATA”, a package of
GAP[1].
The structure of a finite wd-nearring is quite similar to that of a better known planar

nearring. Since planar nearrings have been a powerful tool in the construction of balanced
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incomplete block designs (BIB-designs), in this paper it is shown that partially balanced
incomplete block designs (PBIB-designs) can be constructed from a class of wd-nearrings.
More precisely, the paper is organized as follows:
In Section 2 we gather some results on wd-nearrings which we will use throughout the

paper.
In Section 3, using the structure and the properties of a suitable class of wd-nearrings,

we show how it is possible to construct block designs and to compute their parameters.
In Section 4 we firstly recall that, starting from an orbital design and using a general

construction of Hall, it is possible to define an association scheme making the design a
PBIB-design. Then, we prove that the previously constructed designs are orbital designs or
a disjoint union of them. Thus, such designs become partially balanced and several formulas
to compute their parameters are proved.
In Section 5, to facilitate the application of the many steps of the whole construction, we

will conclude showing an example.

2. Weakly divisible nearrings

A left nearring is an algebraic structureN = (S,+, ∗) such that(S,+) is an additive
group,(S, ∗) is a multiplicative semigroup, and the left distributive low holds (see[5,9]).
In the sequel we always consider leftzerosymmetricnearrings, that is, 0∗ x = 0, ∀x ∈ N .
In this section, we shall summarize the results, terminology and notation from[4,2,3]

that will be used in the sequel.

Definition 2.1. A nearringN is called weakly divisible (wd-nearring) if the following con-
dition is satisfied:

∀a, b ∈ N ∃x ∈ N |ax= b or bx= a.

In [4] it is proved that a finite wd-nearringN is the disjoint union of the nil radicalQ (the
set of the nilpotent elements ofN) and themultiplicative semigroupCof the left cancellable
elements. Moreover, by Theorem 8 of[4], the setC is the disjoint union of its maximal
multiplicative subgroups, isomorphic to each other. As in[2], �a denotes the left translation
defined bya, for a ∈ N , that is,�a(x) = ax, for everyx ∈ N . We know that�a is an
endomorphism ofN+ which turns out to be an automorphism if, and only if,a is a left
cancellable element ofN. Furthermore, by Proposition 2 of[2] we note that�(C), the set
of the left translations defined by the elements ofC, is an automorphism group ofN+ with
respect to composition, and the fixed points of�c �= idN , c ∈ C, are nilpotent elements
of N.

Definition 2.2. Letpbe a prime number and consider the residue class group(modulopn)
(Zpn,+). A pn-maximal wd-nearringN is a finite wd-nearring on(Zpn,+), in which the
setQ of the nilpotent elements ofN coincides withpZpn .

Obviously, the ringZpn is, in particular, apn-maximal wd-nearring but this trivial case
will be excluded in the following.
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In [2,3] pn-maximal wd-nearrings are investigated and a construction method is shown.
In this paper we will limit our attention to the case wherep is odd. Theorem 2.5 summarizes
the results from Theorems 2,3 of[2] and Theorem 1 of[3], needed in the sequel.

Definition 2.3. LetGbe a group. LetH �G and��Aut(G). For each orbit�(g), g ∈ G,
the set of the cosets ofHwhich contain elements of�(g) is calledH-class of�(g), denoted
by [�(g)]H .

Definition 2.4. LetGbe a group. LetH �G and��Aut(G). Two orbits�(g) and�(g′),
g, g′ ∈ G, are calledH-equivalent if[�(g)]H = [�(g′)]H .

To simplify our notations, whenH is cyclic we identifyH with its generatorh and, so,
we briefly sayh-class (orh-equivalent) and write[�(g)]h.

Theorem 2.5. Let p be an odd prime number. LetG= (Zpn,+) and��Aut(G).Suppose
E is a set of the representatives of the orbits of� included inZpn\pZpn such that the
selected representatives of p-equivalent orbits belong to the same coset ofpZpn .Choose e
in E. Define1:

a ∗ b =
{
0 if a = 0,
bpr�ker (e

−r ) if a = kpr with k ∈ Z, (k, p) = 1 and0�r <n.

