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Abstract 

The nonlinear equation of motion that accomplishes a self-consistent unification of 
quantum mechanics (QM) and thermodynamics conceptually different from the (von 
Neumann) foundations of quantum statistical mechanics (QSM) and (Jaynes) quantum 
information theory (QIT), but which reduces to the same mathematics for the 
thermodynamic equilibrium (TE) states, and contains standard QM in that it reduces to the 
time-dependent Schrödinger equation for zero entropy states is discussed in full 
mathematical detail. By restricting the discussion to a strictly isolated system (non-
interacting, disentangled and uncorrelated), we show how the theory departs from the 
conventional QSM/QIT rationalization of the second law of thermodynamics, which 
instead emerges in QT (quantum thermodynamics) as a theorem of existence and 
uniqueness of a stable equilibrium state for each set of mean values of the energy and the 
number of constituent particles. To achieve this, the theory assumes ρρ lnTrBk−  for the 

physical entropy and is designed to implement two fundamental ansatzs: (1) that in 
addition to the standard QM states described by idempotent density operators (zero 
entropy), a strictly isolated and uncorrelated system admits also states that must be 
described by non-idempotent density operators (nonzero entropy); (2) that for such 
additional states the law of causal evolution is determined by the simultaneous action of a 
Schrödinger-von Neumann-type Hamiltonian generator and a nonlinear dissipative 
generator which conserves the mean values of the energy and the number of constituent 
particles, and in forward time drives the density operator in the 'direction' of steepest 
entropy ascent (maximal entropy generation). The resulting dynamics is well defined for all 
non-equilibrium states, no matter how far from TE. Existence and uniqueness of solutions 
of the Cauchy initial value problem for all density operators implies that the equation of 
motion can be solved not only in forward time, to describe relaxation towards TE, but also 
in backward time, to reconstruct the 'ancestral' or primordial lowest entropy state or limit 
cycle from which the system originates. Zero entropy states as well as a well defined 
family of non-dissipative states evolve unitarily according to pure Hamiltonian dynamics 
and can be viewed as unstable limit cycles of the general nonlinear dynamics.  

Keywords: second law of thermodynamics, irreversibility, nonunitary quantum dynamics, 

maximal entropy generation, steepest entropy ascent, nonequilibrium relaxation, quantum 

thermodynamics. 
 

1.  Thermodynamics after Prigogine 

The non-orthodox unified quantum theory of 
mechanics and thermodynamics we discuss in this 
paper accomplishes from a different perspective 
the program that Prigogine and co-authors of the 
Brussels school set out during the same 
decade,1976-1986, to seek a formulation of                                                                                   
physical foundations whereby entropy and 
irreversibility emerge from microscopic 

kinematics and dynamics. For this reason, even 
though our approach is very different from that of 
the Prigogine school, I suggest that in a broad 
sense it does accomplish what Prigogine always 
felt it ought to be possible to do: to formulate a 
theory in which entropy emerges as an intrinsic 
objective physical property of matter and 
irreversibility as an objective dynamical aspect of 
microscopic physical reality.  

We called our theory quantum 
thermodynamics (QT). It is noteworthy however 
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that the same term has been later used by many 
authors with different meanings. The two 
fundamental ansatzs of our QT were formulated in 
a series of papers published since 1976 by various 
members of the Keenan School of 
Thermodynamics at MIT (Keenan, Hatsopoulos, 
Gyftopoulos, Park, Beretta, Zanchini, Çubukçu, 
von Spakovsky). The theory has been defined “an 
adventurous scheme which seeks to incorporate 
thermodynamics into the quantum laws of motion, 
and may end arguments about the arrow of time – 
but only if it works” by J. Maddox, Nature, 
Vol.316, 11 (1985), and it has been recently 
rediscovered and re-evaluated by S. Gheorghiu-
Svirschevski, Phys. Rev. A, Vol. 63, 054102 
(2001). 

Several authors have attempted to construct a 
microscopic theory that includes a formulation of 
the second law of thermodynamics [1, 2, 3, 4, 5, 6, 
7, 8]. Some approaches strive to derive 
irreversibility from a change of representation of 
reversible unitary evolution, others from a change 
from the von Neumann entropy functional to other 
functionals, or from the loss of information in the 
transition from a deterministic system to a 
probabilistic process, or from the effect of 
coupling with one or more heat baths. 

We discuss the key elements and features of 
a different non-standard theory which introduces 
de facto an ansatz of “intrinsic entropy and 
instrinsic irreversibility” at the fundamental level 
[9, 10], and an additional ansatz of ”steepest 
entropy ascent” which entails an explicit well 
behaved dynamical principle and the second law 
of thermodynamics. To present it, we first discuss 
an essential fundamental concept. 

2.  States of a strictly isolated individual system 

Let us consider a system A and denote by R  
the rest of the universe, so that the Hilbert space of 
the universe is RAAR HHH ⊗= . We restrict our 

attention to a “strictly isolated” system A by 
which we mean that at all times, ∞−∞ << t , A  
is uncorrelated (and hence disentangled) from R , 
i.e., RAAR ρρρ ⊗= , and non-interacting, i.e., 

RARAAR HIIHH ⊗+⊗= . 

