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Abstract. In this paper we propose a very simple FIR pre-filter based
method for near optimal least-squares linear approximation of discrete
time signals. A digital pre-processing filter, which we demonstrate to
be near-optimal, is applied to the signal before performing the usual
linear interpolation. This leads to a non interpolating reconstruction of
the signal, with good reconstruction quality and very limited computa-
tional cost. The basic formalism adopted to design the pre-filter has been
derived from the framework introduced by Blu et Unser in [1]. To demon-
strate the usability and the effectiveness of the approach, the proposed
method has been applied to the problem of natural image resampling,
which is typically applied when the image undergoes successive rota-
tions. The performance obtained are very interesting, and the required
computational effort is extremely low.

1 Introduction

Linear interpolation is one of the simplest methods for digital to analog conver-
sion, and it is still applied in applications where the conversion computational
cost must be kept under control. Nevertheless, linear interpolation introduces
some artifacts, e.g., blurring in image processing, and it is often necessary to use
higher degree polynomials to achieve an acceptable level of approximation.

An interesting point is to establish if a signal needs to be actually interpolated
or whether a non interpolating least-square approximation could be preferable.
In literature the choice seems to have been interpolation, even when it does not
represent a requirement and it clearly generates analog reconstructed signals
with a much higher mean square error. A significant example is represented by
the problem of image resampling when the new pixels are uniformly distributed
with respect to the old ones, as in the case of image rotations by angles which
are not multiples of π/2.

The concept of least-squares reconstruction of signals has been well studied
in modern sampling theory (e.g., see [2]), and the solution is known to be given
by an analog pre-filtering of the signal before sampling. The optimal filter inpulse
response depends on the generating function used in the reconstruction step (and
is called dual of the generating function itself).

In this paper we propose the introduction of a very simple digital filter to be
applied to the signal before performing the classical linear interpolation, as an
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equivalent of the analog analysis filter which is missing in our implementation.
The approach is a direct extension of the results described by Blu and Unser in
[1]. We show here that a very simple FIR filter leads to almost the same perfor-
mance with respect to an optimal analog analysis pre-filter under the hypothesis
that the signal has been sampled according to Shannon’s sampling theorem. In
this paper we will use a normalized frequency representation, so that this hy-
pothesis is equivalent to consider the signal to be bandlimited to frequencies
|f | < 1/2.

The rest of the paper is organized as follows. Section 2 describes some known
results of interpolation and sampling theory, whereas the proposed digital pre-
filter is introduced and discussed in Section 3. Experimental results showing
the effectiveness of the proposed approach are reported in Section 4. Finally,
concluding remarks are drawn in Section 5.

2 Interpolation and Sampling Theory

Given a set of values s(k), corresponding to samples of a signal s at integer
points, a linear interpolation constructs a piecewise linear approximation s̃ given,
for k ∈ N and δ ∈ [0, 1[, by

s̃(k + δ) = s(k)(1 − δ) + s(k + 1)δ

This is known to be equivalent, for t ∈ R, to

s̃(t) =
∑

k∈Z

s(k)Λ(t − k) (1)

where Λ(t) is the unity triangular pulse defined by Λ(t) = max(0, 1 − |t|).
Equation (1) is a special case of a general model used in modern sampling

theory: given a reconstruction function ϕ a signal approximation can be obtained
using the linear expansion

s̃(t) =
∑

k∈Z

ck ϕ(t − k) (2)

where the coefficients ck have to be set depending on ϕ, s, and the desired
characteristics of the approximation result. A very useful choice is to construct
an analysis function ϕ̃, dependent on ϕ, and consider coefficients ck of the form

ck = 〈s, ϕ̃k〉

where ϕ̃k(t) = ϕ̃(t − k). This assumption corresponds to filtering s with a filter
with impulse response h(t) = ϕ̃(−t), followed by an ideal sampler to obtain the
sequence ck.

With this formalism in mind, given a certain reconstruction function ϕ, the
approximation s̃ is simply determined by the choice of ϕ̃. If we want to obtain



the least-square approximation solution (in the form of eq. (2)), the analysis
function is given by (see [2]) 1

ˆ̃ϕ =
ϕ̂(f)

âϕ(f)

where aϕ(t) is the sampled autocorrelation of the function ϕ, and thus satisfies

âϕ(f) =
∑

k∈Z

|ϕ̂(f − k)|2

In this case ϕ̃ is called dual of ϕ and will be denoted with
◦
ϕ.

