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Abstract. Many post-production video documents such as movies, sit-
coms and cartoons present well structured story-lines organized in sep-
arated audio-visual scenes. Accurate grouping of shots into these logical
video segments could lead to semantic indexing of scenes and events for
interactive multimedia retrieval. In this paper we introduce a novel shot-
based analysis approach which aims to cluster together shots with similar
audio-visual content. We demonstrate how the use of codebooks of au-
dio and visual codewords (generated by a vector quantization process)
results to be an effective method to represent clusters containing shots
with similar long-term consistency of chromatic compositions and audio.
The output clusters obtained by a simple single-link clustering algorithm,
allow the further application of the well-known scene transition graph
framework for scene change detection and shot-pattern investigation. In
the end the merging of audio and visual results leads to a hierarchical
description of the whole video document, useful for multimedia retrieval
and summarization purposes.

1 Introduction

With the advances in multimedia techniques and the convergence of network
technologies, we are experiencing a rapid increase in the amount of data coming
from heterogeneous digital media sources. Performing a manual search for a
piece of desired content from huge amounts of unorganized media data is a time
consuming and laborious task for a human user, so algorithms and tools that
enable automated analysis of large digital multimedia database are becoming
more and more indispensable; still achieving semantic understanding, especially
of images and videos, remains a not trivial task. This issue is known in literature
as the semantic gap problem [2]: the retrieval queries are normally formulated
at a higher level in line with the human concept of understanding the media
content. In contrast, the analysis of a video is feasible at the algorithmic level in
terms of analyzing low-level features. The problem of bridging the gap between
such cognitive level queries and a suitable system-level feature set and related
methods remains a difficult research challenge [7].

Considering video content analysis, the detection of shot boundaries (which
identify segments filmed in a single camera take, [5]) is still considered a prior
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step towards content-based indexing, browsing and summarization. Most of the
existing video summarization techniques use key-frames extracted from such
shots by means of their associated low-level audiovisual features [6]. A collection
of such information provides a compact representation of a given video sequence,
useful for video applications such as browsing, database retrieval and automatic
generation of summaries and skims (dynamic summaries) [9]. Still considering
that there are usually more than one thousand key-frames for an hour long video,
it is impractical to check all these images to get a rough idea of its content.
Therefore it is clear that the research on video-segmentation must be carried
out at a higher level of abstraction with respect to a shot-based decomposition:
efforts has to be directed towards grouping shots together into ”scenes”, normally
defined as a sequence of shots that share a common semantic thread.

1.1 Related Works

Some methods dealing with automatic high-level movie segmentation are re-
ported in literature. In [20], [21], [22] and [23] some approaches based on a
time-constrained clustering are presented. In [20] interesting results are given,
measuring visual similarity between shots by means of color or pixel correlation
between key frames, followed by applying predefined memory models for recog-
nizing patterns inside the story. However, in this case the choice of a predefined
interval (in frames) places an artificial limit on the duration of an episode. An-
other approach can be found in [6] where the Logical Story Units (LSU) are
introduced as ”a series of temporally contiguous shots, characterized by over-
lapping links that connect shots with similar visual content element” [7] and
the dissimilarity between shots is examined by estimating correlations between
k-frames block matching. One last group of algorithms derives a method for
measuring probable scene boundaries by calculating a short term memory-based
model of shot-to-shot ”coherence”, as in [8] and [17].

Over the last few years more and more research efforts have been seen in
using audio [10] and mixing audio-visual information to detect scene boundaries
(see [14], [16], [3] and [15]). However, how to combine audio and visual informa-
tion efficiently remains a difficult issue, since there are seemingly many different
relationships due to the video genre variety and styles of program making. In [16]
the authors have used a finite memory model to segment the audio and video
data into scenes, respectively, and then applied sliding windows to merge audio
and video scene results. In [3] an audio assisted scene segmentation technique
was proposed that uses audio information to remove false boundaries generated
from visual scene segmentation. Other authors [15] focused first on object track-
ing method for visual segmentation, then analyzed audio features based on the
detected video shots, without concerning what the content of the audio data
actually is.