ThenN = (Zpn,+, ∗) is apn-maximal wd-nearring.
Conversely, everypn-maximal wd-nearringN = (Zpn,+, ◦) coincides with the one

constructed as below, starting from the groupG= (Zpn,+) and choosing� = �(C), E as
the set of the idempotent elements of N and e coinciding with an idempotent right identity
of the residue class p.

3. Block designs from wd-nearrings

The object of this section is to prove Theorem 3.8, in which we state that a class of cyclic
block designs is constructible starting from a wd-nearringN, obtained as in Theorem 2.5.
In the following, most of the notation and terminology for design theory is that used

by [8]. Here we recall that an incidence structure(X,B ⊆ P(X)) on a finite setX is
calledblock design(or tactical configuration) if all the blocks contain the same numberk
of elements and all the elements occur in the same numberr of blocks. A block design is
said to beincomplete(IB-design) if at least one of its blocks is a proper subset ofX, and
cyclic if it has a cyclic automorphism group regular onX.
The numbers(v, b, r, k), wherev andb are the cardinality ofX andB respectively, are

called theparametersof the design. It is well known that they are not independent, because
vr = bk.

1We recall that�x denotes theautomorphismof� such that�x(ex)=x, whereex is the selected representative
of the orbit�(x).
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Definition 3.1. Let N be apn-maximal wd-nearring. The setN ∗ a + b, a, b fixed inN,
is called the block determined bya, b and denoted byBa,b. A block of the formN ∗ a is
called a basic block generated bya.

Proposition 3.2. Let N be apn-maximal wd-nearring. If�=�(C) has order tph, (t, p)=1,
then there arec = p−1

t
pn−h−1 distinct basic blocks generated by the elements of C.

First wewill show that ifa, b belong toC thenN ∗a=N ∗b if, and only if,aandbbelong
to the same�-orbit. From[4] we learn thata ∈ C impliesa ∈ N ∗ a. HenceN ∗ a=N ∗ b
impliesa ∈ N ∗ b, that is,a = y ∗ b for somey ∈ N . Soy cannot be nilpotent; otherwise,
y ∗ b= a ought to be nilpotent. Thusy is a cancellable element and, applying Theorem 2.5,
we havea = y ∗ b = b�y(1) = �y(b). The converse is analogous.

We conclude that the numberc of the distinct basic blocks equals the number|C|
|�| of the

�-orbits coveringC, that is,c = p−1
t
pn−h−1.

Remark 1. The cardinality of a basic block depends on its generator. Generally, ifa is a
cancellable element andq is a nilpotent, the cardinality ofN ∗ a is greater than that of
N ∗ q. That is why, in order to obtain a tactical configuration, only basic blocks generated
by cancellable elements will be considered. Moreover, since our claim is to obtain an
incomplete block design, we must exclude the caseN =N ∗ a + b, for all a, b ∈ N . Thus
we will not consider the trivial case�(C) = Aut(N+), in which the wd-nearring is a ring.

Hereinafterpn-maximal wd-nearring meansp is an odd prime numberandthe nearring
is not a ring.

Proposition 3.3. Let� be a subgroup ofAut(Zpn,+) of order tph, (t, p) = 1.Then

|�(pr)| =
{
t, r�h,

tph−r , r�h.

DenoteG= (Zpn,+). It is well-known that� = T × �h, whereT �Aut(G) is a group
of ordert of fixed point free automorphisms ofG and�h = {�k : a → ka | k = bpn−h +
1, 0�b�ph−1}�Aut(G) has orderph (see[5, Chapter 2, p. 49]). If r�h,pr is fixed by
each automorphism of�h, so|�(pr)| = t . Let r <h. The automorphisms of�h fixing pr

are of the form�k, wherek=bpn−h +1 with b ≡ 0 (modph−r ). Thebelements satisfying
all our conditions are exactlypr , thus|�(pr)| = |�|

pr
= tph−r .