If we are interested to linear approximation, the expression of
◦
ϕ (f) can be

easily derived, given that ϕ(t) = Λ(t) and ϕ̂(f) = sinc2(f). In this case one has

âΛ(f) =
2

3
+

1

3
cos(2πf) (3)

and, thus,

◦̂

Λ =
3 sinc(f)

2

2 + cos(2πf)

Consider that this function is even and real valued, then Λ(t) must be even

as well. Thus we have h(t) =
◦

Λ (−t) =
◦

Λ (t), and we will refer to the dual function
◦

Λ as the analysis filter.

3 The Proposed Digital Pre-Filter

Once we have the expression of the analog analysis filter for the least-squares
approximation this should be applied to the signal before sampling, in view of
a future piecewise linear reconstruction (which is optimal according to the least
squares criterion).
Obviously, this cannot be implemented in practice as the signal is normally avail-
able already in a digital form. So, the overall processing must be implemented
in an equivalent way in the digital domain. Assuming that the sampling rate
satisfies Shannon’s sampling theorem, a near equivalent FIR pre-filter can be
derived and applied to the digital signal providing nearly the same performance
as its optimal analog counterpart.
In this way, it will be possible to reconstruct a piecewise linear least-square
approximation of the original signal in a very efficient manner.

1
ϕ̂ represents the Fourier transform of the function ϕ. All functions with the super-
script ˆ will in what follows always identify the Fourier transform of its argument,
unless it is explicitely stated differently in the text



3.1 Filter

We choose to limit the number of taps of the near equivalent FIR filter to 5.
This could be considered a completely arbitrary choice, but it will be shown that
the quality of the approximation is practically unaffected by such limitation. In
addition, this allows to maintain a very low computational cost. Longer filters
have been considered without obtaining a substantial reduction in the mean
square error.

As previously mentioned, the FIR digital filter should behave similarly to its

Analog counterpart
◦

Λ. The design approach basically equates the first terms of
the Taylor series expansion of both frequency representation of the two filters

around f = 0. Given the symmetries of
◦

Λ, h[n] has to be even shaped and satisfy
a unity gain at f = 0. Thus its generic expression in the Z transform domain is
given by

h(z) = 1 − a − b +
a

2
(z1 + z−1) +

b

2
(z2 + z−2)

The associated Discrete Time Fourier Transform is thus

ĥ(f) = 1 − a − b + a cos(2πf) + b cos(4πf)

Using now its Taylor series expansion and limiting it to the fourth order approx-
imation, one can rewrite

ĥ(f) = 1 + (2a − 8b)π2f2 +
32b − 2a

3
π4f4 + o(f5)

Similarly the Taylor Series representation of the dual function is given by

◦̂

Λ(f) = 1 +
1

3
π2f2 +

2

45
π4f4 + o(f5)

Equating the coefficients of f2 and f4 we obtain a linear system with two
unknown, the solution of which leads to a = −11/45 and b = 7/360. Thus the
filter transfer function is given by

h(z) =
49

40
−

11

90
(z1 + z−1) +

7

720
(z2 + z−2)

The joint concatenation of this digital filter with a linear interpolator can
also be viewed as an approximation process in the form of equation (2). The
coefficients ck correspond to the samples s(k), and the reconstruction function
ϕ is given by a linear combination of Λ(t), Λ(t ± 1) and Λ(t ± 2) leading to the
impulse response shown in fig 1.

3.2 Approximation error

Equipped with the analytical expression of our filter, it is important to compare
its performance with that obtained by the optimal solution. In [3] and [1], the
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Fig. 1. Equivalent reconstruction function of the FIR pre-filtering method

authors gave extremely useful mathematical tools for the study of the mean
square error behavior in approximation techniques. In particular it is shown
that, if T is the sampling rate, a very good estimation of the mean square
approximation error is given by

ηs(T ) =

(
∫ ∞

−∞

|ŝ(f)|2Eϕ̃,ϕ(fT )df

)1/2

where the Eϕ̃,ϕ(f) is called the error kernel function and is given by

Eϕ̃,ϕ(f) = |1 − ˆ̃ϕ(f)∗ϕ̂(f)|2 + | ˆ̃ϕ(f)|2
∑

n6=0

|ϕ̂(f + n)|2 (4)

or equivalently

Eϕ̃,ϕ(f) = 1 −
|ϕ̂(f)|2

âϕ(f)
+ âϕ(f)| ˆ̃ϕ(f) −

◦̂
ϕ(f)|2 (5)

For our purpose we set T to 1, as we are using a normalized frequency
representation. We have therefore to compare the error kernel for the least square
approximation using piecewise linear functions, the classic linear interpolation,
and our near optimal solution.