1.2 Aim of the Work and Paper Organization

This work presents a novel and effective method to group shots into logical
story units (LSU) starting from an MPEG-1 video stream, using a shot-to-shot
dissimilarity measure based on vector quantization (VQ) codebooks of visual
and audio codewords. We demonstrate how these codebooks can be also ex-
tended to effectively represent clusters of shots, so evaluating cluster-to-shot
and cluster-to-cluster dissimilarity. This clustering of basic video segments into
compact structures can be helpful for further processing and content analysis
purposes. In fact, starting from the so obtained clustered shots and by analyz-
ing the transitions between clusters using already proposed methods such as the
scene transition graphs [20], it is possible to find out the fundamental elements
of the semantic structure (LSU), the story line developing, and eventually rec-
ognize patterns (such as dialogue, audio hints, etc.) and repeats (visually similar
shots or events not local in time) all along the video. In this work we deal with
a wide range of highly-structured programs, such as feature movies, sitcoms and
cartoons, for which is quite reasonable to assume the presence of repetitive or
at least similar shot structures along the video sequence.

The paper is organized as follows. In the next section an overview of the pro-
posed system is given. Section 3 discusses visual information processing modules
for shot-based visual scene detection, including the use of Vector Quantization
codebook for visual content representation of a shot, an effective clustering ap-
proach [13] for grouping together visually similar shots, and the use of the Scene
Transition Graph (STG) framework to detect logical story units. In Section 5
an audio signal processing approach to audio scene detection is presented. In
section 5 the idea is described how audio results can assist video semantic anal-
ysis. Finally, in Sections 6 and 7 the experimental results and conclusions are
presented, respectively.

2 System Overview

The proposed system, shown in Figure 1, comprises two separate and paral-
lel sub-systems, one for visual content clustering process and the other one for
audio clustering. After the video decomposition into shots, video content is rep-
resented by means of Vector Quantization (VQ) methods. This means that a
visual codebook is built starting from the LUV color information of one or more
selected key frames. In the case of audio instead, data being considered to build
the codebook are normalized Mel-frequency Cepstrum Coefficients (MFCC) ex-
tracted from the audio track.

The outputs from the two parallel processes then enter the ’Scene Change’
block, in which a further analysis on clusters is performed in order to construct
the Scene Transition Graph (STG) [20], so as to enable logical story unit detec-
tion as well as certain events patterns inside scenes. In the end, the audio and
visual results are combined together in order to produce an MPEG-7 compliant
XML description of the video document.
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Fig. 1. System architecture

3 Visual Content Representation

Assuming that the shot decomposition is already given, we propose to use a VQ
codebook distance metric to evaluate shot-to-shot dissimilarity. Later we demon-
strate how a codebook of visual codewords can effectively represent also clusters
of shots and allow evaluating cluster-to-shot and cluster-to-cluster dissimilarity.

To represent the visual content of each shot, the central key frame is chosen,
but the procedure has been designed to be functionally scalable in order to be
easily adapted to the case when more than one key-frame per shot is needed to
gain a proper representation of the visual-content. In this case, techniques for
k-frame extraction relying on camera motion activities estimation or the method
proposed in [7] can be used.

3.1 Vector Quantization Codebook Generation

The selected keyframe is decoded as a still 352x288 image and represented in the
LUV color space (CIF resolution). After sub-sampling by a factor 2 the keyframe
in both directions (QCIF resolution) and after having applied a denoising gaus-
sian filter, it is subdivided into blocks of 4x4 pixel dimension, in order to exploit
color correlation of neighboring pixels. For each pixel belonging to each block,
the three LUV components are concatenated to form a 48-dimensional vector
pi (3 components for 16 pixels). These vectors now constitute the inputs for the
VQ codebook generation process [4] as shown in Figure 2. The procedure starts
with a randomly generated codebook, then a variant [4] of the Generalized Lloyd
Algorithm is applied; on the basis of the last obtained nearest neighbor partition,
the centroids of each region can be refined iteratively until the distortion is below
a predefined threshold. In the end the final code vectors (i.e. the centroids) will



correspond to the statistical density of the color features representing the visual
content of the video shot.
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Fig. 2. Training set vector generation

The codebook thus generated for each visual shot contains:

