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Abstract 
We overview the main features of the general equation of motion that completes the 
Gyftopoulos-Hatsopoulos unified theory of mechanics and thermodynamics with a quantal 
law of causal evolution that entails relaxation towards stable equilibrium for any non-
equilibrium state, no matter how far from thermodynamic equilibrium.  We illustrate with 
numerical examples the behavior of the equation of motion by discussing spontaneous 
energy redistribution within an isolated, closed system composed of non-interacting 
identical particles with energy levels ei and i = 1, 2,…, N.  For this system the time-
dependent occupation probabilities pi(t) obey the nonlinear rate equations 

iiiiii petptppdtdp )()(ln/ βατ −−−=  where α(t) and β(t) are functions of the pi(t)’s that 
maintain invariant the mean energy  and the normalization condition 

1i i= . The entropy 1 ii iB =  is a non-decreasing function of time 
until the initially nonzero occupation probabilities reach a Boltzmann-like canonical 
distribution over the occupied energy eigenstates.  Initially zero occupation probabilities, 
instead, remain zero at all times.  The solutions p

)(1 tpeE N
i ii∑==

)(1 tpN∑= tptpkS N∑−= )(ln)(

i(t) of the rate equations are unique and 
well-defined for arbitrary initial conditions pi(0) and for all times, +∞<<∞− t . Existence 
and uniqueness both forward and backward in time allows the reconstruction of the 
ancestral or primordial lowest entropy state.  We also illustrate the structure and main 
properties of the nonlinear dynamics for a composite system. 
Keywords: Gyftopoulos-Hatsopoulos unified quantum theory of mechanics and 

thermodynamics, quantal law of causal evolution, irreversible relaxation 
towards stable equilibrium, ancestral or primordial lowest entropy state, 
existence and uniqueness both forward and backward in time, microscopic 
origins of entropy and irreversibility, incorporating the second law in the 
quantal dynamical principle 

1. Introduction 

In recent years there has been a revival of 
interest in quantum foundational matters and 
non-equilibrium irreversible thermodynamics.  
These fields impact an enormous span of 
applications.  In this paper we discuss an 
extension of conventional quantum dynamical 
theory that is relevant to both fields and may 
prove important not only to the conceptual 
foundations of mechanics and thermodynamics, 
but also  in understanding and predicting modern 
physics phenomena that are currently actively 
investigated such as decoherence, entanglement 

structure and dynamics in applications involving 
nanometric devices, fast switching times, clock 
synchronization, super-dense coding, quantum 
computation, teleportation, quantum crypto-
graphy, etc. [1] Recent discussions [2-4] have 
suggested possible fundamental tests of standard 
unitary quantum mechanics (QM), related to the 
existence of  “spontaneous decoherence” at the 
microscopic level.  For example, long-baseline 
neutrino oscillation experiments [2] might 
provide means of testing the existence of 
spontaneous decoherence and, therefore, the 
validity of linear and nonlinear extensions of 
standard unitary QM.  As stated in Ref. [4], 

    An initial version of this paper was published in 
July of 2006 in the proceedings of ECOS’06, Aghia 
Pelagia, Crete, Greece. 
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“recent, independent experiments [5] have 
provided impressive bounds on possible 
deviations from linear and unitary propagation of 
pure quantum states…   But if the unitarity of 
pure-state propagation holds under universal 
conditions, one is necessarily led to a quest for 
genuine nonlinear extensions for isolated 
systems, possibly involving an explicit arrow of 
time.  Indeed, it was pointed out in a fairly 
general ansatz [2, 3] that if the pure states 
happen to be attractors of a nonlinear evolution, 
then testing the unitary propagation of pure states 
alone cannot rule out a nonlinear propagation of 
mixtures.” 

The contemporary revival on 
thermodynamic foundational matters is focused 
on the description of the time evolution of 
general non-equilibrium states towards 
maximum-entropy stable (thermodynamic) 
equilibrium and is relevant to a wide variety of 
applications [6, 7] ranging from continuum 
mechanics, classical hydrodynamics, kinetic 
theory, quantum chemistry, molecular dynamics, 
non-Newtonian fluid mechanics, etc.  Indeed, by 
general non-equilibrium states, we mean states 
that may be far from thermodynamic 
equilibrium, well beyond the usual realm of 
linear irreversible processes.  We are concerned 
with the development of a well-defined time-
evolution equation valid for any initial state and 
capable of describing entropy producing 
relaxation towards equilibrium by internal 
redistribution of energy and occupation 
probabilities towards a canonical or a partially 
canonical equilibrium distribution. 

The nonlinear explicit quantum dynamical 
equation proposed in Ref. [8] and subsequent 
papers [9-15] was developed (designed) as part 
of a fundamental attempt to unite mechanics and 
thermodynamics not only at the macroscopic and 
mesoscopic level of description, but also at the 
microscopic fundamental level, without 
contradicting any of the successful results of 
standard QM.  Perhaps due to technological 
advances towards nanometric devices, today the 
physical community seems more prepared to 
accept ideas that were viewed as heretical 
twenty-five years ago when the equation of 
motion for the unified theory was first proposed.  
For example, in 1984 John Maddox [16] wrote 
about our unified theory: “An adventurous 
scheme which seeks to incorporate 
thermodynamics into the quantum laws of 
motion may end arguments about the arrow of 
time – but only if it works.”  The theory has 
survived twenty years and in 2001 it was literally 
rediscovered [4, 17], at least in part, so that it 
appears now acceptable to postulate an extension 

of standard QM that assumes a “broader 
quantum kinematics” [18], i.e. an augmented set 
of true quantum states described by state 
operators ρ without the restriction , even 
for a strictly isolated, single-particle, few-particle 
or single-field system, fully separable, 
uncorrelated, disentangled and non-interacting 
with its environment. 