Many would object at this point that with this 
premise the following discussion should be 
dismissed as useless and unnecessary, because no 
“real” system is ever strictly isolated. We reject 
this argument as counterproductive, misleading 
and irrelevant, for we recall that physics is a 
conceptual edifice by which we attempt to model 
and unify our perceptions of the empirical world 
(physical reality [11]). Abstract concepts such as 
that of a strictly isolated system and that of a state 
of an individual system not only are well defined 

and conceivable, but have been keystones of 
scientific thinking, indispensable for example to 
structure the principle of causality. In what other 
framework could we introduce, say, the time-
dependent Schrödinger equation? 

Because the dominant theme of quantum 
theory is the necessity to accept that the notion of 
state involves probabilistic concepts in an essential 
way [12], established practices of experimental 
science impose that the construct “probability” be 
linked to the relative frequency in an “ensemble”. 
Thus, the purpose of a quantum theory is to 
regularize purely probabilistic information about 
the measurement results from a “real ensemble” of 
identically prepared identical systems. An 
important scheme for the classification of 
ensembles, especially emphasized by von 
Neumann [13], hinges upon the concept of 
ensemble “homogeneity”. Given an ensemble it is 
always possible to conceive of it as subdivided 
into many sub-ensembles. An ensemble is 
homogeneous if every conceivable subdivision 
results in sub-ensembles all identical to the 
original (two sub-ensembles are identical if upon 
measurement of both of the same physically 
observable at the same time instant, the outcomes 
yield the same arithmetic mean, and this holds for 
all conceivable physical observables). It follows 
that each individual member system of a 
homogeneous ensemble has exactly the same 
intrinsic characteristics as any other member, 
which therefore define the “state” of the individual 
system. In other words, the empirical 
correspondent of the abstract concept of “state of 
an individual system” is the homogeneous 
ensemble (sometimes called “pure” [14, 15, 16] or 
“proper” [17, 18]). 

We restrict our attention to the states of a 
strictly isolated individual system. By this we rule 
out from our present discussion all heterogeneous 
preparations, such as those considered in QSM and 
QIT, which are obtained by statistical composition 
of different homogeneous component preparations. 
Therefore, we concentrate on the intrinsic 
characteristics of each individual system and their 
irreducible, non-statistical probabilistic nature. 

3.  Broader quantum kinematics ansatz 

According to standard QM the states of a 
strictly isolated individual system are in one-to-
one correspondence with the one-dimensional 
orthogonal projection operators on the Hilbert 
space of the system. We denote such projectors by 
the symbol P . If 〉ψ|  is an eigenvector of P  such 

that 〉〉 ψψ =||P  and 1=| 〉〈 ψψ  then |=| ψψ 〉〈P . 

It is well known that different from classical states, 
quantum states are characterized by irreducible 
intrinsic probabilities. We need not elaborate 
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further on this point. We only recall that 
0=lnTr PP− . 

Instead, we adhere to the ansatz [19] that the 
set of states in which a strictly isolated individual 
system may be found is broader than conceived in 
QM, specifically that it is in one-to-one 
correspondence with the set of linear operators ρ  

on H , with ρρ =† , 0>ρ , 1=Trρ , without the 

restriction ρρ =2 . We call these the “state 

operators” to emphasize that they play the same 
role that in QM is played by the projectors P , and 
that they are associated with the homogeneous 
preparation schemes. This fundamental ansatz was 
first proposed by Hatsopoulos and Gyftopoulos 
[19]. It allows an implementation of the second 
law of thermodynamics at the fundamental level in 
which the physical entropy, given by 

ρρρ lnTr=)( Bks − , emerges as an intrinsic 

microscopic and non-statistical property of matter, 
in the same sense as the (mean) energy 

He ρρ Tr=)(  is an intrinsic property. 

We first assume that our isolated system is an 
indivisible constituent of matter, i.e., one of the 
following:  

    • A single strictly isolated d -level 

particle, in which case 
k
e

d
kd HHH 0=== ⊕  where 

ke  is the k -th eigenvalue of the (one-particle) 

Hamiltonian 1H  and 
k
eH the corresponding 

eigenspace). Even if the system is isolated, we do 
not rule out fluctuations in energy measurement 
results and hence we do not assume a 
“microcanonical” Hamiltonian (i.e., 

k
ek

PeH
~

~= H for some k
~
) but we assume a full 

“canonical” Hamiltonian 
k
e

kk
PeHH
H∑== 1 .  

    • A strictly isolated ideal Boltzmann gas of 
non-interacting identical indistinguishable d -level 
particles, in which case H  is a Fock space, 

n
dndF
⊗∞⊕ HH 0=== . Again, we do not rule out 

fluctuations in energy nor in the number of 
particles, and hence we do not assume a canonical 
number operator (i.e., z

d

PzN ~~= ⊗
H

 for some z~ ) 

but we assume a full grand canonical number 

operator n
d

n
nPN ⊗

∞∑
H0=

=  and a full Hamiltonian 

n
d

nn
PHH ⊗

∞∑
H0=

=  where 
JJ

n

Jn IHH ⊗∑ )(= 11=
 

is the n -particle Hamiltonian on n
d
⊗
H , JH )( 1  

denotes the one-particle Hamiltonian on the J -th 
particle space Jd )(H  and 

J
I  the identity operator 

on the direct product space Kd
n

JKK )(1,= H≠⊗  of all 

other particles. Note that 0=],[ NH .  