– The cj (j = 1, 2, . . . , C) codewords of D dimension (D = 48) which repre-
sent the centroids of each cluster in the final codebook. Removing the j for
notational convenience, we have:

(µ1, . . . , µD)c =
∑Mc

i=1(p
i
1, . . . , p

i
D)c

Mc

where Mc are the number of blocks within the partition of the codeword c;
– The variances of the codewords obtained as:

(σ2
1 , . . . , σ2

D)c =
∑Mc

i=1[(µ1 − pi
1)

2, . . . , (µD − pi
D)2]c

Mc

– The normalized weights (0 < w ≤ 1) of the codewords which estimate the
probability mass associated to each cluster:

wc =
Mc∑C

c=1 Mc

3.2 VQ Codebook Distance Metric

Once the codebook for each shot is obtained, the distance between two shots A
and B can be computed in two steps according to the ground measure proposed



in [1]. First, each codebook vector of shot A, yA = {y1, . . . , yC}, is compared
with those of shot B, zB = {z1, . . . , zC}, to produce a

di,j =
1
D

[
D∑

h=1

1
2
(µih − µjh)2 +

1
2
(σih − σjh)2]

with i, j = 1, . . . , C. Then, the VQ codebook distance metric between shots A
and B is defined as:

V Q Dist(A, B) =
C∑

i=1

w ·min
j

(di,j)

where the weight w is determined as w = max(wi, wj).

3.3 Time-unconstrained Clustering Procedure

This section details the novel visual clustering process, essential for further LSU
segmentation, which relies on the possibility of defining VQ codebooks even
for clusters. A time-unconstrained analysis approach is useful for many video
programs like movies, since it groups shots into the same cluster based only on
the visual contents without considering the timing of the context. The objective
of such an approach is twofold. First, it doesn’t set an a priori time limit for
a scene extent (which is an issue, e.g., in [20]) and secondly, it can be useful
for certain retrieval purposes, like user defined queries searching for repeats (for
example a viewer may like to see all the scenes set in the travel bookshop location
in the movie ”Notting Hill”).

At the beginning each cluster contains a single shot, so forming the Original
Shot Graph (OSG), in which nodes correspond to single shots, and edges indi-
cate the transitions between shots. The VQ codebook distance metrics are then
computed between all shots along the timeline, so as to explore exhaustively the
visual similarities of the entire video, as shown in Figure 3. At each step, the
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algorithm merges a reference cluster R with its visually most similar test cluster
T (i.e. the one having the minimal VQ distance metric), to form a new cluster R′

in the temporal position of R. All the shots belonging to R and T , respectively,
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Fig. 4. Visual clustering: merge operation

then become the shots of the new cluster R′, and all transitions from/to R and
T are properly updated to keep the correct temporal flow of the story. Figure
4 shows an example of such a merge operation. For the now combined cluster
R′ a new VQ codebook is needed to represent its content. The same process
used before is applied: considering that the new cluster contains more than one
shot, the keyframes corresponding to all the shots will be used for the codebook
generation. Then, the VQ distances between R′ and all the other clusters are
updated ready for the next iteration.

On-line Statistical Analysis on VQ-cluster Distortion: It should be noted
that while the VQ codebook generated at the OSG step is specific for each shot,
the VQ codebook, which represents the visual content of a cluster with multiple
shots, usually becomes less specific. This means that, for each shot, the best
representing VQ codebook is the one prior to the first merging. From then on,
the distortion of representing the original shot with its cluster VQ codebook is
likely to increase. So, at each iteration k the newly formed cluster R′k introduces
a VQ distortion with respect to the OSG step, where each cluster contains only a
single shot. This distortion can be computed, using the proposed VQ distance, as
the sum of the distances between the codebook of the newly formed clusters R′k
and the codebooks of its shots si computed at the OSG step. The accumulated



distortion V Q Err introduced from the beginning of the process until step k is:

V Q Err(k) =
k∑

j=1

∑

si∈R′
j

V Q Dist(si, R
′
j)