ρρ =2

Indeed, quoting again from Ref. [4], “a 
physically meaningful nonlinear extension 
emerges when the fundamental postulates of 
quantum mechanics are supplemented by the 
first and second principles of thermodynamics, at 
the sole expense of ignoring the constraint of a 
linear, unitary evolution in time.  The result is a 
largely irreversible, highly nonlinear 
generalization of the non-relativistic quantum 
Liouville equation, of a form closely related to 
the ansatz of Ref. [2] but not in the Lie-Poisson 
class, which features a number of rather 
intriguing properties.  In particular, pure states 
still propagate unitarily into pure states 
according to the usual time reversible 
Hamiltonian dynamics.” 

Much work has appeared in recent years on 
the study of entropy-generating irreversible non-
equilibrium dynamics.  Limited discussions of 
previous work is found in Refs. [4, 17, 19] and 
references therein, but no thorough critical 
review of the subject is available, although it 
would be very helpful to provide proper 
acknowledgement of pioneering work, avoid 
‘rediscoveries’ such as in [4] and outline the 
different frameworks, motivations, approaches 
and controversial aspects. 

2. “Augmented-State-Domain” Ansatz 

The fundamental ansatz that the postulates 
of quantum mechanics can be successfully 
supplemented by the first and second principles 
of thermodynamics by assuming a broader state 
domain that includes not only  but also 

 state operators, provided that the 
functional 

ρρ =2

ρρ ≠2

( )ρρ lnTrBk−  is taken for the 
physical entropy, was first proposed (without a 
dynamical law) by Hatsopoulos and Gyftopoulos 
in a pioneering series of papers [18].  This is the 
first instance when this broader quantum 
kinematics ansatz was conceived, postulated and 
exploited, capitalizing on the recognition of the 
important role played by the stability of 
equilibrium in thermodynamics [20, 21], to 
construct a self-consistent extension of standard 
QM that provides a non-statistical, non-
information-theoretic, microscopic unification of 
mechanics and thermodynamics.  Again, the key 
ansatz is that, for any system, even if strictly 
isolated and uncorrelated:  (1) the “true” 
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quantum state (in the sense analogous to that of 
the wave function of standard quantum 
mechanics) is represented by a state operator ρ – 
a unit trace, nonnegative-definite, Hermitian 
operator on the Hilbert space associated with 
the system according to standard QM – 
belonging to a “broader quantum kinematics” 
that includes pure states 

H

( )ρρ =2   as well as 
non-idempotent states ( )ρρ ≠2 ; and (2) the 
“physical” entropy (as opposed to a statistical or 
information-theoretic entropy related to 
incoherent stochastic mixtures of true states) is 
represented by the state functional 

( )ρρ lnTrBk− .  Refs. [18, 22] give proofs that 
only this functional can represent the physical 
entropy in such a context. 

Perceived as “unphysical” (by the referees 
of the main physics journals), the hypothesis of a 
state domain augmented with respect to that of 
traditional QM has for almost three decades been 
systematically rejected and substantially ignored 
(except for a few exceptions [23, 24]) in favor of 
the still prevailing approaches to dissipative 
quantum dynamics within the frameworks of 
statistical, stochastic, phenomenological, meso-
scopic, information-theoretic, chaotic-behavior 
and bifurcation theories. 

3. “Steepest-Entropy-Ascent” Ansatz  

The situation did not improve when the 
new dynamical “steepest-entropy-ascent” ansatz 
was proposed and added to the scheme by the 
present author [8] and proved to have all the 
necessary mathematical features (see Section 4) 
to complete the Gyftopoulos-Hatsopoulos 
unified theory.  In spite of the skeptical but 
encouraging editorial appearing in Nature that 
defined our scheme “adventurous” [16], the 
theory has continued to be ignored and rejected, 
mainly because its motivation appeared to be 
derived from theoretical reasoning only (see the 
recent summary in Ref. [25]). 

In search for direct experimental evidence, 
we derived explicit solutions for a two-level 
system and computed the effects of the single-
atom irreversible internal relaxation implied by 
the nonlinear equation of motion onto some basic 
quantum-electrodynamic results for absorption, 
stimulated emission, and resonance fluorescence 
from a single two-level atom [11, 12].  The 
results were obtained in the near-equilibrium 
linear limit and, of course, in terms of the yet 
undetermined internal-relaxation-time functional 
( )ρτ  that is part of the equation of motion.  To 

our knowledge no one has yet attempted to 
verify these results experimentally and estimate 
or at least identify bounds on ( )ρτ . 

The recent and new experimental evidence 
of loss of quantum coherence [2, 26, 27] and the 
impressive effort devoted to the study of 
nonlinear modifications of the standard 
Schrödinger equation in the last twenty years 
[28], finally seem to make more acceptable, if 
not require, the Hatsopoulos-Gyftopoulos 

 augmented state domain ansatz.  Five 
years ago, in the Addendum in which he 
acknowledges his oversight of our original series 
of papers, Gheorghiu-Svirschevski [4] states that 
“Beretta’s confidence in the physicality of his 
construction seems to find vindication after all” 
and “the equation of motion was derived from a 
variational principle which observes the 
principles of quantum mechanics and the 
fundamental laws of thermodynamics.” 