Proposition 3.4. LetNbeapn-maximalwd-nearringanda ∈ C. If�=�(C)hasordertph,

(t, p)=1,thenN∗a=⋃n−1
r=1 �(apre−r )∪{0}∪�(a)and|N∗a|= ph+1−1

p−1 t+(n−h−1)t+1.

Obviously, (a, p) = 1 andN ∗ a = a(N ∗ 1) imply |N ∗ a| = |N ∗ 1|, for all a ∈
C. If x = kpr , with k ∈ Z and (k, p) = 1, from Theorem 2.5 we learn thatx ∗ 1 =
pr�ker (e

−r ), soN ∗1=Q∗1∪C ∗1=⋃n−1
r=1 {kpr ∗1|k ∈ Z, (k, p)=1}∪ {0}∪�(1) (see

[4, Proposition 9]). From Proposition 5 of[2] we know thatkpr ∗ 1= ker ∗ e−rpr , for all
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r = 1, . . . , n − 1, moreover, it is clear that the set{ker | k ∈ Z, (k, p) = 1} equalsC, so
{kpr ∗1 | k ∈ Z, (k, p)=1} = {ker ∗e−rpr | k ∈ Z, (k, p)=1}= �(e−rpr). ThusN ∗1=⋃n−1

r=1 �(e−rpr)∪{0}∪�(1). Since|�(e−rpr)|= |�(pr)|, the previous statement gives us
|N∗1|=∑h

r=1 |�(pr)|+∑n−1
r=h+1 |�(pr)|+1+|�|=∑h

r=0 |�(pr)|+∑n−1
r=h+1 |�(pr)|+1.

By Proposition 3.3 we obtain|N ∗1| =∑h
r=0 tp

h−r + t (n−h−1)+1= t (ph+1−1)(p−
1)−1 + t (n − h − 1) + 1.

Proposition 3.5. Let N be apn-maximal wd-nearring.ThenN ∗1+ b=N ∗1 if, and only
if, b = 0.

If b=0 the statement is trivial. SupposeN ∗1+b=N ∗1, b �= 0. Obviouslybbelongs to
N ∗1, as 0+b=b. ThusN ∗1 contains the cyclic additive subgroup〈b〉, generated byb. This
impliesb ∈ Q, otherwise,N=N ∗1 and this is excluded sinceN is not a ring. So, setb=kpr ,
wherek ∈ Z and(k, p)= 1. From〈b〉 ⊆ N ∗ 1 we know that〈b〉 = ⋃n−1

i=r �(e−ipi) ∪ {0}.
Hence the orbit of e−rpr contains all the elements ofQwhich are multiples ofpr but not of
pr+1, which means|�(e−rpr)|= (p−1)pn−(r+1). If r <h, from Proposition 3.3 we know
that|�(e−rpr)|= tph−r , soh=n−1, t=p−1 and we obtain�=Aut(N+), which implies
N = N ∗ 1, now excluded asN is not a ring. Ifr�h, again from Proposition 3.3, we have
|�(e−rpr)|=t , sor=n−1andt=p−1, hence,b=kp(n−1). Thus,〈b〉={0}∪�(e−(n−1)pn−1)

and this implies{0} ∪ �(e−(n−1)pn−1) = ({0} ∪ �(e−(n−1)pn−1)) + b. The last equality
forces�(e−ipi)=�(e−ipi)+b, i=1, . . . , n−2. In particular, now we consideri=h. We
know that|�(e−hph)| = t =p− 1; hence, e−hph + b= �(e−hph), where� is a fixed point
free automorphism ofN. Thus, e−hph+1 + pb = �(e−hph+1) and the element e−hph+1 is
a fixed point of�, aspb = 0. This implies thath = n − 1 and again� = Aut(N+), which
is excluded.

Proposition 3.6. Let N be apn-maximal wd-nearring. ThenBa,b = Bc,d if, and only if,
N ∗ a = N ∗ c andb = d.