    • A strictly isolated ideal Fermi-Dirac or 
Bose-Einstein gas of non-interacting identical 
indistinguishable d -level particles, in which case 
H  is the antisymmetric or symmetric subspace, 
respectively, of the Boltzmann Fock space just 
defined.  

We further fix ideas by considering the 
simplest quantum system, a 2-level particle, a 
qubit. It is well known [20] that using the 3-vector 

),,(= 321 σσσσ of Pauli spin operators, 

llσεσσ jkkj =],[ , we can represent the 

Hamiltonian operator as )(=
2

1 σω ⋅+ hIH h  

where h  is a unit-norm 3-vector of real scalars 
),,( 321 hhh , and the density operators as 

σρ ⋅+ rI
2

1=  where r  is a 3-vector of real 

scalars ),,( 321 rrr  with norm 1|=| ≤rr , and 

1=r if ρ  is idempotent, ρρ =2 . 

If the 2-level particle is strictly isolated, its 
states in standard QM are one-to-one with the unit-
norm vectors ψ  in H  or, equivalently, the unit-

trace one-dimensional projection operators on H , 

||=| 1 ψψψψψ 〈〉〉〈 −P , i.e., the idempotent density 

operators ρρ =2 . Hence, in the 3-dimensional 

euclidean space ),,( 321 rrr , states map one-to-one 

with points on the unit radius 2-dimensional 
spherical surface, 1=r , the “Bloch sphere“. The 
mean value of the energy is 

)(1=Tr=)(
2

1
rh ⋅+He ρρ  and is clearly bounded 

by ωρ h≤≤ )(0 e . The set of states that share a 

given mean value of the energy is represented by 
the one-dimensional circular intersection between 
the Bloch sphere and the constant mean energy 
plane orthogonal to h  defined by the =rh ⋅  const 
condition. The time evolution according to the 
Schrödinger equation h& /= ψψ iH−  or, 

equivalently, h& ]/,[= ψψ PHiP −  or [20] rhr ×ω=&  

yields a periodic precession of r  around h  along 
such one-dimensional circular path on the surface 
of the Bloch sphere. At the end of every (Poincaré) 
cycle the strictly isolated system passes again 
through its initial state: a clear pictorial  

manifestation of the reversibility of Hamiltonian 
dynamics. 

At the level of a strictly isolated qubit, the 
Hatsopoulos-Gyftopoulos ansatz amounts to 
accepting that the two-level system admits also 
states that must be described by points inside the  
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Bloch sphere, not just on its surface, even if the 
qubit is noninteracting and uncorrelated. The 
eigenvalues of ρ  are )/2(1 r± , therefore the 

isoentropic surfaces are concentric spheres,  

 






 −−
+

++
−

2

1
ln

2

1

2

1
ln

2

1
=)(=)(

rrrr
krss Bρ      (1) 

 The highest entropy state with given mean 
energy is at the center of the disk obtained by 
intersecting the Bloch sphere with the 
corresponding constant energy plane. Such states 
all lie on the diameter along the direction of the 
Hamiltonian vector h  and are thermodynamic 
equilibrium (maximum entropy principle [21]). 

Next, we construct our extension of the 
Schrödinger equation of motion valid inside the 
Bloch sphere. By assuming such a law of causal 
evolution, the second law will emerge as a 
theorem of the dynamics. 

4.  Steepest-entropy-ascent ansatz 

Let us return to the general formalism for a 
strictly isolated system. We go back to the qubit 
example at the end of the section. 

As a first step to force positivity and 
hermiticity of the state operator ρ  we assume an 

equation of motion of the form  

ρρρρρρρρρρ
ρ †† ))(())((=)()(=
d

d
EEEE

t
++                            

  (2) 

where )(ρE  is a (non-hermitian) operator-valued 

(nonlinear) function of ρ  that we call the  

“evolution” operator. Without loss of generality, 

we write −+ + iEEE =  where )/2(= †EEE ++  

and iEEE )/2(= †−−  are hermitian operators, so 

that Equation (2) takes the form  

 }),({]),([=
d

d
ρρρρ

ρ
+− +− EEi

t
         (3) 

with ],[ ⋅⋅  and },{ ⋅⋅  the usual commutator and anti-

commutator, respectively. 

We consider the real space of linear (not 
necessarily hermitian) operators on H  equipped 
with the real scalar product  

 )/2(Tr=)|( †† FGGFGF +        (4) 

so that for any time-independent hermitian  

observable X  on H , the rate of change of the 

mean value )|(=)(Tr=)( XXx ρρρρ  can be 

written as  

   )XEX
tt

r
ρρ

ρρ
|(2=)

d

d
(Tr=

d

)(d
 (5) 

 from which it follows that a set of )(ρix 's is time 

invariant if Eρ is orthogonal to the (real) linear 

span of the set of operators iXρ , that we denote 

by }{ iXρL . 

For an isolated system, we therefore require 

that, for every ρ , operator Eρ be orthogonal [in 

the sense of scalar product (4)] to the linear 

manifold }){,( iRI ρρL  where the set 

}{, iRI ρρ  always includes Iρ , to preserve 

1=Trρ , and Hρ , to conserve the mean energy 

He ρρ Tr=)( . For a field of indistinguishable 

particles we also include Nρ  to conserve the 

mean number of particles Nn ρρ Tr=)( . For a free 

particle we would include xPρ , yPρ , zPρ  

to conserve the mean momentum vector 
Pp ρρ Tr=)( , but here we omit this case for 

simplicity [30]. 