ρρ ≠2

Provided the ansatz is accepted, the 
proposed nonlinear equation of motion 
completes the dynamics and holds the promise of 
providing a microscopic-level explanation of the 
origins of entropy and irreversibility and perhaps 
of the recent experimental evidence of loss of 
quantum coherence.  It is with this motivation 
that Ref. [4] has “re-proposed” our equation of 
motion together with many of its known features.  
Ref. [4] contributes to confirm the mathematical 
validity of this equation, including existence, 
uniqueness and positivity of solutions, and 
elegantly derives useful expansions and other 
results in the near-equilibrium linear limit.  
However, Ref. [4] does not rediscover the form 
of our nonlinear equation for a multi-component 
system. Nonetheless, we show in Ref. [29] that 
also this more general form admits of an 
equivalent variational formulation. 

ρρ ≠2

The equation of motion proposed and 
postulated in Refs. [8, 9] for the state operator ρ  
can be derived [7, 29] by means of an explicit 
geometrical construction that clarifies the 
steepest-entropy-ascent feature already 
recognized in Refs. [10-15]. Several new 
interesting additional features related to 
separability and fluctuations can be proved [29,  
30]. 

The nonlinear extension of the Schrödinger 
equation of motion is derived, together with a 
full discussion of the necessary notation and 
definitions, in Section III of Ref. [29] for a 
single-component system, and in Sections X and 
XI of Ref. [29] for a general system consisting of 
M distinguishable component subsystems. 

4. A Restrictive Set of Consistency Conditions 
for a Consistent Dynamical Law   

The problem of deriving a well-behaved 
extension of Schrödinger’s unitary dynamics, as 
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is necessary if one is willing to accept the 
Gyftopoulos–Hatsopoulos broader quantum 
kinematics ansatz, has been addressed in Refs. 
[8, 18, 19, 31]. It amounts to defining a very de-
manding set of strict requirements that must be 
met in order for the assumed equation of motion 
to be consistent with both the principles of 
quantum mechanics and the laws of thermody-
namics. The following conditions must all be 
satisfied [31]: 

1. If the system experiences no interactions 
with its environment (and chemical or 
nuclear reactions are inhibited), energy and 
amounts of constituents must be conserved. 

2. If the system is free, momentum 
conservation and Galilean invariance must 
be satisfied. 

3. If the density operator is a projector, that is, 
 the evolution of ,2 ρρ = ρ in time obeys 

the Schrödinger equation of motion, and the 
entropy is zero.  This condition preserves all 
the remarkable successes of standard 
quantum mechanics, is consistent with 
experimental results, and (for projector 
density operators) rules out deviations from 
linear and unitary dynamics. 

4. For isolated systems, the rate of change of 
the entropy functional ( ) ρρρ Β lnTrkS −=       
must be nonnegative. 

5. For a system with fixed values of energy, 
amounts of constituents, and parameters, 
there must be one and only one equilibrium 
state for which both dρ/dt = 0 and the value 
of the entropy is larger than that of all the 
other states with the same values of energy, 
amounts of constituents, and parameters.  

6. The state of highest entropy just cited must 
be globally stable with respect to 
perturbations that do not alter the energy, the 
amounts of constituents and the parameters 
[32].  

7. Onsager reciprocity relations must hold at 
least for nonequilibrium states in the vicinity 
of the highest entropy stable equilibrium 
states.  

8. For any initial state ( ) ( ) ≥= 0
†

0 tt ρρ ( )0
2 tρ  

and ( ) ,1Tr 0 =tρ  the equation of motion 
must admit a unique well-behaved solution 
( )tρ for all times, i.e., ( )tρ  must remain 

Hermitian, nonnegative and unit trace for 
arbitrary initial conditions.  

Further conditions are given in Ref. [31], 
including “conservation of effective Hilbert 
space dimensionality” and the conditions for 
separability and locality that we briefly illustrate 
in Section 8. 

As first recognized in Ref. [10], the 
preceding conditions are satisfied by the ansatz 

that the density operator evolves along a 
trajectory that results from the competition and 
coexistence of two orthogonal “forces”, a 
Hamiltonian force that tends to drive the density 
operator along a unitary isentropic evolution in 
time and maintains constant each eigenvalue of 
ρ, and a conservative but dissipative force that 
pulls ρ towards the path of steepest entropy 
ascent. 

5. Steepest Entropy Ascent for a Single-
Component Isolated System 

Here we consider only the simplest form of 
the general equation of motion proposed for the 
unified quantum theory. For convenience, we 
define the dimensionless entropy operator 

,ln~ ρΒ−=S whereΒ is the idempotent operator 
obtained from ρ by substituting in its spectral 
expansion each nonzero eigenvalue with unity. 
Thus, S~ is the null operator if , and, in 
general, the entropy functional 

ρρ =2

ρρΒ lnTrk−  can 
be written as Sk ~Tr ρΒ . 