Obviously,N ∗ a = N ∗ c and b = d imply Ba,b = Bc,d . SupposeBa,b = Bc,d and
d − b �= 0. FromN ∗ a = N ∗ c + (d − b) we obtainN ∗ 1= N ∗ a−1c + (d − b)a−1.
Setg = a−1c andf = (d − b)a−1 to obtainN ∗ 1= N ∗ g + f . From previous equality
u∗N ∗1=u∗N ∗g+u∗f , for allu ∈ C, and alsoN ∗1=N ∗g+u∗f , sinceu∗N=N . So
N ∗1=N ∗1+u∗f −f and Proposition 3.5 forcesu∗f =f , for all u ∈ C. This meansf
is a fixed point for all the elements of�, so�=�h andf =kpr , wherer�h and(k, p)=1.
For allm ∈ Z, (m, p)= 1, and for alli�h,� = �h implies�(mpi )= {mpi}; hence, for all
u ∈ C, u ∗ mpi = mpi , and thusmpi ∗ 1= mei ∗ e−ipi = e−ipi . This implies that, for all
i�h, ge−ipi and e−ipi are the only multiples ofpi , but not ofpi+1, belonging toN ∗ g

andN ∗ 1, respectively. Hencempn−1 ∗ g + f = e−rpr , ash�n− 1. Fromh<n− 1, we
also obtainmpn−2 ∗ g + f = e−rpr , the only multiple ofpr , but not ofpr+1, belonging to
N ∗ 1, and this is impossible becausempn−1 ∗ g �= mpn−2 ∗ g. Hence it must beh= n− 1,
which impliesr =n−1, ash�r. So, fromg+f ∈ �(1), we haveg+ kpn−1=1+hpn−1,
for someh ∈ Z, hence,g ∈ �(1) and this forces�(g)= �(1). In this way we end up with
N ∗ g = N ∗ 1, which is excluded.
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Lemma 3.7. Let N be apn-maximal wd-nearring with|�(C)|= tph, (t, p)=1.Fix a ∈ C

and setBa = {Ba,b|b ∈ N}, then
(1) (N,Ba) is a cyclic block design with parameters

v = b = pn and r = k = (p − 1)−1(ph+1 − 1)t + (n − h − 1)t + 1.

(2) There existc = p−1
t
pn−h−1 disjoint cyclic block designs(N,Ba), a ∈ C, isomorphic

to each other.

(1) Firstly, we note thatDa = (N,Ba) is the development of the basic blockBa,0, so it is
obviously cyclic. Proposition 3.5 tells us thatb = |N | = pn. We know that each block

contains exactlyk= ph+1−1
p−1 t+ (n−h−1)t+1 elements from Proposition 3.4. Finally,

as the number of the blocks containing an elementx ∈ N equals the number of the
blocks containing 0, obviously, we can say that each element ofN occurs in the same
number of blocks. Thus the replication number isr = bk/v = k.

(2) The first part of the statement follows by Propositions 3.2 and 3.6. Moreover, any two
designsDa1 = (N,Ba1) andDa2 = (N,Ba2) are isomorphic via the automorphism
�
a2a

−1
1

of Zpn .

Theorem 3.8. Let N be apn-maximal wd-nearring with|�(C)| = tph and(t, p) = 1.Set
B = {Ba,b | a ∈ C, b ∈ N}. ThenD = (N,B) is a cyclic block design with parameters

v = pn, b = cpn, k = ph+1−1
p−1 t + (n − h − 1)t + 1, r = ck.

We note thatD=(N,B) results in the union of thec= p−1
t
pn−h−1 disjoint developments

Da = (N,Ba), a ∈ C, and we apply Lemma 3.7.

In the sequel, block designs generated as in Section 3 will be calledblock designs derived
from N.

4. PBIB-designs

Definition 4.1. An association schemewith m associate classeson a finite setN is a family
A ofmsymmetric antireflexive binary relationsR1, . . . , Rm onN such that:

(i) any two distinct elements ofNareith associates for exactly one value ofi=1, . . . , m;
(ii) for all i = 1, . . . , m andx ∈ N , there are exactlyni distinct elementsy ∈ N so that

(x, y) ∈ Ri ;
(iii) for all i, j, k=1, . . . , m, if (x, y) ∈ Rk, the numberpkij of z ∈ N such that(x, z) ∈ Ri

and(y, z) ∈ Rj is a constant depending oni, j, k but not on the particular choice ofx
andy.