Similarly, the rate of change of the entropy 
functional can be written as  

 [ ]( )ρρρρ
ρ

ln2=
d

)(d
+− BkE

t

s
 (6) 

where the operator [ ]ρρρ ln2 +−
B
k  may be 

interpreted as the gradient (in the sense of the 
functional derivative) of the entropy functional 

ρρρ lnTr=)( Bks −  with respect to operator ρ  

(for the reasons why in our theory the physical 
entropy is represented by the von Neumann 
functional, see Refs. [19, 22]). 

It is noteworthy that the Hamiltonian 
evolution operator  

 h/= iHEH  (7) 

 is such that HEρ  is orthogonal to 

))(,,( NHI ρρρL  as well as to the entropy 

gradient operator [ ]ρρρ ln2 +−
B
k . It yields a 

Schrödinger-Liouville-von Neumann unitary 
dynamics  

 ],[==
d

d † ρρρ
ρ

H
i

EE
t

HH
h

−+  (8) 

which maintains time-invariant all the eigenvalues 
of ρ . Because of this feature, all time-invariant 
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(equilibrium) density operators according to 
Equation (8) (those that commute with H ) are 
globally stable [23] with respect to perturbations 
that do not alter the mean energy (and the mean 
number of particles). As a result, for given values 
of the mean energy )(ρe  and the mean number of 

particles )(ρn  such a dynamics would in general 

imply many stable equilibrium states, contrary to 
the second law requirement that there must be only 
one (this is the well known Hatsopoulos-Keenan 
statement of the second law [24], which entails 
[21] the other well known statements by Clausius, 
Kelvin and Carathéodory). 

Therefore, we assume that in addition to the 
Hamiltonian term HE , the evolution operator E  

has an additional component DE ,  

 DH EEE +=  (9) 

 that we will take so that DEρ  is at any ρ  

orthogonal both to HEρ  and to the intersection 

of the linear manifold }){,( iRI ρρL  with the 

isoentropic hypersurface to which ρ  belongs (for 

a two-level system, such intersection is a one-
dimensional planar circle inside the Bloch sphere). 

In other words, we assume that DEρ  is 

proportional to the component of the entropy 

gradient operator [ ]ρρρ ln2 +−
B
k  orthogonal 

to }){,( iRI ρρL ,  

[ ]
))(,,(

ln
)(2

1
=

NHIDE ρρρρρ
ρτ

ρ
L⊥− (10) 

where we denote the ”constant” of proportionality 

by )(1/2 ρτ  and use the fact that ρ  has no 

component orthogonal to ))(,,( NHI ρρρL . 

It is important to note that the “intrinsic 
dissipation” or  “intrinsic relaxation” characteristic 
time )(ρτ  is left unspecified in our construction 

and need not be a constant. All our results hold as 
well if )(ρτ  is some reasonably well behaved 

positive definite functional of ρ . The empirical 

and/or theoretical determination of )(ρτ  is a most 

challenging open problem in our research 
program. For example, it has been suggested [25] 
that the experiments by Franzen [26] (intended to 
evaluate the spin relaxation time constant of vapor 
under vanishing pressure conditions) and by 
Kukolich [27] (intended to provide a laboratory 
  

validation of the time-dependent Schrödinger 
equation) both suggest some evidence of an 
intrinsic relaxation time. 

Using standard geometrical notions, we can 
show [9, 10, 28, 29] that given any set of linearly 

independent operators }{, iRI ρρ  spanning 

))(,,( NHI ρρρL , the dissipative evolution 

operator takes the explicit expression  

 )(
)(2

1
= ρρ

ρτ
ρ M

k
E

B

D ∆  (11) 

where )(ρM  is a “Massieu-function” operator 

defined by the following ratio of determinants  

 

}){,(

)|)|)|

)|)|)|

=)(

(((

(((

i

iiii

i

i

RI

RRRIRS

IRIIIS

RIS

M

ρρ

ρ

ρρρρρρ

ρρρρρρ

Γ

OMOMM

LL

OMOMM

LL

LL

 (12) 

in which we use the following notation ( F , G  
hermitian)  

 ρρ ln= RanBPkS −  (13) 

 IFrFF )(T= ρ−∆  (14) 

 
}),{(T

2

1
=

)|(=

GFr

GFGF

∆∆

∆∆〉∆∆〈

ρ

ρρ
 (15) 

        
][det=

})({=}){,(

〉∆∆〈

∆ΓΓ

ji

ii

RR

RRI ρρρ
 (16) 

 where })({ iXρΓ  denotes the Gram determinant 

)]|[(det ji XX ρρ . 

The Massieu-function operator defined by 
Equation (12) generalizes to any non-equilibrium 
state the well known equilibrium Massieu 
characteristic function  

)]([)()( TETETE nes ρβµρβρ +− . 

