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ABSTRACT

In this work efficient geometric algorithms are provided for
the linear approximation of digital signals under the uniform
norm.
Given a set ofn points(xi, yi)i=1..n, with xi < xj if i < j,
we give a new method to find the optimum linear approxi-
mation inO(n). Given also an error bound, we demonstrate
how to construct inO(n) a non continuous piecewise solu-
tion such that the numberk of segments is optimal. Fur-
thermore we show that for such number of segments, the
solution that isl∞ optimal can also be found inO(n) pro-
vided thatn/k = O(1).

1. INTRODUCTION

The problem of approximating a discrete time signals in n
pointsxi, i = 1..n using the uniform norm basically con-
sists on finding a functionf pertaining to a classF of func-
tions, such that

||s− f ||∞ = max
1≤i≤n

|s(xi)− f(xi)|

is smallest than a given valueδ or, in other cases, it is the
smallest possible, that is

||s− f ||∞ = min
g∈F
||s− g||∞

In this paper we aim at finding linear (single segment(link))
and noncontinuous piecewise linear (more segments (links))
approximations of signals.

In the first case, it is known that the problem is equiva-
lent to a linear programming problem in three variables that
can be solved inO(n) ([1], [2],[3]). We show instead a very
efficient geometric method based on the properties of the
set of pointsS = {(xi, yi}i=1..n (whereyi = s(xi)); we
compute the convex-hullQ of S and then we find a subset
of three points ofQ that univocally determines the solution.
This leads to an algorithm that can take up to 1/8 of the time
necessary for the linear programming solution.

In the second case, when an error boundδ is given, we
show that it is possible to find, inO(n) time, a noncon-
tinuous piecewise linear function withk segments that ap-
proximates with error ε ≤ δ and such that the number of
segments is optimal under this constraint; this means that
there cannot exist a function with less thank segments ap-
proximatings with errorε′ ≤ δ

Finally, we show that given again an error boundδ, after
having found the minimum number of segmentsk and the
k-link solution in the previous point, it is possible to find the
optimalk-link solution inO(n) if the length of the segments
in the previous point is asymptotically bounded, which is
true for the majority of practical situations.

2. SINGLE LINK SOLUTION

Given a setS = {xi, yi} of n points that represents a dis-
crete time signal, consider the convex hullQ of S.
Suppose for simplicity thatQ has no pair of parallel sides
(the opposite case can be handled similarly with a few some
more considerations); then for every sideXY of Q we can
find one vertex Z ofQ which is the most distant oneXY .
We call Zopposite vertexto the sideXY .
Claim. There exists one sideAB of Q such that its opposite
vertexC satisfiesxA < xC < xB . The bestl∞ linear ap-
proximation ofS is the liner parallel toAB and equidistant
from AB andC.
Proof. Let pi, i = 1 . . . k, be the vertex ofQ in counter-
clockwise order, withp1 the left-most one. For clarity, let
us add a pointpk+1 = p1 and letm, m < k, be the integer
such thatpm is the right-most vertex. Fori = 1 . . . k, let
li be the sidepipi+1 andv(li) be the opposite vertex to the
side li. We say thatv(li) is x-internal toli if the vertical
line throughv(li) cutsli.
We start by demonstrating that there exists at least one side
l whose opposite vertexv(l) is x-internal to it.
Suppose that every sideli has its opposite vertexv(li) that
is notx-internal; then, clearly,v(l1) must be on the right of
l1 andv(lm−1) must be on the left oflm−1. So, there must
exist an integerj < m such thatv(lj−1) is on the right of
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Fig. 1. Steps of the geometric method for single link optimal solution