With the increase in a cluster’s size, its VQ codebook is at the risk of losing
the specificity in representing any of its constituent shots. To prevent this de-
generative process, a statistical analysis is performed on the distortion generated
by the latest merging step. At each iteration k, we compute the first derivative
of the VQ distortion as,

∆V Q Err(k) = [V Q Err(k)− V Q Err(k − 1)]

together with its mean µ and standard deviation σ with respect to the previous
steps. Specifically, observing that after some initial steps (in which very simi-
lar shots collapse in the same clusters) the ∆V Q Err tends to be gaussianly
distributed, if:

∆V Q Err(k) > µ{∆V Q Err(j)}+ thrs · σ{∆V Q Err(j)}

with j = 1, 2, . . . , k − 1, and thrs ∈ [2, . . . , 3], this means that the distortion
introduced by the newly formed cluster is too large and that the VQ codebook
fails to represent all the cluster components. In such a case, this latest merging
between cluster R and T is discarded. Besides, these clusters are since locked,
being excluded from any future clustering process and a new reference and test
cluster, currently unlocked, are selected according to the next minimal value
of VQ distance metric. The above iteration process is repeated until no more
unlocked clusters are available for merging. Experimental trials demonstrated
that in order to prevent a cluster codebook from growing too much and losing
specificity, it is useful to lock the cluster at a certain size (e.g., 12-15 shots in
practice).

The discussion so far on the clustering process assumes the presence of simi-
lar shot structures along the sequence. This structure can be partially lost when
the director relies on fast succession of shots to highlight suspense or to merely
develop the plot of the movie. However, also in this case, the clustering algorithm
gives proof of good performance, since usually shots belonging to the same LSU
share at least the chromatic composition of the physical scene or the environ-
mental lighting condition.

Intra-cluster Time Analysis The clusters generated from the unconstrained
time analysis provide the first level representation of video content hierarchy.
Each cluster now contains shots with high visual similarity to each other even
if they may not be temporally adjacent, which, as discussed before, is already
desirable for certain retrieval purposes. However, in order to separate one LSU
from another, it is necessary that further analysis looks into the temporal locality
of shots within each cluster so as to introduce a second level representation in



the cluster hierarchy. To do this, a temporal analysis is performed with a view to
splitting each cluster into a few temporally consistent sub-clusters (see Figure 5)
according to the following criterion: inside each cluster, two subsequent shots are
considered to belong to the same sub-cluster if the temporal distance between
them is less than a predefined interval DW (in terms of number of shots).

The length of DW = 8 shots chosen for our tests is not a critical value: it only
determines the maximally explored range for a shot with similar visual content
(e.g., in a pattern like ABCDEFGA..., it allows the two shots A to be included
in the same sub-cluster), whereas similar shots usually occur quite closely to
each other.
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Fig. 5. Second level cluster hierarchy: time local sub-clusters

3.4 Scene Transition Graph

The Scene Transition Graph (STG), originally proposed in [24], can be used
to find the edges of LSUs and extracting the story structure without a priori
knowledge of the semantics and flow of the video. It can be easily noted that
the output of clusters and transitions from the above analysis forms a directed
graph: it comprises a number of nodes (the local sub-clusters), each containing
a number of visually similar and temporally close shots, and the edge between
nodes (the time transitions between shots), representing the time evolution of
the story. An important type of transition between two nodes is called ”cut-
edge” when, if removed, the graph leads to two disconnected sub-graphs. An
LSU boundary is therefore defined to be at a cut edge.

As shown in Figure 6 each connected sub-graph after the removal of cut-edges
represents a Logical Story Unit while the collection of all cut-edges represent all
the transitions from one LSU to the next, thus reflecting the natural evolution
of the video flow.
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Fig. 6. LSU detection through cut-edges

4 Audio Signal Processing

Current approaches to audiovisual data segmentation focus more on visual cues
than on associated audio cues. There is, however, a significant amount of infor-
mation contained in audio, which sometimes can be complementary to the visual
counterpart. In the current work we consider audio data as a support to visual
processing results. It should be noted that the processing is not for classification
purposes (i.e. decide whether it is music, speech, silence, noise, etc.), but for
catching only variations of audio characteristics that may correspond to either
an ”audio scene change” or an important event in the story evolution that is
underlined by a significant modification in audio properties.