Definition 4.2. A tactical configuration(N,B) is called abalanced incomplete block de-
sign (BIB-design) if there is a positive integer� so that, ifx, y ∈ N are any two distinct
elements ofN, then there are exactly� distinct blocks ofB containing bothx andy.
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Definition 4.3. A tactical configuration(N,B) with an association schemeA is called a
partially balanced incomplete block design(PBIB-design) if there are positive integers�i ,
i = 1, . . . , m, such that, ifx, y ∈ N are any twoith associate elements, thenx, y occur
together in exactly�i blocks ofB. Thus a PBIB-design(N,B,A) has parametersni , pkij
and�i in addition to those of the tactical configuration(N,B).

Generally, the block designs derived from apn-maximal wd-nearringN are notBIB-
designs. Nevertheless, we will see that it is possible to define an association scheme onN
making themPBIB-designs. In order to obtain this, we recall the following constructions.

Construction 1. A block design (N,B) is called anorbital design of Higman ([5,
p. 162]) if we obtainB in the following way: takeH a transitive permutation group with an
intransitive subgroupSacting on a finite nonempty setN. LetB be any union of orbits ofS
andS1 be the stabilizer ofB, |H : S1| = b. Choose the representativesxi, i = 1, . . . , b, for
the cosetsxiS1, i = 1, . . . , b. Finally, setB = {Bi = xi(B), i = 1, . . . , b}.

Construction 2. An orbital design(N,B) can become a PBIB-design. Precisely, from[7]
we know that from a transitive permutation groupH of rankf + 1 onN, an orbital design
can be derived which results in a PBIB-design with at mostf associate classes determined
as follows: consideraany element ofN,Ha its stabilizer andN ={a} ∪�1∪�2∪ · · · ∪�f

the decomposition ofN into theHa-orbits. For each orbit�we have�′ ={g(a)|g ∈ H, a ∈
g(�)}, which is again an orbit, of the same length as�, and(�′)′ = �. The orbits� and
�′ are calledpairedand an orbit is calledself-pairedif � = �′. Suppose�i , i = 1, . . . , u,
are self-paired orbits and the remainingf − u orbits�i ,�′

i , i = u + 1, . . . , (f − u)/2,
are paired. Pointsa andb are said to besth associates ifs�u andb ∈ �s or s >u and
b ∈ �s ∪�′

s . Moreover,g(a) andg(b), g ∈ H , are said to besth associates ifaandbaresth
associates too. Finally,sth associate points occur together in�s blocks, where�s depends
only ons.

Now, we come back to the block designs derived from a wd-nearring.

Lemma 4.4. Let N be apn-maximal wd-nearring with|�(C)| = tph, (t, p) = 1. If a ∈ C

andBa = {Ba,b | b ∈ N}, then(N,Ba) is an orbital design.

Take�=�(C) and considerH =N×��, the natural semidirect product where(a, �)×�
(b, 	) = (a + �(b), �	), which acts transitively onN by (a,�)n = a + �(n). Consider
S = {(0,�) |� ∈ �}. S is a subgroup ofH isomorphic to�, so|H : S| = pn. Moreover,S
acts intransitively onN, has the sameorbits of�and turnsout to be thestabilizer ofBa=N∗a
in H, a ∈ C. From Proposition 3.4 we know thatN ∗ a is a union of some�-orbits, so
we can construct an orbital design following the method described previously. Denote by
m = (m, idN) the representative of the cosetmS = {(m,�) |� ∈ �}. Let 0, . . . , pn − 1
be the representatives of the cosets ofS and compute 0(Ba), . . . , p

n − 1(Ba): you find
b(Ba) = Ba,b, for all b ∈ N . Thus,(N,Ba) results in an orbital design.
Finally, we are able to prove the main theorem of this section.
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Theorem 4.5. Let N be apn-maximal wd-nearring with|�(C)| = tph and(t, p)= 1.The
block designs derived from N arePBIB-designs with either f associate classes, if t is even,
or f/2 associate classes, if t is odd, wheref = [(ph − h + p)pn−h−1 − 1]/t .