For a single isolated constituent without 
non-Hamiltonian time-invariants, it is only for 
the zero entropy states  that the pos-
tulated nonlinear equation of motion coincides 
with the Schrödinger unitary  dynamics  of  stan-
dard  quantum mechanics, i.e., 

)( 2 ρρ =

 [ ρ]ρ ,Hi
dt
d

h
−=  (1) 

For an arbitrary nonzero entropy state , it 
is instead given by the relation  

2ρρ >

 [ ] DHi
dt
d

τ
ρρ 1, −−=

h
  (2) 

where τ  is a scalar time constant or functional, 
 is a nonlinear operator function of D

HS ,~,ρ defined by any of the following 
equivalent forms 

{ } { }

{ }
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where •  denotes a determinant, the operators 
S~  and ρ  commute so that 

{ } ,ln,~)21( ρρρ −=S and ( )ρα  and ( )ρβ  are 
the nonlinear functionals 

 ( ) HS ρβρρα Tr~Tr −=  (4) 

 ( )
( )22 TrTr

Tr~Tr~Tr
HH

HSHS
ρρ

ρρρρβ
−

−
=  (5) 

equation (2) satisfies all the consistency 
conditions listed in Section 4. For example, it is 
easy to verify that  

 0TrTrTr === D
dt
d

dt
d ρρ  (6) 

 0TrTrTr === DHH
dt
dH

dt
d ρρ  (7) 

 0~Tr~Tr~Tr ≥== SDS
dt
dS

dt
d ρρ  (8)  

In addition, it can be shown that if at one 
time, it remains so at all times, both forward and 
backward in time. The only equilibrium density 
operators that are stable according to this 
dynamics are the highest entropy operators in the 
one parameter family  

2ρρ >

 ( )
( )TkH

TkHse

Β

Βρ
/expTr

/exp
−

−
=  (9) 

where the parameter T is readily identified with 
the temperature (as defined in Refs. [18, 21]). 

Proofs of these and other intriguing features 
of equation (2) and its more general forms are 
given in Refs. [4, 7, 10–15, 29]. In particular, the 
form of the equation can be readily generalized 
to include other generators of the motion in ad-
dition to the Hamiltonian operator H, such as the 
number-of-particle operators  for systems that 
at stable equilibrium are described by the grand 
canonical density operator  

iN

 
( )[
( )[

]
]TkNH

TkNH

ii

Biise

Βµ
µ

ρ
/expTr

/exp

∑
∑
−−
−−

=  (10) 

Unitary dynamics (equation (1)) applied to 
nonzero entropy states ( ) would maintain 
time-invariant each of the eigenvalues of 

2ρρ >
ρ . In-

stead, equation (2) maintains invariant only the 
initially zero eigenvalues of ρ and, therefore, 
conserves the cardinality of the set of zero 
eigenvalues, dim Ker ( )ρ = const. This important 
feature implies that if the isolated system is pre-
pared in a state that does not require all the 
eigenvectors lψ of H so that ( ) 00 =〉lψρ for 
some values of , then the zero eigenvalues per-
sist at all times, that is, 

l
( ) 0=〉lψρ t . This is the 

nontrivial condition that we call conservation of 

effective Hilbert space dimensionality (by 
effective Hilbert space we mean the range Ran ρ  
of the density operator, namely the subspace of 

 spanned by the eigenvectors of H ρ with 
nonzero eigenvalues). It can be viewed as an 
extension of item (3) of the consistency 
conditions listed in Section 4 and, of course, it is 
a characteristic feature of all successful models 
and theories of the physics of isolated systems.  

The non-Hamiltonian dissipative term 
τ/D− in equation (2) pulls the state operator in 

the direction of the projection of the gradient of 
the entropy functional Sk ~TrρΒ onto the (hyper) 
plane of constant ρTr and HρTr . Because the 
system is isolated, the entropy ceases to increase 
only when the largest entropy value is reached 
consistent with the specified dimensionality of 
the Hilbert space. The same would hold for 
adiabatic processes described by a time-
dependent H.  

As recently shown in Refs. [4, 29], the 
steepest-entropy-ascent feature is confirmed also 
by a variational formulation wherein the form (3) 
of the dissipative term in equation (2) is obtained 
as a result of searching among all possible 
directions in which operator ρ can change with 
the direction of maximal entropy generation 
compatible with the constraints that ρ remains a 
well-defined operator, and ρTr and HρTr  
remain time invariant. For the more general form 
that conserves also other observables in addition 
to the energy see Ref. [29]. 

Given any initial density operator, it is 
possible to solve the equation of motion not only 
in forward time but also in backward time [7, 11] 
and reconstruct the entire trajectory in ρ space 
for +∞<<−∞ t , provided of course either the 
Hamiltonian H is time independent or its 
dependence on time is well behaved at all times.  

In Ref. [12], equation (2) is applied to study 
atomic relaxation in a two-level atom. By 
modeling the interaction between a single two-
level atom and the quantum electromagnetic 
field that corresponds to driving the two-level 
atom near resonance by a nearly monochromatic 
laser beam, it is shown that the nonlinear 
irreversible atomic relaxation described by the 
term τ/D− in Equation. (2) implies corrections 
to the resonance fluorescence, absorption and 
stimulated emission line shapes. Such 
experiments on properly prepared homogeneous 
ensembles that require  would provide 
experimental evidence and a means to evaluate 
the atomic relaxation time 

2ρρ ≠

τ . 