As a result, our full equation of motion 

}),({
)(2

1
],[=

d

d
ρρ

ρτ
ρ

ρ
M

k
H

i

t
B

∆+−
h

 (17) 

 takes the form  
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.
][det

},{},{},{

)(2

1

],[=
d

d

1

1111

1

〉∆∆〈

〉〉〉

〉〉〉

+

+−

∆∆〈∆∆〈∆∆〈

∆∆〈∆∆〈∆∆〈

∆∆∆

ji

iRiRiRRiRS

RiRRRRS

iRRS

B RRk

H
i

t

OMOMM

LL

OMOMM

LL

LL

h

ρρρ

ρτ

ρ
ρ

 (18) 

 Eqs. (28a) and (28b) below show the explicit 

forms when the set }{ iRρ  is empty or contains 

only operator Hρ , respectively. 

Gheorghiu-Svirschevski [30] re-derived our 
nonlinear equation of motion from a variational 
principle that in our notation may be cast as 
follows [29],  

 

)(=)|(and

0=
d

)(d
tosubject

d

)(d
max

2 ρρρ

ρρ

ρ

cEE

t

r

t

s

DD

i

DE  (19) 

where ρρ Tr=)(0r , ρρ Hr Tr=)(1 , 

[ ρρ Nr Tr=)(2 ], and )(2 ρc  is some positive 

functional. The last constraint means that we are 
not really searching for “maximal entropy 
production” but only for the direction of steepest 
entropy ascent, leaving unspecified the rate at 
which such direction “attracts” the state of the 
system. The necessary condition in terms of 
Lagrange multipliers is 

 

,0=)|(

d

d

d

d

0 DD

D

i

D

i
iD

EE
E

t

r

Et

s

E

ρρ
ρ

λ

ρ
λ

ρ

∂

∂
−

∂

∂
−

∂

∂
∑

 (20) 

 and, using Eqs. (5) and (6) becomes  

 
,0=22

)ln(2

0 Dii

B

ER

k

ρλρλ

ρρρ

−−

+−

∑
 (21) 

which inserted in the constraints and solved for the 
multipliers yields Equation (11). 

The resulting rate of entropy change (entropy 
generation by irreversibility, for the system is 
isolated) is given by the equivalent expressions  

 
( )DDB

B

EEk

t

r
k

t

s

ρρρτ

ρρρ

)(4=

d

lndT
=

d

)(d
−

 (22) 

         
}){,(

}){,,ln(

)(
=

i

i

RI

RIk
B

ρρ

ρρρρ
ρτ Γ

Γ
 (23) 

 .0
}){,(

}){,,(

)(

1
= ≥

Γ

Γ

i

i

RI

RIS

k
B ρρ

ρρρ
ρτ

 (24) 

 Because a Gram determinant 

][det=),,( 1 〉∆∆〈Γ jiN XXXX ρρ K  is either 

strictly positive or zero if operators }{ iXρ  are 

linearly dependent, the rate of entropy generation 
is either a positive semi-definite nonlinear 
functional of ρ , or it is zero if operators 

)(,,, NHIS ρρρρ  are linearly dependent, 

i.e., if the state operator is of the form  

 
)])([exp(Tr

)]([exp
=

NHB

BNHB

νβ
νβ

ρ
+−

+−
 (25) 

for some “binary” projection operator B ( BB =2 , 
eigenvalues either 0 or 1) and some real scalar(s) 
β  (and ν ). Non-dissipative states are therefore 

all and only the density operators that have the 
nonzero eigenvalues “canonically” (or “grand 

canonically”) distributed. For them, 0=DEρ  

and our equation of motion (17) reduces to the 
Schrödinger-von Neumann form ],[= ρρ Hi &h . 

Such states are either equilibrium states, if 
0=],[ HB , or belong to a limit cycle and undergo 

a unitary Hamiltonian dynamics, if 0],[ ≠HB , in 

which case  

  
)]]([exp)([Tr

)()]([exp)(
=)(

NHtB

tBNHtB
t

νβ
νβ

ρ
+−

+−
 (26) 

)/(exp=)(,)((0))(=)( 1
hitHtUtUBtUtB −−  (27) 

 For 1=TrB  the states (25) reduce to the 
(zero entropy) states of standard QM, and obey the 
standard unitary dynamics generated by the usual 
time-dependent Schrödinger equation. For IB =  
we have the maximal-entropy (thermodynamic-
equilibrium) states, which turn out to be the only 
globally stable equilibrium states of our dynamics, 
so that the Hatsopoulos-Keenan statement of the 
second law emerges as an exact and general 
dynamical theorem. 

Indeed, in the framework of our extended 
theory, all equilibrium states and limit cycles that  

 

have at least one null eigenvalue of ρ  are 

unstable. This is because any neighboring state 
operator with one of the null eigenvalues perturbed 
(i.e., slightly “populated”) to a small value ε  
(while some other eigenvalues are slightly 
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changed so as to ensure that the perturbation 
preserves the mean energy and the mean number 
of constituents), would eventually proceed “far 
away” towards a new partially-maximal-entropy 
state or limit cycle with a canonical distribution 
which fully involves also the newly “populated” 
eigenvalue while the other null eigenvalues remain 
zero. 