Previous Lemma 4.4 tells us thatDa = (N,Ba) is an orbital design; hence, applying
Construction2, anassociationschemecanbedeterminedstarting from theorbits of�=�(C)
which makesDa = (N,Ba) a PBIB-design.
Actually, considering the groupH = N×�� of Lemma 4.4 acting transitively onN, we

can identify the�-orbitswith the orbits of the stabilizer of 0∈ N , asSt(0)={(0,�) |� ∈ �}
is isomorphic to�. Let f be the number of the nontrivial�-orbits. From Theorem 16.4 of
[10] we learn that the paired orbits� and�′ of� coincide if, and only if, there is an element
g ∈ H exchanging 0 andx ∈ �. If |�| is even the elementg=(x,−idN), exchanging 0 and
x, exists inH, for all x ∈ N ; thus, all the orbits are self-paired and the associate class number
is f. If |�| is odd such an element does not exist inH, for all x ∈ N , so no nontrivial orbit is
self-paired. Hencef is even and the associate class number isf/2. Using Proposition 3.3, we
easily obtain that the number of the�-orbits coveringprZpn\pr+1Zpn ispn−h−1(p−1)/t ,
for 0�r�h, andpn−r−1(p−1)/t , for h< r�n−1. So,f =[(ph−h+p)pn−h−1−1]/t .
Finally, the designD = (N,B), the union of the disjoint orbital designs(N,Ba), for

a ∈ C (Theorem 3.8), results in a PBIB-designwith respect to the same association scheme.

4.1. Association scheme and partial balance parameters

In [8] we find many equalities involving PBIB-design parameters. For instance, for a
PBIB-design we can define thev × b incidence matrixA and read all the values of�i in
the elements ofA ∗ AT = (clm), l �= m, whereAT denotes the transpose matrix ofA. If,
as usual, we say that each element is the 0th associate of itself we can writep0ii = ni and
pki0=pk0i=
ki (the Kronecker delta) andwe also know that the parameters of a PBIB-design
with m associate classes satisfyni = ∑m

u=0p
k
iu andnkp

k
ij = nip

i
kj . If the PBIB-design is

derived from apn-maximal wd-nearring, further formulas for computing the PBIB-design
parameters can be found.
In this section,D = (N,B) denotes a PBIB-design derived from apn-maximal wd-

nearring, as described in the previous section. In the following[Ba,b − Bc,d ] denotes the
list of the differences between the elements ofBa,b and those ofBc,d . The number of times
in which an elementk occurs among the elements of[Ba,b − Bc,d ] is called thefrequency
of k in [Ba,b − Bc,d ]. In particular the frequency ofk in [Ba,0 − Bc,0] is denoted byfa,c,k
and we setfa,a,k = fa,k.

Proposition 4.6. The frequency of anyk ∈ N in [Ba,0−Bc,0] equals the frequency of�(k),
that is, fa,c,k = fa,c,�(k)∀� ∈ �, ∀a, c ∈ C.

Letn ∈ N ∗a andm ∈ N ∗c. Obviously, when� belongs to��Aut(N+),�(n) ∈ N ∗a
and�(m) ∈ N ∗ c. Moreover, fromn − m = k we obtain�(n) − �(m) = �(k) and vice
versa.
Thus, to know all the possible frequencies of an elementk ∈ N in [Ba,0 − Bc,0] it is

sufficient to know the frequency of any element of its orbit�(k).
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Proposition 4.7. The frequency of anyk ∈ N in [Ba,0−Ba,0] equals the frequency ofka−1

in [B1,0 − B1,0], that is, fa,k = f1,ka−1 ∀a ∈ C.

In factk ∈ [Ba,0−Ba,0] implies that there existz, t ∈ N such thatz ∗ a− t ∗ a= k, that
is, a(z ∗ 1− t ∗ 1) = k and finallyz ∗ 1− t ∗ 1= ka−1. The converse is analogous.