6. One Particle Approximation for a 
Boltzmann Gas 
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As an illustration of the applications of 
Equation. (2), we consider an isolated system 
composed of a single-component gas of non-
interacting identical particles with single-particle 
energy eigenvalues i for =1, 2, . . . , N where 
N is finite and the e

e i
i’s are repeated in case of 

degeneracy. As done in Ref. [7], we restrict for 
simplicity our analysis to the class of dilute-
Boltzmann-gas states in which the particles are 
independently distributed among the N (possibly 
degenerate) one-particle energy eigenstates. In 
density operator language, this is tantamount to 
restricting the analysis to the subset of one-
particle density operators ρ that are diagonal in 
the representation in which also the one-particle 
Hamiltonian operator H is diagonal 
[ ]( .0, = )ρH We denote by i the probability of 

the i-th energy eigenstate, so that the per-particle 
energy and entropy functionals are given by the 
relations 

p

 (11) ∑∑∑
===

=−==
N

i
i

N

i
ii

N

i
ii pppkSpe

111
1lnΒΕ

The nonlinear equation of motion maintains 
the initially zero probabilities equal to zero, 
whereas the rates of change of the nonzero 
probabilities, for i, j = 1,2,...,N, are given by 

 

∑∑
∑

∑∑∑
∑∑

−=

iiii

ii

iiiiii

iiii

jjjjj

j

pepe
pe

pepepe
pepp

peppp

dt
dp

2

2

1

ln
1ln

ln

1
τ

(12) 

 The solutions of these equations are well-
behaved in the sense that they satisfy all the 
conditions listed in Section 4. In particular, as 
exemplified by the numerical simulations dis-
cussed in Section 7,  they exhibit the following 
general features: 
1. They conserve the energy and trace of ρ . 
2. They preserve the non-negativity of each  .ip
3. They maintain the rate of entropy generation 

non-negative. 
4. They maintain the dimensionality of the 

effective Hilbert space, that is, for a density 
operator ρ  with [ ] 0, =ρH  and eigenvalues 

given by any set of s, they maintain 
invariant the vector 
p 'ip

( )pδ  of si 'δ defined so 
that for each i=1,2,...,N, 1=iδ  if  
and 

0≠ip
0=iδ  if . 0=ip

5. They drive any arbitrary initial density 
operator ( )otρ  towards the partially 
canonical (or canonical if 1=iδ  for all 
energy eigenstates of the Boltzmann gas) 
equilibrium density operator ( ∞+ )ρ  with 

time-independent eigenvalues  in the 
energy representation given by  

( ∞+p )

 ( ) ( )( )
( )( )∑ = −

−
= N

i i
pe

i

j
pe

jpe
j

e

e
p

1 ,exp

,exp
,

δ

δ
δ

Εβδ

Εβδ
Ε  (13) 

where ( )( )0pδδ = , the value of  is 
determined by the initial condition 

peβ

( ) ( )( )0,1 pΕΕΕ ==∑ = δN
i

pe
pi i

, and the super-
script “pe” is used to indicate that the system is 
in an unstable or, so-called, partial equilibrium 
state. 

pe

Among all the equilibrium states just cited, 
there exists one and only one that is stable 
(super-script “se”) and corresponds to the largest 
value of the entropy for the given value of 
energy E and for which the eigenvalues of the 
density operator in the energy representation are 
given by the canonical distribution  

 ( ) ( )( )
( )( )∑ = −

−
= N

i i

jse
j

kTe

kTe
p

1exp

exp

Ε

Ε
Ε  (14) 

where T(E) may be shown to be equal to the 
derivative of the energy with respect to the 
entropy for the stable equilibrium states of the 
Boltzmann gas. By definition, the derivative just 
cited is the temperature.  

For a general non-equilibrium state, the rate 
of entropy generation may be written as a ratio of 
Gram determinants in the form 

 

( )

∑∑
∑

∑∑∑
∑∑

∑∑∑

=

iiii

ii

iiiiiii

iiii

iiiiiii

pepe
pe

pepeppe
pepp
ppepppp

dt
dS

k
2

2

2

1

ln
1ln

lnlnln

Β

τ (15) 

and its non-negativity follows from the well-
known properties of Gram determinants. 
Given any initial density operator, it is possible 
to solve the equation of motion for all values of 
time, that is +∞<<−∞ t .  In the limit as 

+∞→t , the trajectory approaches a largest 
entropy equilibrium state with a density operator 
that is canonical over the energy eigenstates 
initially included in the analysis.  An exception 
to this conclusion is the case of the initial density 
operator being a projector   Then the 
evolution in time follows the Schrödinger 
equation and is unitary and reversible, except if 
the projector is an energy eigenprojector which is 
stationary 

.2ρρ =

7.  Numerical Simulations 

The energy versus entropy diagram 
introduced by Gibbs represents the intersection 
with the E–S plane of the E–S–V–n surface 



representing the stable thermodynamic 
equilibrium states of a system, assuming that the 
energy eigenvalues depend on the volume V and 
the amounts of constituents n, so that the surface 
is represented by the so-called fundamental re-
lation ( ){ }( ).,, nVeSS jΕ= . In [21] the use of 
such a diagram has been extended to include the 
projection onto the E–S plane of all other states, 
i.e., not only the stable equilibrium states but 
also the non-equilibrium and the non-stable 
equilibrium states, with given fixed values of V 
and n and, therefore, a given fixed set of energy 
eigenvalues. On such a diagram, therefore, one 
point represents in general a multitude of 
distributions, except at every point of maximal 
entropy for each given value of E (V and n are 
fixed) which corresponds to a unique canonical 
distribution (Equation. (14)), i.e., a unique stable 
thermodynamic equilibrium state.  