lj−1 andv(lj) is on the left oflj . It is easy to see thatpj is
the opposite vertex to every side betweenv(lj−1) andv(lj);
the vertical line throughpj must cut one of these sides and
so there exists a side whose opposite vertex,pj , isx-internal
to it, so that the initial hypothesis was inconsistent.
Now, suppose we have three pointsA, B andC of Q such
thatC is thex-internal opposite vertex to the sideAB. For
these three points the optimal linear approximation is easily
proved to be the liner parallel toAB and equidistant from
AB andC. The error committed by this line in approximat-
ing s at everyx coordinatexi is proportional to the distance
of the pointsi = (xi, yi) from the line; the wayr has been
selected1 assures thatA, B andC are the points ofS mostly
distante fromr and so, thel∞ approximation error ofr is
due toA, B andC. But for this three pointsr is optimal and
so it is for the whole setS, asA, B, C are peculiar vertices
of the convex hull.
Finally we have to show that there cannot exist another triplet
of pointsA′, B′ andC ′ such thatC ′ is x-internal to the side
A′B′. Supposing these three points exist, they should lead
to an optimal solutionr′. Calling e(t; q1, q2, q3) the error
committed by the linet over the pointsq1, q2 and q3 we
should have

e(r′;A′, B′, C ′) ≥ e(r′;A,B,C) ≥ e(r;A,B,C) (1)

becauser′ lead to its maximum error onA′, B′ andC ′, and
r is optimum forA, B andC. But symmetrically we have

e(r, A,B,C) ≥ e(r;A′, B′, C ′) ≥ e(r′;A′, B′, C ′) (2)

So the only possibility is that all these≥ must be replaced
by = and, consequently,r = r′, which means thatAB is
parallel toA′B′, contrarily to the hypothesis onQ. �

These considerations lead to the following efficient al-
gorithm for finding the optimal liner (compare with fig. 1):

1. compute the convex-hull of the setS; since the points
in S can be ranked by increasingx coordinate, such
computation can be performed inO(n) with Graham

1Consider that all the points ofS lie in the strip of plane between the
the linet passing throughA andB and its parallelt′ passing throughC.
The liner is exactly in the medium of this strip and the most distant points
are the ones lying ont andt′.

method ([4]), by incrementally adding points from
left to right.

2. scan theM sides of the convex-hull computing their
opposite vertex until the three pointsA, B andC are
identified; with some tricks this can be performed in
O(M).

3. compute the solution ofr in O(1).

Compared to the linear programming solution this algo-
rithm has many advantages. It is very easy to implement
and generates a very compact code; all the computations
in the construction of the convex-hull and the scanning of
its vertices can be reduced to a scalar product operation of
the type e=ac+cd. Moreover the only memory requirement
(apart from the input sequence) is a vector containing the
indices of the convex hull vertices which represent at most
n × q bits, given aq bit digital sequence. One important
thing to note is that, if we are working with q bits samples,
all the computations in the first two steps of the method can
be performed using only fixed point arithmetic. Thus the
algorithm can be implemented without requiring a floating
point unit.
Furthermore, since the optimal solution is based on select-
ing three particular points ofS the solution for the whole
set provides a mean to irregularly decimate the original se-
quence, with a controlled mean for reconstruction of the
original sequence, as it is often required for example in near
lossless data compression. So it provides a strategy for ir-
regular sampling or a new mean for detection of relevant
samples in a digital sequence.

3. PIECEWISE SOLUTION WITH ERROR BOUND

In this section we want to study a different problem and,
in particular, we are interested to non-continuous piecewise
linear approximations2 .

For the sake of clarity, we suppose that the setS is char-
acterized byxi = i, i = 1 . . . n (even though the presented

2The proposed strategy for approximation shown in this section and
the next one can be easily extended to any piecewise optimally minmax
functional approximation. The difference simply lies in the procedure and
computational complexity individually attached to each segment.



results hold in the case of non uniform samples). Given all
the possible partitions of the domain, the problem of min-
max approximating the sequence within each segment of the
partition is a mere application of what explained in the pre-
vious section.
Given any piecewise minmax approximationg of the signal,
we characterize it with an errore(g), a number of segments
ν(g) and apartition setP (g) = {pi(g)}i=1..ν(g)−1 of val-
ues such thatpi = m + 1/2 if m is the last point of thei-th
segment andm+1 is the first point of the(i+1)-th segment.
Moreover, we setp0(g) = 1/2 andpν(g)(g) = n+1/2, and
it is implicitly considered that the partition pointspi can
only take values of the typem + 1/2 with m ∈ N. All
considered intervals are measured on a discrete half integer
valued lattice. Thus we will identify the ”approximation on
the interval [3/2,7/2]” as”the one of locations 2 and 3”; sim-
ilarly, by stating ”the partition pointpi is in ]3/2, 7/2]” is
equivalent to say ”pi ∈ {5/2, 7/2}”.