4.1 Audio Content Representation

We first divide the audio data on the basis of the visual shot-based segmenta-
tion. Due to editing effects in a media file, some of the detected camera shots
may be very short. In order to analyze a significant amount of audio information
(i.e. avoiding short silent shots), if an audio shot lasts less than certain dura-
tion (e.g., 2 s) it is merged with its preceding shot prior to being processed. A
short-term spectral analysis is then performed to generate feature vectors char-
acterizing each audio shot. First, the audio-shot is divided into audio frames
locally stationary and lasting for a few tens of milliseconds. Then, for each audio
frame, 19 Mel-Frequency Cepstral Coefficients (MFCCs) plus a sound energy are
computed. The MFCCs are widely used in speech recognition applications and
are also useful for modeling music [11]. In our work the audio data is sampled at



22.050 kHz; frames are 20 ms long weighted by a Hamming window with 50%
overlapping, so that an output feature vector is obtained every 10 ms.

Vector Quantization of Audio Shots After weighting the MFCCs according
to the relative energy of its audio frame (to remove the detrimental effects of
silence), all the normalized MFCC vectors enter the same VQ codebook gener-
ation process as it was described in the case of visual information.

Measuring Distance Between Audio Shots Once the codebook for each
audio shot is obtained, the distance between two different audio shots can be
computed using the Earth Mover’s Distance (EMD). The EMD was used in [12]
as a metric for image retrieval and in [11] to compare songs in an audio database
for automatic creation of play-lists. The EMD can be viewed as calculating the
minimum amount of work required to transform the codebook of one audio shot
into another, using a symmetrical form of the Kullbach-Leibler’s distance. The
problem can be formulated as a linear programming task for which efficient
solutions exist.

4.2 Segmentation Procedure for Audio Scene

In general, an audio scene change is likely to occur when the majority of the
dominant audio features in the sound change [16]. This can typically happen
just before (or after) a new visual scene begins, or to underline important events
taking place even inside a logical story unit.

Computing the EMD metric between codebooks of all consecutive audio
shots, in general we can say that if the EMD is large, then the two shots are
quite different in their underlying properties according to the defined set of low-
level features. On the contrary, if the EMD value is small, the audio doesn’t
change appreciably between the two adjacent shots. An experimentally defined
threshold is then used to detect peaks in the distance curve, so as to partition
the audio shots into distinct audio clusters, as shown in Figure 7.

5 Audio Assisted Segmentation

This section deals with how audio and visual results deriving from previous
analysis are combined to achieve a final description of the video structure. Ba-
sically, our shot-based approach avoids many of the alignment problems that
affect many proposed solutions in the literature for joint audio-visual analysis
and provides a simple method for synchronizing the results.

5.1 Scenarios for Audio-video Scene Combination

In the following we identify three possible audio-visual boundary conditions and
the corresponding audio-visual events:
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– If a Visual Change (VC) happens (corresponding to a ”cut edge”) but no
Audio Change (AC) occurs =¿ we set a simple Logical Story Unit boundary
as shown in Figure 8.

– If an Audio Change (AC) happens but no Visual Change (VC) occurs =¿
we set an Audio pattern hint inside the LSU (as in Figure 9) often used by
authors to underline a change in the mood or an important moment in the
story evolution.

– If an Audio Change (AC) coincides with a Visual Change (VC) =¿ we set
an Audio-visual scene change (Figure 10). Of course all audio-visual scene
changes are also LSU boundaries, but the reverse is not true.

5.2 Pattern Investigation Inside Story Units

Using the scene transition graph framework exploited before, it is possible to
further investigate the different patterns of actions inside the detected scenes,
adding more semantic understanding and structural organization to the story.
Searching for patterns allows distinguishing between three main types of actions:
dialogues, progressive actions, hybrid [17] and generic actions, as shown in Figure
11. A dialogue is usually characterized by a simple repetitive visual structure like
ABAB (or ABCABC in the case of three characters). A progressive action shows
a linear evolution and it is characterized by a pattern like ABCDE. A hybrid
action contains a dialogue sequence embedded in a progressive having a pattern
such as ABCDCDE. Looking at the type of action which is dominant inside
each scene, it is possible to classify them as a dialogue, a progressive action or
a hybrid one. All scenes not recognized as making part of the above categories
are classified as generic.