For a four-level, non-degenerate system, 
Figure 1 presents the families of possible 
canonical (Equation. (14)) and partially-
canonical (Equation. (13)) equilibrium distribu-
tions which in our dynamics are the only ones 
with zero entropy generation rate. We recall that 
the slope of these curves is related to the 
parameter  because ( δ,Εβ pe )

( ) ( δδ δ ,/, ΕβΕΕ Β
pepe kS =∂∂ ) , which for the 

canonical distribution (all si 'δ  equal to unity) is 
( ) ( ) ( )ΕΕβΕ Β TkES /1/ ==∂∂ . 

 
Figure 1. From Ref. [7]. Representation on 

an energy versus entropy diagram (for N=4 and 
non-degenerate eigenstates with energies e = [0, 
1/3, 2/3, 1]) of the families of possible canonical 
and partially-canonical equilibrium distributions 
which in our dynamics are the only ones with a 
zero entropy generation rate. For example, a 
horizontal line at E = 0.4 intersects seven 
different families of partially canonical states.  

The number of possible distributions that 
share a given pair of values of  E and S is in 
general a (N-3)–fold infinity except at maximum 
entropy for each value of E, where the 
distribution is unique and at a few other notable 

exceptions such as at minimal entropy for each 
given E where the distribution may be unique or 
sometimes manyfold.  

The next figures show typical time 
dependences of the occupation probabilities that 
result from the numerical integration (by means 
of a standard Runge-Kutta algorithm) of 
Equation (12) both forward and backward in 
time. All trajectories in these figures refer to a 
system with N=4 and non-degenerate eigenstates 
with e = [0, 1/3, 2/3, 1] and all have the same 
mean energy E = 2/5; they all tend, of course, to 
the canonical distribution (2/5) = [0.3474, 
0.2722, 0.2133, 0.1671] that has inverse 
temperature (2/5) = 0.7321. They are 
obtained by assuming for all cases an initial 
distribution 

sep

seβ

( )0p  obtained by perturbing the 
canonical distribution (E) (Equation. (14)) 
according to  

sep

 
( )
( )∑ =

= N
i

se
ii

se
jj

j
pf

pf
p

1

~
Ε

Ε
 (16) 

with the energy preserving perturbing factors 
defined as follows for j = 1,2,…,N: 

 
( )
( )Ε

Ε
λλ se

j

pe
j

j p

p
f

δ,
1 +−= with 10 << λ (17)  

where λ  is otherwise arbitrary and also δ is 
arbitrarily chosen among the possible vectors of 
0’s and 1’s compatible with the given value of 
Ε and Equation (13) of the distribution 

( )δ,Εpep  (see Figure 1), where  is 
computed by solving the equation 

( δ,Εβ pe )

( ) ΕΕ =∑ ii
pe
i ep δ, . For all subsequent figures, 

we use 9.0=λ . 
Figure 2 shows the time dependence of the 

occupation probabilities that results under the 
assumptions just cited using E =2/5, λ =0.9 and δ 
= [1, 1, 0, 1] in equation (17) and subsequently 
substituting into equations (16), that is, 
 ( ) ( ) ( ) ( )EE sepe ppp λλ −+= 1,0 δ  (18) 

It is noteworthy that when the trajectory 
gets very close to the partially-canonical 
unstable-equilibrium distribution , )5/2( =Epep
δ = [1, 1, 0, 1], the entropy surface presents a 
local ’plateau’, and the entropy generation rate 
drops almost to zero, but shortly thereafter, the 
trajectory bends in a direction of steeper slope 
that drives the generation up again until the 
canonical distribution  = [0.3474, 0.2722, 
0.2133, 0.1671] is finally approached with the 
inverse temperature = 0.7321. Of 
course, the entropy is a monotonically increasing 
function of time along the entire trajectory.  

)(Esep

)5/2(seβ
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Figure 2.  From Ref. [7].  Top:  typical time 

dependences of the occupation probabilities that 
result from the numerical integration of equation 
(12) both forward and backward in time for N = 
4, e = [0,1/3,2/3,1], energy Ε = 2/5, initial state 
at  from equation (18) with 0=t 9.0=λ  and 

[ ]1,0,1,1=δ . The dots on the right represent the 
maximum entropy distribution; the dots at the 
left represent the lowest-entropy or ‘primordial’ 
distribution; the dots in the middle represent the  

 distribution used in equation  (18) to 
select  the  state, plotted at the instant in 
time when the entropy of the time-varying 
trajectory is equal to the entropy of the 

 distribution.  Bottom:  the corres-
ponding time dependence of the entropy (left 
axis) and the entropy generation rate (right 
axis).   

( δ,Εpep )

)

0=t

( δ,Εpep

Figure 3 shows the same trajectory as well 
as six other trajectories; but instead of plotting 
the time dependence of the occupation probabil-
ities, we plot them against the entropy. The 
initial (time distribution used to obtain 
these seven sample trajectories are obtained from 
equation (18) with E = 2/5, 

)0=t

λ = 0.9 and each of 
the seven partially canonical states corres-
ponding to the given value of the energy. These 
seven states are easily identified on the E–S 
diagram in Figure 1 by drawing a horizontal line 
at E =0.4. For the first, third, and sixth 
trajectories, we use the  states with ( δ,Εpep )
δ = [1, 0, 1, 0], =δ [1, 0, 0, 1] and δ = [0, 1, 0, 
1], respectively, which (as is apparent from the 
subsequent Figure 4) are the lowest-entropy 
boundary points of the entropy surface for the 

given energy, and turn out also to be the 
‘primordial’ states of the corresponding 
trajectories.  For the remaining trajectories, we 
use the ( )δ,Εpep  states with =δ [1, 1, 1, 0], 
=δ [1, 1, 0, 1], =δ [1, 0, 1, 1], and =δ [0, 1, 1, 

1], respectively.  These too are boundary points 
of the entropy surface, but they correspond to 
partial maxima (over the subset of distributions 
with one unoccupied eigenstate as specified by 
the corresponding zero element of δ ). It is seen 
that these partial maxima affect the trajectories 
passing nearby by acting as partial attractors 
especially in the initial phase of the time 
evolution. 