The problem to be solved is the following: given the set
S of n samples ofs and an error boundδ, we want to find a
(non continuous) piecewise linear approximationg of s with
errore(g) ≤ δ such that the numberν(g) of segments used
is the smallest possible. In general there are more solutions
to the problem but, interestingly enough, two of them (not
necessarily distinct) can be found inO(n) in a simple way.
We call them−→g (left-to-right solution) and←−g (right-to-left
solution), the motivation will become obvious. It is implicit
that−→g and←−g depend on the valueδ. The algorithm that
determines−→g is the following:

• Starting from the first point on the left, incrementally
add points until the error bound of the associated 1-
link solutionδ is reached. This requires the minmax
error to be computed at every step. However, given
verticesAm, Bm, Cm at stepm and the convex-hull
at stepm+1, verticesAm+1, Bm+1 andCm+1 at step
m+1 in O(1) are straightforward to derive. Thus the
total computational time remains simply proportional
to the number sample points.

• When the error bound is reached, this determines the
valuep1(−→g ). The process can now be started for a
new segment, untilp2(−→g ) is found, i.e. when the
error bound is reached a second time. The procedure
is similarly carried out till all points inS have been
dealt with.

Using the above construction process the number of seg-
ments used by−→g is optimal, which means that every piece-
wise functionh approximatingS with errore(h) ≤ δ has a
number of segmentsν(h) ≥ ν(−→g ).

The wayp1(−→g ) was obtained when constructing the so-
lution −→g implicitly says that it is not possible to approxi-
mate the interval[1, p1(−→g )+1] with a single segment (with-
out exceeding the value ofδ); h cannot be an exception

and thusP (h) must have a partition pointp1(h) in the in-
terval [1, p1(−→g )]. Similarly it is not possible to approxi-
mate with a single segment the interval[p1(−→g ), p2(−→g ) +
1], so thatP (h) must have at least another pointp2(h) in
]p1(−→g ), p2(−→g )] asp1(h) ≤ p1(−→g ). By iterating the argu-
ment, this proves by induction, that for1 ≤ i ≤ ν(−→g ) − 2
there must exist a point ofP (h) in the interval]pi(−→g ), pi+1(−→g )]
and thusν(h) ≥ ν(−→g ).

By symmetry of the construction process, the same proof
can be applied by replacing−→g with ←−g while proceeding
from right to left. This will ensure thatν(h) ≥ ν(←−g ). Now,
settingh = ←−g has lead toν(←−g ) ≥ ν(−→g ) while setting
h = −→g has lead toν(−→g ) ≥ ν(←−g ).
This proves thatν(−→g ) = ν(←−g ) = k and that this numberk
of segments defines the minimum of the piecewise minmax
optimal solution.

4. OPTIMAL K-LINK SOLUTION

We have shown in the preceding section how to find a piece-
wise solution with optimal number of segments inO(n)
when an error bound is given. Once we know the mini-
mum numberk of segments, we can ask for the solution in
k segments with minimum error. The general problem of
finding the optimal solution given the number of segments
is solvable inO(n log n) as shown by Goodrich in [5]. In
our case, however, we can take advantage of the fact that we
already know two solutions (−→g and←−g ) with k segments. In
fact we will show that these two solutions provide two parti-
tion setsP (−→g ) andP (←−g ) that determine a sort of extremes
of the partition setP (h) of any possiblek-link solutionh).
More precisely, ifh satisfiesν(h) = k ande(h) ≤ δ then
pi(←−g ) ≤ pi(h) ≤ pi(−→g ) for every1 ≤ i ≤ k − 1.
If e(h) ≤ δ we have already proven that there exists a
point of P (h) in ]pi(−→g ), pi+1(−→g )] for 0 ≤ i ≤ k − 2.
If ν(h) = k then in each interval there is exactly one point,
which has to bepi+1(h). This holds forh = ←−g so that
pi(−→g ) < pi+1(←−g ) ≤ pi+1(−→g ). By symmetry we can say
that if e(h) ≤ δ andν(h) = k there is exactly one point
pi(h) in [pi(←−g ), pi+1(←−g )[ for 1 ≤ i ≤ k − 1 and, for
h = −→g we obtainpi(←−g ) ≤ pi(−→g ) < pi+1(←−g ). By com-
bining these inequalities we reach the result that ifh is a
optimalk-link solution thenpi(←−g ) ≤ pi(h) ≤ pi(−→g ) for
every1 ≤ i ≤ k − 1.