For the first case, we have that ϕ̃ =
◦

Λ and, calling
Emin = E◦

Λ,Λ
, from (5) and (3),

Emin(f) = 1 −
3 sinc(f)

4

2 + cos(2πf)



For the classic linear interpolation, instead, ϕ̃(t) = δ(t) and thus, from (4),

Eδ,Λ(f) =
5

3
+

1

3
cos(2πf) − 2 sinc2(f)

Finally, for the proposed FIR prefilter, ϕ̃ = h and, from (4), we obtain

Eh,Λ(f) = 1 + h2(f)

(

2

3
+

1

3
cos(2πf)

)

− 2h(f)sinc2(f)
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Fig. 2. Error kernels comparison.

Comparing the power series expansion of these three functions, one may ver-
ify that Eδ,Λ(f) − Emin(f) = O(f4) while Eh,Λ(f) − Emin(f) = O(f12) which
means that for low frequencies the FIR pre-filter leads to much smaller errors
with respect to the classical interpolation. In Fig. 2 the normalized error kernels
E(f)/Emin(f) are plotted for both methods. It clearly indicates that the pro-
posed FIR pre-filtering method is practically identical to that of the least square
solution up to the Nyquist frequency f = 1/2. Therefore, if the signal can be
considered bandlimited to |f | < 1/2 (i.e., Shannon’s sampling theorem is satis-
fied), the solution obtained by FIR pre-filtering can be considered equivalent to
the optimal analog solution.

4 Simulation Results

In order to demonstrate the efficiency of our approximation scheme, we compare
it with two meaningful interpolation methods, namely Keys’ cubic interpolation,



which is the reference for high-quality image reconstruction methods, and the
more recent interesting shifted-knots linear interpolation proposed by Blu et al.

in [4]. We perform an image resampling test, based on successive rotation of 256
gray level images, that is a variant of that used in [4].

(a) Original image of pepper. (b) Keys’ cubic interpolation,
SNR=27.71dB, Time=3.85s

(c) Shifted-knots linear interpola-
tion, SNR=25.14dB, Time=1.32s.

(d) FIR pref. linear approxima-
tion, SNR=29.14dB, Time=1.38s

Fig. 3. Results of simulations on the image Pepper.

We randomly choose 14 angles θi with θi ∈ [−π/2, π/2] for 1 ≤ i ≤ 14 and
we set θ15 = 0. The value θi represents the angular position (with respect to the
original one) of the image at the i-th step. The image at step i + 1 is obtained
by rotating the image at step i by an angle θi+1 − θi. It is clear that at the
15-th step the image is exactly in the initial position and we can compare the
rotated image with respect to the original one to evaluate the error introduced
by successive resamplings of the rotated rectangular image. All computations
have been performed with floating point arithmetic so as to avoid the effects



(a) Original image of pepper. (b) Keys’ cubic interpolation,
SNR=20.50dB, Time=3.85s

(c) Shifted-knots linear interpola-
tion, SNR=18.02dB, Time=1.32s

(d) FIR pref. linear approxima-
tion, SNR=21.42dB, Time=1.38s

Fig. 4. Results of simulations on the image Pepper.



of quantization. Furthermore, the error has been computed only on the central
part of the image so that boundaries effect have been discarded.

This simulation experiment is different from that proposed in [4] for which
the image was rotated 15 times by an angle 2π/15 in the same direction. Such
a choice, in fact, causes a compensation of the phase distortion potentially in-
troduced (and it is the case for the shifted-knots method) by the approximation
system, due to the presence of near-opposite angles during the simulation. This
is the reason for which, here, shifted-knots linear interpolation gives smaller SNR
values than Keys’ cubic one (even if the images can be considered visually more
satisfactory), contrarily to what reported in [4].

Figures 3 and 4 show the results of the test for the Pepper and Baboon
images, respectively. It is important to note that the FIR-prefilter linear ap-
proximation can give higher quality (both visual and with respect to the SNR
value) than Keys’ cubic interpolation in 1/3 of the computation time.
Furthermore, it is interesting to compare the performance of our method to
that of the shifted-knots one; the phase distortion of the latter, in fact, leads
to a lower SNR value in our rotation test. Visually, the obtained images are
not blurred (as with classic linear interpolation) but they are affected by the
presence of shot-noise. The least-squares linear approximation, on the contrary,
does not introduce this artifact and gives images with very little blur, leading to
higher quality for about the same computational cost.

5 Conclusion

In this paper we have presented the idea of using a very simple linear phase
FIR pre-filter to compute a least square linear approximation of a digital signal
for bandlimited analog signals reconstruction. The digital pre-processing filter
is applied to the signal before performing the classic linear interpolation, so
as to obtain a non interpolating analog approximation. The usefulness of the
approach has been demonstrated by applying it to the problem of resampling
rotated images. In this context, the need for an exact interpolation of the original
pixels is not a requirement, and the quality of the rotated signal remains very
close to the original.
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