 
Figure 3. From Ref. [7]. Plots of 

( )tpi versus ( )tS  for seven sample time 
dependences of the occupation probabilities that 
result from the numerical integration of equation 
(12) both forward and backward in time, for 
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different initial distributions.  
Figure 4 is a more elaborate representation 

of the same seven trajectories.  They are shown 
four times from different perspectives on the 
background of contour plots of the entropy 
surface, for four pairs of occupation 
probabilities.  Indeed, for N = 4 and fixed energy 
Ε , the number of independent occupation 
probabilities is two.  Thus, for four pairs of pro-
babilities ( 14,21 pp − ,32 pp − ,43 pp − pp − ), 
we draw the contour plot of the entropy surface 
over the entire domain of allowed values (which, 
of course, are contained in a triangular region of 
the first quadrant), and over this plot we draw the 
seven trajectories (and the seven partially 
canonical states used to choose them).  To save 
space, we then rotate each of the four graphs 
(respectively, by 45, 135, 225, 315 degrees) and 
present them in the same figure (Figure 4).   The 
figure visualizes clearly that the trajectories 
indeed follow paths of locally-steepest-entropy-
ascent and also unfold smoothly backward in 
time to the ‘primordial’ states.  We also note that 
these lowest-entropy states exhibit a singular 
behavior in that, for example, state [2/5, 0, 3/5, 
0] is the primordial state for two entirely 
different trajectories, state [3/5, 0, 0, 2/5] for 
three others, and state [0, 9/10, 0, 1/10] for the 
remaining two.  Moreover, the partially 
canonical states appear as partial attractors of 
trajectories passing nearby, as seen quite clearly 
for the second, fourth and fifth trajectories of 
Figure 3, which are partially attracted by the 
partially canonical states with δ = [1, 1, 1, 0], 
δ = [1, 1, 0, 1] and δ = [1, 0, 1, 1], respectively. 

          Figure 4. From Ref. [7]. Each rotated 
quadrant of the graph represents, for the 
corresponding pair of occupation probabilities, 
a plot of the seven trajectories shown in Figure 3 
drawn over contour plots of the entropy surface.  

8. Composite System Dynamics 

As in standard quantum theory, the com-
position of a system is embedded in the structure 
of the associated Hilbert space as a direct 
product of the subspaces associated with the 
individual elementary constituent subsystem, as 
well as in the form of the Hamiltonian operator. 

For simplicity, we consider here a system 
composed of two distinguishable and indivisible 
elementary constituent subsystems.  For 
example, each subsystem may be a different 
elementary particle or a Fermi-Dirac or Bose-
Einstein or Boltzmann field (in which case the 
corresponding Hilbert space is a Fock space). 
The subdivision into elementary constituents, 
each considered as indivisible, is reflected by the 
structure of the Hilbert space Η  as a direct 
product of subspaces,  

 ΒΗΗΗ ⊗= A   (19) 
and is particularly important because it defines 
the level of description of the system and 
specifies its elementary structure together with 
the Hamiltonian operator 
 VII BABA +⊗+⊗= ΗΗΗ  (20) 

where JΗ  is the Hamiltonian operator on 
JΗ associated with subsystem J when isolated, 

for J=A,B, and V (on ) is the interaction 
Hamiltonian among the two subsystems.  

Η

The specification just cited determines also 
the structure of the nonlinear dynamical law, 
which is different depending on whether the sys-
tem is or is not sub-divisible into indivisible sub-
systems, i.e., whether or not it has an internal 
structure. The dependence of the structure of the 
dynamical law on the level of description of the 
system’s internal structure in terms of 
elementary indivisible constituents is an 
important consequence of having given up 
linearity [15, 29].  

In the simplest case that we are considering 
here, the dissipative term in the equation of 
motion is a function of two novel important 
nonlinear local observables that we call “locally 
perceived overall-system energy” and “locally 
perceived overall-system entropy” that represent 
measures of how the overall-system energy and 
entropy operators, H and S~ = −B ln ρ , are “felt” 
locally within the J-th subsystem [9, 29]. They 
are associated with the following local operators:  

 ( ) ( )[ ΗρΗ JJJ
J I ⊗= Tr ]   (21) 

 ( ) ( )[ SIS JJJ
J ]~Tr~ ρ⊗=   (22) 

where J = A, B and J =B, A, ρρ JJ Tr=  and 
ρρ JJ Tr= . 
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Operator JS~ may be interpreted as the sub-
system entropy operator only if subsystem J is 
not correlated with the other subsystem, i.e., only 
if ρ can be written as  

 ΒΑ ρρρ ⊗=  (23) 

then the subsystem entropy is defined and given 
by the nonlinear state functional of the reduced 
state operator JJJBJJJB kSk ρρρ lnTr~Tr −= , 
and BABA SIISS ~~~

⊗+⊗= . If the subsystems 
are correlated, then no individual entropies can 
be defined; however, the functional 

J
JJB Sk )~(Tr ρ

 
is always well-defined and may 

be interpreted as the subsystem’s local 
perception of the overall-system entropy.  