It is clear that the canonical (grand-
canonical) density operators 

)])([exp(T)]/([exp= NHrNHTE νβνβρ +−+−  are 

the only stable equilibrium states, i.e., the TE 
states of the strictly isolated system. They are 
mathematically identical to the density operators 
which also in QSM and QIT are associated with 
TE, on the basis of their maximizing the von 
Neumann indicator of statistical uncertainty 

ρρ lnTr−  subject to given values of ρrHT  (and 

ρrNT ). Because maximal entropy mathematics in 

QSM and QIT successfully represent TE physical 
reality, our theory, by entailing the same 
mathematics for the stable equilibrium states, 
preserves all the successful results of equilibrium 
QSM and QIT. However, within QT such 
mathematics takes up an entirely different physical 
meaning. Indeed, each density operator here does 
not represent statistics of measurement results 
from a “heterogeneous” ensemble, as in QSM and 
QIT where, according to von Neumann's recipe 
[13, 31], the “intrinsic” uncertainties (irreducibly 
introduced by standard QM) are mixed with the 
“extrinsic” uncertainties (related to the 
heterogeneity of its preparation, i.e., to not 
knowing the exact state of each individual system 
in the ensemble). In QT, instead, each density 
operator, including the maximal-entropy stable TE 
ones, represents “intrinsic” uncertainties only, 
because it is associated with a homogeneous 
preparation and, therefore, represents the state of 
each and every individual system of the 
homogeneous ensemble. 

We noted elsewhere [33] that the fact that our 
nonlinear equation of motion preserves the null 
eigenvalues of ρ , i.e., conserves the cardinality 

)(Kerdim ρ  of the set of zero eigenvalues, is an 

important physical feature consistent with recent 
experimental tests (see the discussion of this point 
in Ref. [30] and references therein) that rule out, 
for pure (zero entropy) states, deviations from 
linear and unitary dynamics and confirm that 
initially unoccupied eigenstates cannot 
spontaneously become occupied. This fact, 
however, adds nontrivial experimental and 
conceptual difficulties to the problem of designing 
fundamental tests capable, for example, of 
ascertaining whether decoherence originates from 
uncontrolled interactions with the environment due 
to the practical impossibility of obtaining strict 

isolation, or else it is a more fundamental intrinsic 
feature of microscopic dynamics requiring an 
extension of QM like the one we propose. 

For a confined, strictly isolated d -level 
system, our equation of motion for non-zero 

entropy states ( ρρ ≠2 ) takes the following forms 

[20, 34]. If the Hamiltonian is fully degenerate 
[ eIH = , ee =)(ρ  for every ρ ], 

 ( )ρρρρρ
τ
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ρ
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 (28a) 

 while if the Hamiltonian is nondegenerate, 
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In particular, for a non-degenerate two-level 
system, it may be expressed in terms of the Bloch 
sphere representation (for 1<<0 r ) as [20]  
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r
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from which it is clear that the dissipative term lies 
in the constant mean energy plane and is directed 
towards the axis of the Bloch sphere identified by 
the Hamiltonian vector h . The nonlinearity of the 
equation does not allow a general explicit solution, 
but on the central constant-energy plane, i.e., for 
initial states with 0=hr ⋅ , the equation implies 
[20]  
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which, if τ  is constant, has the solution  
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 This, superposed with the precession around 
the Hamiltonian vector, results in a spiraling 
approach to the maximal entropy state (with 
entropy 2ln

B
k ). Notice that the spiraling 

trajectory is well defined and within the Bloch 
sphere for all times +∞−∞ << t , and if we follow 
it backwards in time it approaches as −∞→t  the 
limit cycle which represents the standard QM 
(zero entropy) states evolving according to the 
Schrödinger equation. 
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Figure 1.  Pictorial representation of the 
augmented state space implied by the 

Hatsopoulos-Gyftopoulos ansatz with respect to 

the state space of standard QM. For a strictly 

isolated and uncorrelated two-level system (qubit), 

QM states are in one-to-one correspondence with 

the surface of the Bloch sphere, ρ
2
 = ρ, r = 1, so-

called “pure states”; states in QT, instead, are in 

one-to-one correspondence with the entire sphere, 

surface and interior, ρ
2
 ≤ ρ, r ≤ 1; these are not

 
the 

“mixed states” of QSM/QIT. For a d-level strictly 

isolated and uncorrelated system, the density 

operator ρ represents the state of the system, and 

the physical entropy S = – kBTr(ρlnρ) measures the 

degree of sharing (internal distribution) of the 

energy among the available energy levels of the 

system. The steepest-entropy-ascent (maximal-

entropy-generation) dynamics given by the second 

term in Equation (29) superposed with the 

precession around the hamiltonian vector due to 

the first term in Equation (29), results in a 

spiraling approach to the maximal entropy state. 

The spiraling trajectory is well defined and within 

the Bloch sphere for all times +∞−∞ << t , and if 

we follow it backwards in time it approaches as 

−∞→t  the limit cycle which represents the 

standard QM (zero entropy) states evolving 

according to the Schrödinger equation of unitary 

motion. 