Remember that in a finite wd-nearringN the left translations determined by the elements
ofC formasubgroup�(C)=�ofAut(N+). For convenience, in the followingEwill denote
a set of representatives, calling themei , of all the�-orbits contained inC, andDwill denote
a set of representatives, calling themdi , of all the union setsUi =�(di)∪�(−di)=�i ∪�′

i

of nontrivial �-orbits. On the basis of Section 3, if the�-orbits are self-paired, which
means|�| is even, each of them is connected to an association class viaxRiy if, and
only if, y − x ∈ �(di) = �i . If the�-orbits are not self-paired, which means|�| is odd,
paired orbits are connected to an association class viaxRiy if, and only if,y − x ∈ �(di)
∪ �(−di) = �i ∪ �′

i .
Finally we are ready to prove the following.

Theorem 4.8. LetD=(N,B) be aPBIB-design derived from apn-maximal wd-nearring.
Then

�i = 1

|�|
∑
g∈C

f1,dig =
∑
ej∈E

f1,diej .

From Theorem 3.8 we know thatB = ⋃
a∈C Ba and the number of distinctBa is c =

p−1
t
pn−h−1. Consequently�i = ∑

a∈E (�i )a , where(�i )a denote the number of blocks of
Ba containing twoith associate elements. From[8], Lemma1ofChapter 3, we learn that the
numberofblocksofBa containing twogivendistinct elementsx, y ofNequals the frequency
fa,y−x of y − x in [Ba,0−Ba,0]. From Proposition 4.7 we know thatfa,y−x = f1,(y−x)a−1.
Bearing inmind that two elements ofCbelong to the same orbit if, and only if, they generate
the same basic block, the number of blocks containingx andy is 1

|�|
∑

g∈C f1,(y−x)g. Now,
choosex, y so thatx−y=di , the representative ofUi . Obviouslyxandyareith associates;
thus,�i= 1

|�|
∑

g∈C f1,dig. Insteadof havingg running inC, which forces the division by|�|,
we can choose a representativeei in each orbit contained inC to obtain�i =∑

ej∈E f1,diej .

Corollary 4.9. LetD=(N,B) be aPBIB-design derived fromapn-maximal wd-nearring.
If �i ⊆ C then�i=∑

ej∈E f1,ej and if,moreover, the�-orbits are not self-paired,weobtain
�i = 2

∑
dj∈D∩C f1,dj .

Theorem 4.10.LetD=(N,B)beaPBIB-designderived fromapn-maximalwd-nearring.
Consider the three union setsUk =�k ∪�′

k, andUi =�i ∪�′
i , andUj =�j ∪�′

j . If two of
them are contained in a proper subgroupN ′ ofN+ and the third has an empty intersection
withN ′, thenpkij = pikj = p

j
ik = 0.

LetN ′ be a proper subgroup ofN+. SupposeUi,Uj ⊆ N ′ andUk ∩ N ′ = ∅. Consider
the twokth associate elements 0 anddk, the representative ofUk. The ith associates of
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0 are the elements ofUi and thejth associates ofdk are the elements ofUj + dk. Thus
pkij = |Ui ∩ (Uj + dk)|. Supposepkij �= 0. Then there exists at least an elementu belonging
toUi ∩ (Uj + dk), that is,u ∈ Ui andu= d + dk for somed ∈ Uj . Thusdk = u− d ∈ N ′
and this is excluded, asUk ∩ N ′ = ∅. Frompkij = 0 we obtainpikj = 0, asnkpkij = nip

i
kj

andni �= 0. For the same reason and bearing in mind thatpkij = pkji , we havep
j
ik = 0.

Theorem 4.11. In a PBIB-designD = (N,B) derived from apn-maximal wd-nearring,
we haveni = |�i | if |�| is even, andni = 2|�i | if |�| is odd.

Obviously, the numberni of ith associates of anyx ∈ N equals the cardinality of
Ui = �i ∪ �′

i and, from Theorem 4.5, we know that�i = �′
i if, and only if, |�| is even.

5. Example

In this section, we give the reader an example of the previous construction, developed in
the following steps:
First step: choose G, � and define“ ∗ ” .
Second step: construct block designs.
Third step: define an association scheme.
Fourth step: have PBIB-designs and their partial balance parameters.