Similarly, energy is defined for subsystem J 
only if it is not interacting with the other sub-
system, i.e., if H can be written as  

 BABA II ΗΗΗ ⊗+⊗=  (24) 

Then the energy of J is given by the functional. 
JJJ ΗρTr . The functional instead 

is always well-defined, even if the subsystems 
are interacting, and may be interpreted as the 
sub-system’s local perception of the overall-
system energy.  

J
JJ )(Tr Ηρ

In order for an equation of motion of quan-
tum thermodynamics to be acceptable for both 
the description of the time evolution of a com-
posite system and the exclusion of non-locality 
paradoxes such as faster-than-light communica-
tion, the following conditions must be added to 
the list of Section 4 [31]:  

1. For a system composed of non-interacting 
subsystems, the energy of each subsystem, 

JJJ ΗρTr , must be time invariant 
(separate energy conservation). 

2. For a system composed of subsystems in 
independent states, that is, such that 

ΒΑ ρρρ ⊗= , the entropy of each sub-
system J, JJ Sk ~TrJρ , must be non-
decreasing in time (separate entropy non-
decrease). 

3. Non-interacting subsystems that are 
initially in correlated states must be unable 
to influence each other’s time evolution as 
long as they remain non-interacting, even if 
each of them separately interacts with other 
systems. 
For an isolated composite of r constituents 

without non-Hamiltonian time-invariants, the 
postulated nonlinear equation of motion 
coincides with equation (1) only for zero entropy 
states ( )ρρ =2 , whereas for an arbitrary nonzero 
entropy state ( )ρρ <2  the equation of motion is  

 [ ] ΒΑΒΑ ρ
τ

ρ
τ

ρΗρ DDi
dt
d

BA
⊗−⊗−−=

11,
h

(25) 

where each is the nonlinear operator defined 
by the relations 

JD

 ( ){ } ( ){ }J
J

JJJJ
J

J HSD ρβραρ ,
2
1,~

2
1

+−−= (26) 

 ( ) ( )JJJJ
J

JJJ S Ηρβρα Tr~Tr +−=  (27) 

( ) ( ){ } ( ) ( )

( ) ( ) ( )[ ]2TrTr

Tr~Tr,~
2
1Tr

J
JJ

JJ
JJ

J
JJ

J

JJ
JJ

JJ

J
HHH

HSHS

ρρ

ρρρ
β

−

−
= (28) 

It is noteworthy that t  functional dependence 
of each J on 

he
D Jρ , ( )JS~ , is the same as 

that of D on 
( )JΗ

S,ρ , and for the single 
constituent system (equation (3)).  Proofs that 
equation (25) satisfies all the consistency 
conditions listed in Section 4 plus the three just 
cited are given in Refs. [8, 9, 29].  Again, it is 
easy to verify that   

Η

( ) ( ) 0~Tr0Tr0Tr ≥==
J

JJ
J

JJJJ SDDD Η (29) 

and, therefore, 

0TrTrTr =+= ΒΒΑΑρ DD
dt
d   (30) 

( ) ( ) 0TrTrTr =+= B
BB

A
AA HDHDH

dt
d ρ  (31) 

         ( ) ( ) 0~Tr~Tr~Tr ≥+=
B

BB

A

AA SDSDS
dt
d ρ  (32) 

Finally, it is shown that if  at one time, it  
remains so at all times, that is, for  . 

ρρ <2

+∞<<−∞ t
By taking the partial trace of dtd /ρ  (as 

given by equation (25)) over ΒΗ , we obtain the 
rate of change of the reduced state operator of 
subsystem A, i.e., dtddtd B /Tr/ ρρΑ = . If B is 
not interacting with A, i.e., the Hamiltonian is 
given by equation (24) with V = 0,  
turns out to be independent of B . This means 
that it is impossible to affect the local 
observables of A by acting only on B, and so 
non-locality paradoxes are excluded by the novel 
equation of motion. This, however, does not 
mean that existing entanglement and/or 
correlations between A and B established by past 
interactions that have been subsequently turned 
off have no influence whatsoever on the time 
evolution of the local observables of either A or 
B. In particular, there is no physical reason to 
expect that two different density operators 

dtd /Αρ
H

ρ  
and ρ′  such that ΑΑ ρρ =′ should evolve with 
identical local dynamics )//( dtddtd ΑΑ ρρ =′  
whenever A does not interact with B, because the 
fact that ρρ ′≠ means that in these two states 
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the subsystems are differently correlated and/or 
entangled and, therefore, the two local evolutions 
should in general be different, at least until 
memory of the entanglement and the correlations 
established by turned-off past interactions have 
faded away (spontaneous decoherence) as a 
consequence of the irreversible entropy-
increasing evolution [31]. This subtlety is also 
captured by the novel equation of motion. 
Indeed, dtd /Αρ  in general depends not only on 
the “local” reduced density operator Αρ  but also 
on th erall density operator e ov ρ  through oper-
ator ( ) ( ΑΑ

ρΒ ln )~
−=S , resulting in a collective 

behavior effect on the local dynamics that origi-
nates from the existing residual correlations due 
to past interactions.  
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