The above consideration provides a very important prop-
erty of the possible partitions of the domain to obtain ak-
link solution.
We now show how to find the solutionf that minimizes the
maximum error inO(n). The idea is to proceed from left
to right and find at every location of the candidatei-th par-
tition point the partition pointpi−1 that minimizes the error
for all x < pi (which will be indicated withe(pi)).

Let us callwi = pi(−→g ) − pi(←−g ) + 1; we know that
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Fig. 2. Finding the optimum partition setP . By computing−→g and←−g we first find the possible ranges for the valuespi. Then,
for every possible value ofpi+1 we compute the value ofpi that minimizes the maximum error on the corresponding link; at
the last steppk−1 will be determined and consequently, everypi.

for the first point,p1, we can choose betweenw1 different
positions, that isp1(←−g ), p1(←−g ) + 1, p1(←−g ) + 2, ... p1(−→g ).
For every candidatepl

1 = p1(←−g ) + l − 1, l = 1 . . . w1, we
compute the approximation error of the first segment, as we
did when finding−→g , and we denote the corresponding val-
uese(p1

1), e(p2
1) . . . e(pw1

1 ), respectively.
Now, for every possible positionpr

2, r = 1 . . . w2 of p2 and
for every possible positionpl

1 of p1, we compute the er-
ror ε(pl

1, p
r
2) of approximating the interval[pl

1, p
r
2] with one

segment.
For every pointpr

2 we compute the valuee(pr
2) given by

e(pr
2) = min

1≤l≤w1

(
max

(
e(pl

1), ε(p
l
1, p

r
2)

))
(3)

that is the minimum error that we can induce in the domain
x < pr

2 if we choose the second partition pointp2 = pr
2.

The value ofl for which the minimum is reached in (3)
determines the best choice forp1 given thatp2 = pr

2. By
iterating the process (ase(p1

2), e(p2
2), ... are known) we can

determine the best choice forp2 for all possible candidate
positions ofp3 and so on. At the last stage we will find
the best position ofpk−1 given thatpk = n + 1/2. Now
by backpropagation, we can determine the optimumpk−2,
pk−3, ...,p1.

Let us now assess the computational complexity of the
described procedure. At stepi, wi · wi−1 errors need to
be estimated. If we movepi in the inner cycle andpi−1 in
the outer one we can assume the number of computations
be less thanwi−1 · (pi(−→g ) − pi(←−g )). By calling li the
lengthpi(−→g )−pi−1(−→g ) of thei-th segment of−→g , we have
wi−1 · (pi(−→g )− pi(←−g )) < li−1 · (li−1 + li).

If we consider that the maximum length of the segments
is asymptotically constant in the number of points, which
actually makes sense in many practical situations (consider
for example electrocardiographic signals), then the number
of operations for everypi is bounded by a constant and so
the complexity of the algorithm isO(n).

5. CONCLUSION

We have presented a new geometric algorithm for the linear
approximation of signals in thel∞ norm. The algorithm is
very efficient both in terms of its computational efficiency,
memory usage and ease of implementation. Given an error
boundδ, we have shown how to find a piecewise linear ap-
proximation of a signal with minimum number of segments
k in O(n). Finally, we have shown how to minimize the
error for the same numberk of segments inO(n).
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