This example shows quite explicitly a general 
feature of our nonlinear equation of motion which 
follows from the existence and uniqueness of its 
solutions for any initial density operator both in 
forward and backward time. This feature is a 

consequence of two facts: (1) that zero eigenvalues 
of ρ  remain zero and therefore no eigenvalue can 

cross zero and become negative, and (2) that ρTr  

is preserved and therefore if initially one, it 
remains one. Thus, the eigenvalues of ρ  remain 

positive and less than unity. On the conceptual 
side, it is also clear that our theory implements a 
strong causality principle by which all future as 
well as all past states are fully determined by the  

present state of the isolated system, and yet the 
dynamics is physically (thermodynamically) 
irreversible. Said differently, if we formally 
represent the general solution of the Cauchy 
problem by (0)=)( ρρ tt Λ  the nonlinear map tΛ  

is a group, i.e., utut ΛΛΛ + =  for all t  and u , 

positive and negative. The map is therefore  

“invertible”, in the sense that 1= −
− ΛΛ tt , where 

the inverse map is defined by )(=(0) 1 tt ρρ −Λ . 

It is a nontrivial observation that the non-
invertibility of the dynamical map is not at all 
necessary to represent a physically irreversible 
dynamics. Yet, innumerable attempts to build 
irreversible theories start from the assertion that in 
order to represent thermodynamic irreversibility 
the dynamical map should be non-invertible. The 
arrow of time in our view is not to be sought in the 
impossibility to retrace past history, but in the 
spontaneous tendency of any physical system to 
internally redistribute its energy (and, depending 
on the system, its other conserved properties such 
number of particles, momentum, angular 
momentum) along the path of steepest entropy 
ascent. 

5.  Onsager reciprocity 

The intrinsically irreversible dynamics 
entailed by the dissipative (non-Hamiltonian) part 
of our nonlinear equation of motion also entails an 
Onsager reciprocity theorem. To see this, we first 
note that any density operator ρ  can be written as 

[36]  

 
)(expT
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=
jj

j

jj
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XfrB

BXfB

∑

∑

−

−

ρ  (32) 

where the possibly time-dependent Boolean B  is 
such that ρanPB R=  ( ρerPI K= − ) and the time-

independent operators jX  together with the 

identity I  form a set such that their restrictions to 
HH B=' , },{ jXI ′′  span the real space of hermitian 

operators on HH B=' . Hence,  
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 jj
j

Xff ρρρρ ∑−− 0=ln  (33) 

 )(T=)( jj Xrx ρρ  (34) 
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where  
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may be interpreted as a “generalized affinity” or 
force. Defining  

 ).|(2=
D

)(D
iD

i XE
t

x
ρ

ρ
 (37) 

as “the dissipative rate of change” of the mean 
value )(ρjx , we find  
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D

)(D
ρ

ρ
ijj

j

i Lf
t

x
∑  (38) 

where the coefficients )(ρijL  (nonlinear in ρ ) 

may be interpreted as “generalized conductivities” 
and are given explicitly (no matter how far ρ  is 

from TE) by  
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and therefore form a symmetric, non-negative 
definite Gram matrix )]([ ρijL , which is strictly 

positive if all operators 
}){,(

][
i
RIiX ρρρ

L⊥
 are 

linearly independent. 

The rate of entropy generation may be 
rewritten as a quadratic form of the generalized 
affinities,  

 .)(=
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)(d
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Lffk
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 If all operators 
}){,(
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i
RIiX ρρρ

L⊥
 are 

linearly independent, 0)]([det ≠ρijL  and Equation 

(38) may be solved to yield  
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and the rate of entropy generation can be written 
also as a quadratic form of the dissipative rates  
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6.  Composite systems and reduced dynamics 

The composition of the system is embedded 
in the structure of the Hilbert space as a direct 
product of the subspaces associated with the 
individual elementary constituent subsystems, as 
well as in the form of the Hamiltonian operator. In 
this section, we consider a system composed of 
distinguishable and indivisible elementary 
constituent subsystems. For example:   

• A strictly isolated composite of r  
distinguishable d -level particles, in which case 

J
d

r
J HH 1== ⊗  and VIHH

JJ

r

J
+⊗∑ )(= 11=

 

where V  is some interaction operator over H .  

• A strictly isolated ideal mixture of r  types 
of Boltzmann, Fermi-Dirac or Bose-Einstein gases 
of non-interacting identical indistinguishable Jd -

level particles, rJ ,1,= K , in which case H  is a 
composite of Fock spaces 

r
n

r
d

n

dr
nn

J
d

r
J F

⊗⊗∞∞ ⊗⊗⊕⊕⊗ HHH LL 1

1
0=0=11= ==  

where the factor Fock spaces belonging to Fermi-
Dirac (Bose-Einstein) components are restricted to 
their antisymmetric (symmetric) subspaces. Again, 
we assume full grand-canonical number operators 

J
n

J
d

J
J
nJ PnN ⊗
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VPHIH
J
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J
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For compactness of notation we denote the 
subsystem Hilbert spaces as  

 JJr
HHHHHH ⊗⊗⊗⊗ == 21

L  (44) 

where J  denotes all subsystems except the J -th 
one. The overall system is strictly isolated in the 
sense already defined, and the Hamiltonian 
operator  
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r
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+⊗∑
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where JH  is the Hamiltonian on J
H  associated 

with the J -th subsystem when isolated and V  (on 
H ) the interaction Hamiltonian among the r  
subsystems. 