Example 5.1. First step:choose G, � and define“ ∗ ” .
We consider the additive groupG = (Z73,+) and we choose��Aut(G) of order 21.

So we are working withp = 7, n = 3, t = 3 andh = 1. We can compute the number of
the�-orbits coveringC = Z73\7Z73, c = 14 (see Proposition 3.2). Now we have to select
a setE of the representatives of these�-orbits and, for convenience, we want that 1∈ E.
The�-orbits are not self-paired because the order of� is odd, so a suitable selection is
E = (ej )j∈{1,...,14} = (1 + 7i,342− 7i) with i = 0, . . . ,6. Now, from Theorem 2.5 we
learn that a newmultiplication “∗ ” can be defined onZ73. Actually, now we are not really
interested in the whole construction of this multiplication, thus, we refer the interested
reader to[1]. Anyway, now we know that a 73-maximal wd-nearring is generated.
Second step: construct block designs.
Using as blocks the setsN ∗ a + b, with a ∈ C, b ∈ N , block designs can be generated.

We have 14 basic blocks:N ∗ ej , for j = 1, . . . ,14. Each of them generates a cyclic block
design with parametersv = b = 343 andk = r = 28 (Theorem 3.7). So we have 14 cyclic
block designs, isomorphic to each other, and their union is a cyclic block design with the
following parameters.
v = 343, b = 14 · 343, k = 28 andr = 14 · 28.
Third step: define an association scheme.
We follow the construction described in Section 4. We can compute the number of the

nontrivial�-orbits,f=30 (seeTheorem4.5). As|�|=21 is odd,we know that the nontrivial
�-orbits are not self-paired so we define theUis by pairing them, that is,Ui = �i ∪ (−�i ),
with i=1, . . . ,15. Thus we obtain an association schemewith 15 associate classes defining
x andy to beith associates whenx − y belongs toUi . To compute the parameters of our
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association scheme we need the setD of the representatives of theUis. A good selection
could beD = (di)i∈I15 = (1, e2, . . . , e7,7,7e2, . . . ,7e7,49).
We know that the number of theith associates of each element depends oni only,

and now we haveni = |Ui |, and thusn1 = · · · = n7 = 42, n8 = · · · = n15 = 6 (see
Proposition 3.3).
Sincem = 15, thepkij fill in 15 squared matrices of order 15, the

Theorem 4.10 gives us

In addition we notice thatpkij equals the frequency ofdk, the representative ofUk, in the
list of the differences between the elements ofUi and those ofUj .
Fourth step: have PBIB-designs and their partial balance parameters.
From Theorem 4.5, the constructed block designDwith the previous association scheme

turns out to be a PBIB-design which may be split into 14 orbital block designs, isomorphic
to each other. To compute their parameters we apply Propositions 4.8 and 4.9 directly.
For convenience, we will denote byDj the orbital design generated byBej ,0 = N ∗ ej ,
j = 1, . . . ,14, and by(�i )j , i = 1, . . . ,15, the respective partial balance parameters. From
Theorem 4.8 we know that(�i )j = (�i )ej =f1,e−1

j di
and we notice that(�i )1= (�i )8, (�i )2=

(�i )9, (�i )3 = (�i )10, (�i )4 = (�i )11, (�i )5 = (�i )12, (�i )6 = (�i )13, (�i )7 = (�i )14.

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13 �14 �15

D1 4 0 0 1 7 1 1 1 0 0 1 1 1 1 23
D2 1 4 0 0 1 7 1 1 1 0 0 1 1 1 23
D3 1 1 4 0 0 1 7 1 1 1 0 0 1 1 23
D4 7 1 1 4 0 0 1 1 1 1 1 0 0 1 23
D5 1 7 1 1 4 0 0 1 1 1 1 1 0 0 23
D6 0 1 7 1 1 4 0 0 1 1 1 1 1 0 23
D7 0 0 1 7 1 1 4 0 0 1 1 1 1 1 23
D 28 28 28 28 28 28 28 10 10 10 10 10 10 10 322
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