With the classification into ”audio-visual scene changes”, ”LSU boundaries”,
”audio hints” and the investigation of action patterns, a hierarchical organization
of the story structure can be built as shown in Figure 12.



This is finally described in a XML file compliant with MPEG-7 hierarchical
segment decomposition, which is useful for developing effective browsing tools
for navigation or summarization of the video document.

6 Experimental Results

Preliminary experiments on a prototype system have been carried out using
video segments from two feature movies, namely, a 40 minute excerpt from the
light comedy ”Notting Hill” and a 17 minute one from ”A Beautiful Mind”. The
codebook dimension chosen for the visual VQ has been set to 100, while for the
audio the dimension 20 has been chosen, due to its lower dimensional space.

Video Program #Shots #Frames #Clusters #Subclusters

Notting Hill 521 59990 105 172

A Beautiful Mind 203 24818 19 33

Table 1. Trial Video Programs

6.1 Results and Observations

Although some LSU segmentation methods have been seen in literature, a com-
mon predefined ground-truth data set for comparison is still missing and the
definition of LSU is sometimes difficult to be applied by individual movie view-
ers. Even if some work has been done in this direction [18], a systematic method
for the evaluation of LSU segmentation is far from being accomplished. In Table
1 some details on the trial movies are given, together with the total number of
clusters and sub-clusters, obtained as output of the clustering operation. More-
over in Table 2 and Table 3 we present some results in terms of the correctly
detected scene changes and presence of false alarms with respect to a manually
obtained scene segmentation. It should be noted that high values in false alarms
(i.e. over-segmentation) are mainly due to the frequent adoption of ”establish-
ing” shots at the beginning of new scenes; this effect can be reduced by analyzing
all LSUs formed by a single shot and merging their content with the subsequent
LSU.

To better evaluate this work we resort to reference [18], which proposes some
measures on the effectiveness of segmentation results that are more meaningful
and reliable than the counts of correct detections and false alarms. In particular,
measures of Coverage C and Overflow O on LSUs are computed; Coverage C is
the fraction of shots of automatically generated LSU λj that overlap the most
with the ground-truth LSU Λt, i.e.:

C(Λt) =
maxj=0,...,n #(λj)

#(Λt)



Type of Scene Change Ground Truth Correctly Detected False Alarms

LSU boundaries 15 11 7

AV Scene Changes 7 4 2

Audio Hints in LSU 14 10 5

Table 2. Experimental results for ”Notting Hill”

Type of Scene Change Ground Truth Correctly Detected False Alarms

LSU boundaries 3 3 4

AV Scene Changes 5 5 0

Audio Hints in LSU 2 2 2

Table 3. Experimental results for ”A Beautiful Mind”

while Overlap O measures the overlap of automatically generated LSUs λj cov-
ering Λt, with the ground-truth LSUs Λt−1 and Λt+1:

O(Λt) =

∑n
j=0 #(λj \ Λt) ·min(1, #(λj ∩ Λt))

#(Λt−1) + #(Λt+1)

These two measurements, aggregated over the entire tested video sequence as
suggested in [18], are presented in Table 4, where very low values of Overflow O
and the high scores in terms of Coverage C reveal the good performance of the
proposed algorithm in segmenting LSUs.

Video Program #LSUs Λt (GT) #LSUs λj Coverage C Overflow O

Notting Hill 23 45 78.9% 3.9%

A Beautiful Mind 9 13 91.1% 0.0%

Table 4. Detected LSUs in terms of Coverage and Overflow

7 Conclusion

We have presented in this work a novel audiovisual analysis framework for logical
story unit detection based on audio-visual VQ shot clustering and the progress
reached so far for fulfilling such an objective. Extensive experiments on two
feature movies have demonstrated the promising results of this approach. In
fact, the current prototype system is able to recognize logical story units and to
organize video content in a hierarchical structure, highlighting events, detecting
special pattern along the sequence, whilst generating an MPEG-7 compliant
XML description of the sequence as output.
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