The subdivision into elementary constituents, 
considered as indivisible, and reflected by the 
structure of the Hilbert space H  as a direct product 
of subspaces, is particularly important because it 
defines the level of description of the system and 
specifies its elementary structure. The system's  

internal structure we just defined determines the 
form of the nonlinear dynamical law proposed by 
this author [28, 29, 37] to implement the steepest 
entropy ascent ansatz in a way compatible with the 
obvious self-consistency “separability” and  
“locality” requirements [33]. It is important to note 
that because our dynamical principle is nonlinear 
in the density operator, we cannot expect the form 
of the equation of motion to be independent of the 
system's internal structure. 

The equation of motion that we “designed” in 
[28, 37] so as to guarantee all the necessary 
features (that we list in Ref. [33]), is  
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where we use the notation [see Ref. [29] for 

interpretation of JS )(  and JH )( ]  
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and the “internal redistribution characteristic 
times” )(ρτ J 's are some positive constants or 

positive functionals of the overall system's density 
operator ρ . 

All the results found for the single 
constituent extend in a natural way to the 
composite system. For example, the rate of 
entropy change becomes  
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The dynamics reduces to the Schrödinger-
von Neumann unitary Hamiltonian dynamics 
when, for each J , there are multipliers iJλ  such 

that  
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The equivalent variational formulation is  
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where ρρ rr T=)(0 , ρρ rHr T=)(1  [, 

ρρ rNr T=)(2 ], and )(2 ρJc  are some positive 

functionals of ρ . The last constraints, one for 

each subsystem, mean that each subsystem 
contributes to the overall evolution (for the 
dissipative non-Hamiltonian part) by pointing 
towards its “local perception” of the direction of 
steepest (overall) entropy ascent, each with an 
unspecified intensity (which depends on the values 
of the functionals )(ρJc , that are inversely related 

to the internal redistribution characteristic times 
)(ρτ J ). 

If two subsystems A  and B  are non-
interacting but in correlated states, the reduced 
state operators obey the equations  
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where )(T=)( AJJA r ρρ , )(T=)( BJJB r ρρ , and 

operators J
JM ))(( ρ∆  result independent of BH  

for every AJ ∈  and independent of AH  for every 

BJ ∈ . Therefore, all functionals of Aρ  (local 

observables) remain unaffected by whatever 
change in B , i.e., locality problems are excluded. 
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7.  Concluding remarks 

According to QSM and QIT, the 
uncertainties that are measured by the physical 
entropy are to be regarded as either extrinsic 
features of the heterogeneity of an ensemble or as 
witnesses of correlations with other systems. 
Instead, we discuss an alternative theory, QT, 
based on the Hatsopoulos-Gyftopoulos 
fundamental ansatz [19, 31] that also such 
uncertainties are irreducible (and hence, 
“physically real” and “objective” like standard 
QM uncertainties) in that they belong to the state 
of the individual system, even if uncorrelated and 
even if a member of a homogeneous ensemble. 

According to QT, second law limitations 
emerge as manifestations of such additional 
physical and irreducible uncertainties. The 
Hatsopoulos-Gyftopoulos ansatz not only makes a 
unified theory of QM and thermodynamics 
possible, but gives also a framework for a 
resolution of the century-old “irreversibility 
paradox”, as well as of the conceptual paradox 
[31] about the QSM/QIT interpretation of density 
operators, which has preoccupied scientists and 
philosophers since Schrödinger surfaced it in Ref. 
[32]. This fundamental ansatz seems to respond to 
Schrödinger prescient conclusion in Ref. [32]:  “in 
a domain which the present theory (quantum 
mechanics) does not cover, there is room for new 
assumptions without necessarily contradicting the 
theory in that region where it is backed by 
experiment.” 

QT has been described as “an adventurous 
scheme” [38], and indeed it requires quite a few 
conceptual and interpretational jumps, but (1) it 
does not contradict any of the mathematics of 
either standard QM or TE QSM/QIT, which are 
both contained as extreme cases of the unified 
theory, and (2) for nonequilibrium states, no 
matter how “far” from TE, it offers the structured, 
nonlinear equation of motion proposed by this 
author which models, deterministically, 
irreversibility, relaxation and decoherence, and is 
based on the additional ansatz of steepest-entropy-
ascent microscopic dynamics. 

Many authors, in a variety of contexts [35], 
have observed in recent years that irreversible 
natural phenomena at all levels of description 
seem to obey a principle of general and unifying 
validity. It has been named [35] “maximum 
entropy production principle”, but we note in this 
paper that, at least at the quantum level, the 
weaker concept of “attraction towards the 
direction of steepest entropy ascent” [9, 10, 28] is 
sufficient to capture precisely the essence of the 
second law. 

We finally emphasize that the steepest-
entropy-ascent, nonlinear law of motion we 

propose, and the dynamical group it generates (not 
just a semi-group), is a potentially powerful 
modeling tool that should find immediate 
application also outside of QT, namely, regardless 
of the dispute about the validity of the 
Hatsopoulos-Gyftopoulos ansatz on which QT 
hinges. Indeed, in view of its well defined and well 
behaved general mathematical features and 
solutions, our equation of motion may be used in 
phenomenological kinetic and dynamical theories 
where there is a need to guarantee full 
compatibility with the principle of entropy non-
decrease and the second-law requirement of 
existence and uniqueness of stable equilibrium 
states (for each set of values of the mean energy, 
of boundary-condition parameters,and of the mean 
amount of constituents). 
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